用户名: 密码: 验证码:
基于风场和海浪同步观测的海浪同化模式构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海浪数据同化是提高海浪模拟和预报精度的重要途径。影响海浪同化模式精度的四个主要因素为:海浪模式,强迫风场,观测数据以及同化方法。论文基于海浪模式WAVEWATCH III (WW3),从上述四个因素入手,开展了南海、缅因湾和夏威夷三个海域的海浪模拟和同化实验,对海浪模式的三种输入耗散方案进行了评估,研究了同步观测的风场和海浪数据对海浪同化效果的影响机制,研究了基于谱分割策略的EnvisatASAR二维海浪谱最优插值同化。论文的工作可作为中法海洋星CFOSAT卫星应用的预研,对提高我国海浪模拟和预报水平具有实际意义。
     论文的第一部分工作是基于HY-2高度计和测波雷达的有效波高数据评估了WW3中提供的三种输入耗散方案,为高质量的海浪模拟提供基础。WW3提供的三种输入耗散方案WAM3,TC96和WAM4都能较好地模拟出海浪的演变趋势,但是在涌浪占主导的情况下,模拟效果均不甚理想。在这些输入耗散方案中,基于‘有效风速’策略的TC96方案的模拟效果最佳,其中的风速校正参数是非常敏感的,为获得高精度的模拟结果,需对此参数进行合理选择。
     论文的第二部分工作是以QSCAT/NCEP和CCMP风场为背景风场,通过多组海浪有效波高同化实验,分析了同步观测的风场和海浪数据对同化效果的影响。首先基于NDBC浮标数据,评估了QSCAT/NCEP和CCMP风场,二者精度都较高,2008年3月QSCAT/NCEP和CCMP风速的均方根误差分别为2.93和1.61m/s.然后以这两种风场和融合了浮标风速、风向的风场作为海浪模式的强迫风场,进行了多组海浪同化实验,最后得出结论:既融合观测风场又同化同步获取的海浪数据的同化效果最佳;海浪数据与风场数据在同化效果中所起的作用约为4:1,海浪数据同化能减小海浪模式对强迫风场的高度敏感性。
     论文的第三部分工作是基于谱分割策略,实现了Envisat ASAR二维海浪谱数据的最优插值同化,进行了多组模拟和同化实验,比较了有效波高同化与海浪谱同化的同化效果。首先基于NDBC浮标的一维频率谱数据,对2009年至2011年共三年的Envisat ASAR波模式的二维海浪谱数据进行了对比分析。然后对ASAR有效波高、浮标有效波高和ASAR二维海浪谱数据采用不同的同化策略进行了同化实验,最后得出结论:基于谱分割策略的ASAR二维海浪谱同化效果最佳,与仅同化波高相比,均方根误差降低了30%,同化率提高了35%;用于同化的数据源的质量是直接决定同化效果好坏的主要因素之一,浮标的波高同化优于ASAR的波高同化,除了数据质量,待同化数据的观测密度也会对同化效果产生严重影响;虽然ASAR海浪谱的数据质量不如浮标的高,但是ASAR海浪谱同化比浮标波高同化的均方根误差改善了5.6%,同化率提高了17.7%,这是由于二维海浪谱中除了包含表示海浪总能量的有效波高之外,还含有波周期,波传播方向等海浪信息,基于谱分割策略的最优插值同化方法可以用这些信息订正模式背景谱。
Wave data assimilation is an important way to improve the precision of wavesimulation and forecast. Four main factors affected the accuracy of the waveassimilation model are the wave model, the forcing wind field, the observation dataand the assimilation method. In view of the above four factors, based on the wavemodel WAVEWATCH III (WW3), wave simulation and assimilation experiments areprocessed in the three sea areas, the South China Sea, the gulf of Maine and theHawaii. This article evaluates the three input/dissipation schemes of WW3model,and explores the impact mechanism of synchronous wind and wave dataobservations to the assimilation effects. Based on the spectrum partition strategy,Envisat ASAR two-dimensional wave spectra are assimilated using the optimalinterpolation method. The work in this paper could serve as the pre-study ofCFOSAT satellite application and has practical significance to improving the level ofour wave simulation and forecast.
     First, based on the HY-2altimeter and the significant wave height of the waveobservation radar, this work evaluates WW3’s three input/dissipation schemes inorder to establish high quality wave simulation and forecast model. The threeschemes, WAM3, TC96and WAM4, could simulate the evolution trend of the wavenicely, but in the case of ocean swell dominated, simulation results are not very ideal.The simulation result of TC96scheme is the best which is based on the strategy of"effective wind speed" considered the atmospheric instability. Because the windspeed correction parameter is very sensitive, it should be selected reasonably in orderto obtain high accuracy of the simulation result.
     Secondly, taking the QSCAT/NCEP and CCMP wind field as the backgroundwind field, this work fuses wind speed and direction of10buoys, analyzes dataassimilation effect of the synchronous wind and wave through several groups ofsignificant wave height assimilation experiments. The two wind fields have highprecision, the root mean square error of the QSCAT/NCEP and CCMP wind speed in March2008are2.93m/s and1.61m/s, respectively. Taking the two original windfields and the wind fields fused wind speed and wind direction of buoys as the forcewind field of wave model, wave assimilation experiments are carried out. Theconclusions are that: the assimilation effect is the best which both fusesobservational wind field and assimilates synchronous wave data; the ratio of waveand wind data effect to the assimilation is about4:1; wave data assimilation canreduce sensitive of the wave model to the force wind field.
     Thirdly, based on the spectra partition scheme, Envisat ASAR two-dimensionalwave spectral is assimilated with the optimal interpolation method. This workcompares assimilation effect of the significant wave height assimilation and wavespectral assimilation. The conclusions are that: the effect of Envisat ASARtwo-dimensional wave spectral assimilation based on the spectra partition scheme isthe best, compared with the significant wave height assimilation, and the RMSreduces about30%and AI improves about35%; The quality of the data source forassimilation is one of the main factors that determine assimilation effect. Waveheight assimilation of the buoy is better than wave height assimilation of ASAR, thusbeside the data quality, observation density will be a serious impact on assimilationeffect; compared with buoy wave height assimilation, the RMS of ASAR wavespectral assimilation reduces5.6%and AI improves17.7%. It is due to that thetwo-dimensional wave spectral contains not only the significant wave height, whichrepresents total energy of wave, but also other wave information such as wave period,wave propagation direction and so on. Based on the spectrum partition strategy, theoptimal interpolation assimilation method can use those information to correct themodel background spectral.
引文
[1]. Amante C, Eakins BW. ETOPO11arc-minute global relief model: procedures,data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24,2009, pp19.
    [2]. Aouf L, Lefèvre JM, Chapron B, Hauser D. Some recent improvements of theassimilation of upgraded ASAR L2wave spectra. Proc. SEASAR08, ESAWorshop, Frascati, January,2008.
    [3]. Aouf L, Lefèvre JM, Hauser D, Chapron B. On the combined assimilation ofRA-2altimeter and ASAR wave data for the improvement of wave forecasting.Proc.15Years of Radar Altimetry Symp., Venice, March,2006a, pp13-18.
    [4]. Aouf L, Lefèvre JM, Hauser D. Assimilation of directional wave spectra in thewave model WAM: An impact study from synthetic observations in preparationfor the SWIMSAT satellite mission. J. Atmos. Ocean Technol.,2006b,23:448-463.
    [5]. Ardhuin F and Jenkins AD. On the interaction of surface waves and upper oceanturbulence. J. Phys. Oceanogr.,2006,36(3):551-557.
    [6]. Atlas R, Hoffman RA, Ardizzone J, Leidner SM, Jusem JC, Smith DK andGombos A. A cross-calibrated, multiplatform ocean surface wind velocityproduct for meteorological and oceanographic applications. Bulletin ofAmerican Meteorological Society,2011,92:157-174.
    [7]. Bauer E, Hasselmann K and Young IR. Assimilation of wave data into the wavemodel WAM using an impulse response function method, J. Geophys. Res.,1996,101:3801-3816.
    [8]. Bauer E, Hasselmann S, Hasselmann K, Graber HC. Validation and assimilationof Seasat altimeter wave heights using the WAM wave model. J. Geophys. Res.,1992,97:12671-12682.
    [9]. Beezley JD and Mandel J. Morphing ensemble Kalman filters. Tellus A,2008,60:131-140.
    [10]. Bender LC, Glowacki T. The assimilation of altimeter data into theAustralian wave model. Aust. Meteorol. Mag.,1996,45:41-48.
    [11]. Bidlot JR, Abdalla S and Janssen PAEM. A revised formulation for oceanwave dissipation in CY25R1. Tech. Rep. Memorandum R60.9/JB/0516,Research Department, ECMWF, Reading, U. K.,2005.
    [12]. Bishop C H, Etherton B J, and Majumdar S J. Adaptive Sampling withEnsemble Transform Kalman Filter. Part I: Theoretical Aspects. Mon. WeatherRev.,129,420-436,2001.
    [13]. Bocquet M. Ensemble Kalman filtering without the intrinsic need forinfation. Nonlin. Processes Geophys.,2011,18:735-750.
    [14]. Booij N, Ris RC, Holthuijsen LH. A third generation wave model forcoastal regions; Part I: model description and validation. J. Geophysical Res.,1999,104:7649-7666.
    [15]. Bouttier F, Courtier P. Data assimilation concepts and methods.Meteorological Training Course Lecture Series, ECMWF, Mar.1999, pp1-59.
    [16]. Bouws E and Komen GJ. On the balance between growth and dissipation inan extreme depth-limited wind-sea in the southern north sea. J. Phys. Oceanogr.,1983,13:1653-1658.
    [17]. Breivik LA, Reistad M, Schyberg H, Sunde J, Krogstad HE, Johnsen H.Assimilation of ERS SAR wave spectra in an operational wave model. J.Geophys. Res.,1998,103:7887-7900.
    [18]. Breivik LA, Reistad M. Assimilation of ERS-1altimeter wave heights in anoperational numerical wave model. Weather and Forecasting,1994,9:440-451.
    [19]. Caires S, Sterl A, Gommenginger CP. Global Ocean mean wave period data:validation and description. J. Geophys. Res.,2005,110: C02003.
    [20]. Cavaleri L and Malanotte-Rizzoli P. Wind-wave prediction in shallow water:Theory and applications. J. Geophys. Res.,1981,86:10961-10973.
    [21]. Clayton G W, Zhang G N. Gunzburger M. An adaptive sparse-grid iterativeensemble Kalman filter approach for parameter field estimation. InternationalJournal of Computer Mathematics1-20,2013.
    [22]. de las Heras M and Janssen PAEM. Data assimilation with a coupledwind-wave model, J. Geophys. Res.,1992,97:20261-20270.
    [23]. de Valk CF, Calkoen CJ. Wave data assimilation in a third generation waveprediction model for the North Sea: An optimal control approach. Delft Hydraul.Lab., Delft, Netherlands,1989, Rep. X38, pp123.
    [24]. Durrant TH, Greenslade DJM and Simmonds I. Validation of Jason-1andenvisat remotely sensed wave heights. Journal of Atmospheric and OceanicTechnology,2009,26:123-134.
    [25]. Durrant TH, Greenslade DJM and Simmonds I. The effect of statisticalwind corrections on global wave forecasts. Ocean Modelling,2013,70:116-131.
    [26]. Esteva DC. Evaluation of preliminary experiments assimilating Seasatsignificant wave height into a spectral wave model. J. Geophys. Res.,1988, C93:14099-14105.
    [27]. Feng XB, Zheng JH and Yan YX. Wave spectra assimilation in typhoonwave modeling for the East China Sea. Coastal Engineering,2012,69,29-41.
    [28]. Foreman SJ, Holt MW, Kelsall S. Preliminary assessment and use of ERS-1altimeter wave data. J. Atmos. Oceanic Technol.,1994,11:1370-1380.
    [29]. Francis PE, Stratton RA. Some experiments to investigate the assimilationof Seasat altimeter wave height data into a global wave model. Q. J. R. Meteorol.Soc.,1990,116:1225-1251.
    [30]. Gelci R, CazaléH, Vassal J. Bull. Inform. ComitéCentral Océanogr. EtudeC tes,1956,8:170-187.
    [31]. Gelci R, Cazal éH, Vassal J. Prévision de la houle. La méthode des densitésspectroangulaires. Bull. Inform. ComitéCentral Océanogr. Etude C tes,1957,9:416-435.
    [32]. Georgia DK, Christine G and Meric S. Assessing the Performance of theDissipation Parameterizations in WAVEWATCH III Using Collocated AltimetryData. Journal of Physical Oceanography,2009,39,2880-2919.
    [33]. Gerling TW. Partitioning sequences and arrays of directional ocean wavespectra into component wave systems. J. Atmos. Oceanic Technol.,1992,9:444-458.
    [34]. Greenslade DJM, Young IR. Background errors in a global wave modeldetermined from altimeter data. J. Geophys. Res.,2004,109, C09007.
    [35]. Greenslade DJM, Young IR. Forecast divergence of a global wave model.Mon. Wea. Rev.,2005a,133:2148-2162.
    [36]. Greenslade DJM, Young IR. The impact of altimeter sampling patterns onestimates of background errors in a global wave model. J. Atmos. OceanicTechnol.,2005b,22:1895-1917.
    [37]. Greenslade DJM, Young IR. The impact of inhomogenous backgrounderrors on a global wave data assimilation system. Journal of Atmospheric andOcean Science,2005c,10:61-93.
    [38]. Greenslade DJM. The assimilation of ERS-2significant wave height data inthe Australian region. J. Mar. Syst.,2001,28:141-160.
    [39]. Guo YY, Hou YJ, Zhang CM and Yang J. A background error covariancemodel of significant wave height employing Monte Carlo simulation. ChineseJournal of Oceanology and Limnology,2012,30(5):814-821.
    [40]. Hanson JL and Jensen RE. Wave system diagnostics for numerical wavemodels. in8th international workshop on wave hindcasting and forecasting,JCOMM Tech. Rep.29, WMO/TD-No.1319,2004.
    [41]. Hanson JL, Tracy BA, Tolman HL and Scott D. Pacic hindcastperformanceevaluation of three numerical wave models. in9th international workshop onwave hindcasting and forecasting, JCOMM Tech. Rep.34. Paper A2,2006.
    [42]. Hanson JL and Phillips OM. Automated analysis of ocean surfacedirectional wave spectra. Journal of Atmospheric and Oceanic Technology,2001,18(2):277-293.
    [43]. Harlim J and Hunt B R. A non-Gaussian ensemble filter for assimilatinginfrequent noisy observations. Tellus A,59,225-237,2007.
    [44]. Hasselmann DE, Bosenberg J, Dunckel M, Richter K, Griinewald M andCarlson H, Measurements of wave-induced pressure over surface gravity waves,1986, p353-370in: Wave dynamics and radio probing of the ocean surface,Phillips O.M. and Hasselmann K.; Plenum, New York,677p.
    [45]. Hasselmann K, Barnett TP, Bouws E, Carlson H, Cartwright DE, Enke K,Ewing JA, Gienapp H, Hasselmann DE, Kruseman P, Meerburg A, Müller P,Olbers DJ, Richter K, Sell W, Walden H. Measurements of wind-wave growthand swell decay during the JOint North Sea WAve Project (JONSWAP). Dtsch.Hydrogr. Z. Suppl.,1973, A8(12), pp95.
    [46]. Hasselmann K, Hasselmann S, Bauer E, Brüning C, Lehner S, Graber H,Lionello P. Development of a satellite SAR image spectra and altimeter waveheight data assimilation system for ERS-1. ESA Report, Max-Planck-Institutefür Meteorologie, Nr.19Hamburg,1988, pp155.
    [47]. Hasselmann K. On the non-linear energy transfer in a gravity-wavespectrum, part1: General theory. J. Fluid Mech.,1962,12:481-500.
    [48]. Hasselmann S, Brüning C, Hasselmann S, Heimbach P. An improvedalgorithm for the retrieval of ocean wave spectra from synthetic aperture radarimage spectra. J. Geophys. Res.,1996,101:16615-16629.
    [49]. Hasselmann S, Brüning C, Lionello P. Towards a generalized optimalinterpolation method for the assimilation of ERS-1SAR retrieved wave spectrain a wave model[C]. Proc. Second ERS-1Symposium, Hamburg, Germany, Eur.Space Agency Spec. Publ. ESA SP-361,1994,21-25.
    [50]. Hasselmann S, Hasselmann K, Allender JH, Barnett TP. Computations andparameterizations of the nonlinear energy transfer in a gravity-wave spectrum,part2: Parameterizations of the nonlinear transfer for application in wavemodels. J. Phys. Oceangr.,1985,15:1378-1391.
    [51]. Hasselmann S, Lionello P, Hasselmann K. An optimal interpolation schemefor the assimilation of spectral wave data. J. Geophys. Res.,1997,102:15823-15836.
    [52]. Hsu TW, Liau JM, Lin JG, Zheng JH and Ou SH. Sequential assimilation inthe wind wave model for simulations of typhoon events around Taiwan Island.Ocean Engineering,2011,38:456-467.
    [53]. Hauser D, Soussi E, Thouvenot E and Laurent R. SWIMSAT: Areal-aperture radar to measure directional spectra of ocean waves fromspace-Main characteristics and performance simulation, Journal of Atmosphericand Oceanic Technology,2001,18(3):421-437.
    [54]. Heras MM de las. On variational data assimilation in ocean wave models.Ph.D. Thesis, University of Utrecht,1994.
    [55]. Herterich K and Hasselmann K. A similarity relation for the nonlinearenergy transfer in a finite-depth gravity-wave spectrum. J. Fluid Mech.,1980,97:215-224.
    [56]. Hollingsworth A, L nnberg P. The statistical structure of short-rangeforecast errors as determined from radiosonde data: I. The wind field. Tellus, Ser.A,1986,38:111-136.
    [57]. Hui F, Vandemark D, Quilfenc Y, Chapronc B and Beckley B. Assessmentof wind-forcing impact on a global wind-wave model using the TOPEXaltimeter. Ocean Engineering,2006,33:1431-1461.
    [58]. Hunt B R, Kostelich E J, and Szunyogh I. Efficient data assimilation forspatiotemporal chaos: a local ensemble transform Kalman filter. Physica D,2007230,112-126.
    [59]. Hwang P A. Wind sea and swell separation of1D wave spectrum by aspectrum integration method. Journal of Atmospheric and Oceanic Technology,2012,29:116-128.
    [60]. Janssen PAEM. Quasi-linear theory of wind wave generation applied towave forecasting. J. Phys. Oceanogr.,1991,21:1631-1642.
    [61]. Jennifer W, Lucy R. Wyatt, Judith W, et al. Data assimilation of partitionedHF radar wave data into WAVEWATCH III. Ocean Modelling,2013,72:17-31.
    [62]. Jiang H and Cheng G. A Global View on the Swell and Wind Sea Climate bythe Jason-1Mission: A Revisit. Journal of Atmospheric and Oceanic Technology,2013,30:1833-1841.
    [63]. Johnsen H, Chapron B, Walker N, Desnos YL. The ASAR wave mode: level1and level2algorithms and products. Proc. Envisat Calibration Review,Noordwijk, Netherlands, ESA,2002a, SP-520.
    [64]. Johnsen H, Collard F. Comparison of reprocessed ASAR WM ocean wavespectra with WAM and buoy spectra. Proc. Envisat Symp.2007, Montreux,Switzerland, ESA,2007, SP-636.
    [65]. Johnsen H, Engen G, Chapron B, Walker N, Closa J. Validation of ASARwave mode level2product. Proc. Envisat Validation Workshop, Frascati, Italy,2002b, p9.
    [66]. Kalnay E. Atmospheric modeling, data assimilation, and predictability.Cambridge Univ Pr.,2003.
    [67]. Kako SI, Isobe A and Kubota M. High-resolution ASCAT wind vector dataset gridded by applying an optimum interpolation method to the global ocean.Journal of Geophysical Research,2011,116(D23):23107.
    [68]. Kako SI and Kubota M. Relationship between an El Ni o Event and theInterannual Variability of Significant Wave Heights in the North Pacific.Atmosphere-Ocean,2006,44:4,377-395.
    [69]. Kitaigorodskii, SA, Application of the theory of similarity to the analysis ofwind-generated water waves as a stochastic process, Bull. Acad. Sci. USSRGeophys. Ser.,1962, no.1,73p.
    [70]. Kerbaol V, Johnsen H, Chapron B, Rosich B. Quality assessment of EnvisatASAR wave mode products based on regional and seasonal comparisons withWAM model outputs. Proc. ENVISAT/ERS Symp., Salzburg, Austria,2004,ESA-572.
    [71]. Komen G J. Introduction to wave models and assimilation of satellite datain wave models. Proc. Alpbach Conference, ESA Spec. Publ., ESA SP-244,1985, pp21-26.
    [72]. Komen GJ, Cavaleri L, Donelan M, Hasselmann K, Hasselmann S, JanssenPAEM. Dynamics and modelling of ocean waves. Cambridge University Press,London,1994.
    [73]. Kuragano T and Shibata A. Sea surface dynamic height of the Pacific Oceanderived from TOPEX/POSEIDON altimeter data, calculation method andaccuracy. J. Oceanogr.1997,53:583–599.
    [74]. Lee BC, Fan YM, Chuang LZH and Kao CC. Parametric sensitivity analysisof the WAVEWATCH III model. Terr. Atmos. Ocean. Sci.,2009,20,425-432.
    [75]. Li JG, Holt M. Comparison of Envisat ASAR ocean wave spectra with buoyand altimeter data via a wave model. J. Atmos. Oceanic Technol.,2009,26(3):593-614.
    [76]. Lionello P, Günther H, Hansen B. A sequential assimilation scheme appliedto global wave analysis and prediction. J. Mar. Syst.,1995,6:87-107.
    [77]. Lionello P, Günther H, Janssen PAEM. Assimilation of altimeter data in aglobal third-generation wave model. J. Geophys. Res.,1992,97:14453-14474.
    [78]. Lionello P, Janssen PAEM. Assimilation of altimeter measurements toupdate swell spectra in wave models. Proc. Int. Symp. Assimilation ofObservations in Meteorology and Oceanography, Clermond-Ferrand, France,1990, pp241-248.
    [79]. Longuet-Higgins MS and Stewart RW. The changes in amplitude of shortgravity waves on steady non-uniform currents. J. Fluid Mech.,1961,10:529-549.
    [80]. Longuet-Higgins MS and Stewart RW. Radiation stress and mass transportin gravity waves, with application to 'surf-beats'. J. Fluid Mech.,1962,10:529-549.
    [81]. Mandel J, Beezley J D, Cobb L. and Krishnamurthy, A. Data drivencomputing by the morphing fast Fourier transform ensemble Kalman filter inepidemic spread simulations. Procedia Computer Science,1,1215-1223,2010.
    [82]. Mastenbroek C, Makin VK, Voorrips AC, Komen GJ. Validation of ERS-1altimeter wave height measurements and assimilation in a North Sea wavemodel. Global Atmos. Ocean Syst.,1994,2:143-161.
    [83]. Miles JW. On the generation of surface waves by shear flows. J. FluidMech.,1957,3:185-204.
    [84]. Mitsuyasu H. On the growth of the spectrum of wind-generated waves.1.Rep. Res. Inst. Appl. Mech., Kyushu Univ.,1968,16:251-264.
    [85]. Mitsuyasu H. On the growth of the spectrum of wind-generated waves.2.Rep. Res. Inst. Appl. Mech., Kyushu Univ.,1969,17:235-243.
    [86]. Miyoshi T. The Gaussian Approach to Adaptive Covariance Inflation and ItsImplementation with the Local Ensemble Transform Kalman Filter. Mon. Wea.Rev.,2011,139:1519-1535.
    [87]. Miyoshi T. and Kunii M. The local ensemble transform Kalman filter withthe Weather Research and Forecasting model: experiments with realobservations. Pure and Appl. Geophys.,2011,169(3):321-333.
    [88]. Miyoshi T and Sato Y. Assimilating Satellite Radiances with a LocalEnsemble Transform Kalman Filter (LETKF) Applied to the JMA Global Model(GSM). SOLA,2007,3:37-40.
    [89]. Ott E, Hunt B R, Szunyogh I, Zimin AV, Kostelich EJ, Corazza M, Kalnay E,Patil M and Yorke JA. A local ensemble Kalman filter for atmospheric dataassimilation. Tellus,2004,56A:415-428.
    [90]. Paul AW, Chatchawin S. Identification of Swell in Nearshore Surface WaveEnergy Spectra. The International Journal of Ocean and Climate Systems,20101:51-66.
    [91]. Phillips OM. On the generation of waves by turbulent wind. J. Fluid Mech.,1957,2:417-445.
    [92]. Phillips OM. Spectral and statistical properties of the equilibrium range inwind-generated gravity waves. J. Fluid Mech.,1985,156:505-531.
    [93]. Phillips OM. The equilibrium range in the spectrum of wind-generatedwater waves. J. Fluid Mech.,1958,4:426-434.
    [94]. Pierson WJ, Neumann G, James RW. Practical methods for observing andforecasting ocean waves by means of wave spectra and statistics. H.O. Pub.603,US Navy Hydrographic Office, Washington DC,1955.
    [95]. Portilla JF. Buoy data assimilation in nearshore wave modelling. PhDDissertation, Katholieke Universiteit Leuven,2009.
    [96]. Pinto JP, Bernardino MC, Pires SA. A Kalman filter application to a spectralwave model. Nonlinear Processes Geophys,2005,12:775-782.
    [97]. Portilla JF, Ocampo-Torres FJ and Monbaliu J. Spectral partitioning andidentification of wind sea and swell. Journal of Fluid Mechanical,2009,156:505-531.
    [98]. Reichle R H, Crow W T, and Keppenne CL. An adaptive ensemble Kalmanfilter for soil moisture data assimilation. Water Resour. Res.,44, W03423,2008.
    [99]. Resio DT and Perrie W. A numerical study of nonlinear energy fluxes due towave-wave interactions. Part1: Methodology and basic results. J. Fluid Mech.,1991,223:609-629.
    [100]. Sakov P, Dean Oliver S, Laurent B. An Iterative EnKF for StronglyNonlinear Systems. Mon. Wea. Rev.,2012,140:1988-2004.
    [101]. Sannasiraj SA, Babovic V, Chan ES. Wave data assimilation using ensembleerror covariances for operational wave forecast. Ocean Modelling,2006,14:102-121.
    [102]. Siddons LA. Data assimilation of HF radar data into coastal wave models.PhD Dissertation, the University of Sheffeld,2007.
    [103]. Siddons L A, Wyatt L R, Wolf J. Assimilation of HF radar data into theSWAN wave model. Journal of Marine Systems,77,312-324,2009.
    [104]. Sannasiraj SA and Goldstein MG.2009. Optimal interpolation of buoy datainto a deterministic wind-wave model. Nat. Hazards,2009,49:261-274.
    [105]. Siadatmousavi SM, Jose F and Stone GW. Evaluation of two WAMwhitecapping parameterizations using parallel Unstructured SWAN withapplication to the Northern Gulf of Mexico, USA. Applied Ocean Research,2011,33:23-30.
    [106]. Snyder RL, Dobson FW, Elliott JA, Long RB. Array measurements ofatmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech.,1981,102:1-59.
    [107]. Stordal AS, Karlsen HA, N vdal G, Skaug HJ and Vallès B. Bridging theensemble Kalman filter and particle filters the adaptive Gaussian mixture filter.Comput Geosci.,2010.
    [108]. Sverdrup HU, Munk WH. Wind sea and swell: Theory of relation forforecasting. H.O. Pub.601, US Navy Hydrographic Office, Washington DC,1947, pp44.
    [109]. SWAMP group: Allender JH, Barnett TP, Bertotti L, Bruinsma J, CardoneVJ, Cavaleri L, Ephraums J, Golding B, Greenwood A, Guddal J, Günther H,Hasselmann K, Hasselmann S, Joseph P, Kawai S, Komen GJ, Lawson L, LinnéH, Long RB, Lybanon M, Maeland E, Rosenthal W, Toba Y, Uji T, de Voogt WJP.Sea wave modeling project (SWAMP). An intercomparison study of wind wavepredictions models, part1: Principal results and conclusions, in: Ocean wavemodeling; Plenum, New York,1985, pp256.
    [110]. Thomas JP. Retrieval of energy spectra from measured data for assimilationinto a wave model. Q. J. R. Meteorol. Soc.,1988,114:781-800.
    [111]. Tolman HL. Effects of numeric on the physics in a third-generationwind-wave model. J. Phys. Oceanogr.,1992,22:1095-1111.
    [112]. Tolman HL. Testing of WAVEWATCH III version2.22in NCEP's NWW3ocean wave model suite. Tech. Note214,2002, NOAA/NWS/NCEP/OMB,99pp.
    [113]. Tolman HL. User manual and system documentation of WAVEWATCH IIIversion3.14. Tech. Note276, NOAA/NWS/NCEP/MMAB,2009,194pp.
    [114]. Tolman HL, Alves JHGM and Chao YY. Operational forecasting ofwind-generated waves by hurricane Isabel at NCEP. Weather Forecast,2005,20:544-557.
    [115]. Tolman HL, Balasubramaniyan B, Burroughs LD, Chalikov DV, Chao YY,Chen HS, Gerald VM. Development and implementation of wind generatedocean surface wave models at NCEP. Wea. Forecasting,2002,17:311-333.
    [116]. Tolman HL and Chalikov DV. Source terms in a third-generation wind-wavemodel. J. Phys. Oceanogr.,1996,26:2497-2518.
    [117]. Tracy B and Resio DT. Theory and calculation of the nonlinear energytransfer between sea waves in deep water. WES Report11, US Army Corps ofEngineers,1982.
    [118]. Tracy FT, Tracy B and Resio DT. ERDC MSRC Resource. Tech.Rep. Fall2006, US Army Corps of Engineers,2006.
    [119]. Vincent L and Soille P. Watersheds in digital spaces: An efficient algorithmbased on immersion simulations. IEEE Transactions of Pattern Analysis andMachine Intelligence,1991,13:583-598.
    [120]. Voorrips AC, Mastenbroek C, Hansen B. Validation of two algorithms toretrieve ocean wave spectra from ERS synthetic aperture radar. J. Geophys. Res.,2001,106(C8):16825-16840.
    [121]. Voorrips AC. Optimal interpolation of partitions: a data assimilation schemefor NEDWAM-4. KNMI Scientific Report WR97-02,1997.
    [122]. WAMDI group: Hasselmann S, Hasselmann K, Bauer E, Janssen PAEM,Komen GJ, Bertotti L, Lionello P, Guillaume A, Cardone VC, Greenwood JA,Reistad M, Zambresky L, Ewing JA. The WAM model–a third generationocean wave prediction model. J. Phys. Oceanogr.,1988,18:1775-1810.
    [123]. Wang DW, Hwang PA. An operational method for separating wind sea andswell from ocean wave spectra. Journal of Atmospheric and Oceanic Technology,2001,18:2052-2062.
    [124]. Wang JC, Zhang J and Yang JG. The validation of HY-2altimetermeasurements of a significant wave height based on buoy data. ActaOceanologica Sinica,2013,32(11):87-90.
    [125]. Waters J. Data assimilation of partitioned HF radar wave data into wavemodels. Ph.D. Thesis, the University of Sheffeld,2010.
    [126]. Webb DJ. Non-linear transfers between sea waves. Deep-Sea Res.,1978,25:279-298.
    [127]. Wen SC, Qian CC, Ye AL, Wu KJ, Wu ZM, Guan CL, Zhao DL. Wavemodeling based on an adopted wind-wave directional spectrum. J. Ocean Univ.Qingdao,1999,29(3):345-397.
    [128]. Whitham GB. A general approach to linear and non-linear dispersive wavesusing a Lagrangian. J. Fluid Mech.,1965,22:273-283.
    [129]. Yang S-C, Corazza M, Carrassi A, Kalnay E. and Miyoshi T. Comparison ofensemble-based and variational-based data assimilation schemes in aquasi-geostrophic model. Mon. Weather Rev,2009,137:693-709.
    [130]. Yang YZ, Qiao FL, Pan ZD. Wave assimilation and numerical prediction.Chin. J. Oceanol. Limnol.,2000,4:301-308.
    [131]. Yin BS, Wang T, MI EI-Sabh. A third generation shallow water wavenumerical model YE-WAM. Chin. J. Oceanol. Limnol.,1996,14(2):106-112.
    [132]. Young IR, Glowacki TJ. Assimilation of altimeter wave height data into aspectral wave model using statistical interpolation. Ocean Eng.,1996,23(8):667-689.
    [133]. Yuan YL, Hua F, Pan ZD, Sun LT. LAGFD-WAM numerical wave model-I.Basic physical model. Acta Oceanol. Sinica,1991a,10:483-488.
    [134]. Yuan YL, Pan ZD, Hua F, Sun LT. LAGFD-WAM numerical wave model-II.Characteristics inlaid scheme and its application. Acta Oceanol. Sinica,1991b,11:13-23.
    [135]. Zhao W, Guan S, Hong X, Li PL and Tian JW. Examination of wind waveinteraction source term in WAVEWATCH III with tropical cyclone wind forcing.Acta Oceanol. Sin.,2011,30(4):1-13.
    [136]. Zheng XG, Wu GC, Zhang SP, Liang X, Dai YJ and Li Y. Using analysisstate to construct a forecast error covariance matrix in ensemble Kalman filterassimilation. Advances in Atmospheric Sciences,2013,30(5):1303-1312.
    [137]. Zhu J, Zheng F and Li XC. A new localization implementation scheme forensemble data assimilation of non-local observations. Tellus,2011,63A:244-255.
    [138].储小青.海浪波谱仪海浪遥感方法及应用基础研究.青岛:中国科学院海洋研究所,2011.
    [139].侯一筠,文圣常.三参量的风浪频谱.海洋与湖沼,1990,21(6):495-504
    [140].蒋兴伟,宋清涛.海洋卫星微波遥感技术发展现状与展望.科技导报,2010,28(3):105-111.
    [141].管长龙.我国海浪理论及预报研究的回顾与展望.青岛海洋大学学报,2000,30(4):549-556.
    [142].郭衍游,侯一筠,杨永增,韩玲玲.利用WaveWatch III建立东中国海区域海浪同化系统.高技术通讯,2006,16(10):1092-1096.
    [143].郭衍游.东中国海区域海浪同化系统设计与研究.青岛:中国科学院海洋研究所,2006.
    [144].刘向文,李维京,吴统文,肖贤俊.背景误差协方差矩阵不同求逆方案在高度计资料同化试验中的应用比较.海洋学报(中文版),2012,34(5):65-73.
    [145].齐鹏,范秀梅.高度计波高数据同化对印度洋海域海浪模式预报影响研究.海洋预报,2013,30(4):70-78.
    [146].乔方利,ZHANG Shao-qing.现代海洋/大气资料同化方法的统一性及其应用进展.海洋科学进展,2002,20(4):80-93.
    [147].任启峰.背景误差相关结构的统计分析与ENVISAT ASAR海浪谱资料同化研究.青岛:中国科学院海洋研究所,2010.
    [148].万莉颖.集合同化方法在太平洋海洋高度计资料同化中的应用研究.北京:中国科学院大气物理研究所,2006.
    [149].王毅,余宙文.卫星高度计波高数据同化对西北太平洋海浪数值预报的影响评估.海洋学报(中文版),2009,31(6):1-8.
    [150].王跃山.数据同化—它的缘起、含义和主要方法.海洋预报,1999,16(1):11-20.
    [151].王跃山,黄润恒.用插入观测法将高度计观测同化到海浪模式WAM中.海洋预报,1999,16(2):1-17.
    [152].文圣常,余宙文.海浪理论与计算原理.北京:科学出版社,1984.
    [153].杨永增,张杰. SAR资料的海浪方向谱同化研究.卫星微波遥感技术研讨会论文集,1998,206-211.
    [154].杨永增,袁业立,张杰.海浪有效波高资料同化与试验分析.水动力学研究与进展(A辑),1999,14(4B):181-188.
    [155].杨永增,张杰,潘增弟.海浪同化预报模型理论基础.黄渤海海洋,2001,19(3):26-38.
    [156].杨永增.海浪谱能量方程稳定性、敏感性分析与海浪变分同化研究.青岛:中国科学院海洋研究所,2001.
    [157].尹宝树,王涛,范顺庭. YW-SWP海浪数值预报模式及其应用.海洋与湖沼,1994,25(3):350-353.
    [158].尹训强.全球大洋环流卫星高度计资料同化研究及其结果分析.青岛:国家海洋局第一海洋研究所,2005.
    [159].袁业立,潘增弟,华锋,孙乐涛. LAGFD-WAM海浪数值模式I:基本物理模型.海洋学报,1992a,14(5):1-7.
    [160].袁业立,潘增弟,华锋,孙乐涛. LAGFD-WAM海浪数值模式II:区域性特征线嵌入格式及其应用.海洋学报,1992b,14(6):12-24.
    [161].张志旭,齐义泉,施平,李志伟,李毓湘.卫星高度计波高资料的同化试验分析.海洋学报,2003a,25(5):21-28.
    [162].张志旭,齐义泉,施平,李志伟,李毓湘.最优化插值同化方法在预报南海台风浪中的应用.热带海洋学报,2003b,22(4):34-41.
    [163].朱江,汪萍.集合卡尔曼平滑和集合卡尔曼滤波在污染源反演中的应用.大气科学,2006,30(5):871-882.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700