用户名: 密码: 验证码:
醇溶性胺基功能化共轭有机/聚合物的合成与光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近三十来,聚合物发光二极管和聚合物太阳电池(PLEDs/PSCs),由于在通过旋涂或喷墨打印等湿法加工制备重量轻、大面积、柔性的光电转换器件方面具有广泛的应用前景,引起了学术界和工业界持续而广泛的关注。PLEDs/PSCs通常采用两个金属电极夹一层共轭聚合物的三明治结构,为了实现高效的PLEDs/PSCs,对共轭聚合物和金属电极的界面进行调控,使其形成欧姆接触至关重要。胺基功能化共轭聚合物(AFCPs)由于其具有优异的光电性能,能够采用正交、环保型溶剂加工,优异的阴极界面修饰能力,降低金属电极功函数等优势而展现了广泛的用途。基于AFCPs的阴极界面层,实现了高效、并以稳定金属为阴极的PLEDs/PSCs,其中实现了全溶液加工的、银胶为阴极的PLEDs;PSCs的能量转换效率达到9.2%,为文献报道单节PSCs的最高值之一。
     本论文的研究内容主要针对胺基功能化共轭有机/聚合物的主链结构和侧链结构进行优化和调控,使其多功能化,并成功应用于PLEDs/PSCs中。
     在第二章,为了克服溶液加工复杂的多层聚合物光电器件时存在的界面侵蚀、界面混溶等问题,提出了将可交联基团、具有阴极界面修饰能力的强极性官能团胺基链接于共轭聚合物侧链的设计思路,使其具多功能性。含可交联基团的AFCPs可通过环保型、正交溶剂加工成膜、且在加热或者光照条件下能相互反应形成不溶不熔的互穿网络聚合物膜,有利于溶液加工制备界面清晰的多层器件;此外,含可交联基团的AFCPs还兼具优异的阴极界面修饰功能。
     将其作为阴极界面层应用于PLEDs中,可以有效地促进高功函金属Al(或者ITO)阴极向发光层的电子注入,实现了高效稳定的PLEDs器件,正装PLEDs器件的最高流明效率达到了13.5cdA1;倒置PLEDs器件的最高流明效率达到了14.8cdA1。
     此外将其作为ITO阴极界面修饰层应用于倒置PSC(I-PSCs)中,I-PSCs器件的能量转换效率均大幅提高,最高能量转换效率超过9%,为文献报道单节聚合物太阳电池最高效率之一。
     在第三章,为了使AFCPs阴极界面层厚度在较宽的范围内,I-PSCs器件仍保持优异的性能,在传统AFCPs的主链引入半径较大的金属原子Hg,利用金属-金属的超分子相互作用,改善共轭聚合物的有序、规整排列,提高载流子的传输性能。
     主链含金属Hg原子的胺基功能化共轭聚合物PFEN-Hg具有正交溶剂加工特性、ITO阴极界面修饰能力、良好的载流子选择和传输性能、空穴阻挡性能、可见-近红外区域无吸收、较宽的光学带隙等优点,将PFEN-Hg作为ITO阴极界面层应用于I-PSCs中,器件的能量转换效率超过9%,为文献报道单节PSCs最高效率之一;且I-PSCs器件的光伏性能对PFEN-Hg界面层的厚度依赖性较小,在7-19nm范围内,器件的能量转换效率均超过8.6%。
     在第四章,首次设计并合成了结构确定、醇溶性的胺基功能化有机铂(II)配合物Pt-N,Pt-N兼具分子结构确定、易提纯、批次与批次差异小、器件重复性好、正交溶剂加工特性、阴极界面修饰能力、良好的载流子选择和传输性能、空穴阻挡性能、可见光-近红外区域吸收弱等优点,是一类优异的阴极界面修饰材料。Pt-N能帮助实现非常有效的电子收集,获得更好的器件性能,以Pt-N作为Al阴极的修饰层,采用高效的聚合物材料PTB7和PC71BM作为活性层,制备的PSCs能量转换效率可从参比器件的3.62%提高到8.89%。
     在第五章,为了系统研究侧链强极性官能团胺基含量的变化对共轭聚合物的电子注入性能、发光性能的影响,设计合成了三系列具有电子注入和优异发光性能的AFCPs,通过在主链掺杂生色团单元,实现了红、绿、蓝三基色发光。
     由于胺基与3,7-S,S-二氧-二苯并噻吩(FSO)的弱相互作用,形成激基复合物,光致发光光谱(PL)和电致发光光谱(EL)随着胺基含量增加而逐渐红移及变宽。所有发光聚合物均应用于纯Al为阴极的PLEDs器件中,蓝光聚合物当胺基含量从0%增加至1%,器件性能增加至3.28cdA1,胺基含量继续增加至5%和15%时,由于激基复合物的形成,器件性能反而下降。而绿光、红光聚合物PLEDs性能随着胺基比例增加而逐渐增加,发红、绿光PLEDs器件的最大流明效率分别为0.79和7.31cdA1。
Polymer light-emitting diodes (PLEDs) and polymer solar cells (PSCs), have attractedconsiderable attention over the past decades due to their unique characteristics, such as lowcost, light weight, and possible flexibility and large-area coverage. Both PLEDs and PSCsusually adopt a basic architecture composed of a thin layer of organic semiconductingmaterial sandwiched between two electrodes. It is therefore important to control theproperties and Ohmic contact of the organic/electrode interface to maximize performance.Amino-functionalized conjugated polymers (AFCPs) have exhibited wide applications owingto their excellent optoelectronic properties, orthogonal solvent processibility, and outstandinginterfacial modification functions. Combined these advantages, high efficiency and stablePLEDs and PSCs based on AFCPs cathode interlayer have been realized. That directly leadedto the realization of the first high efficiency all-solution processed PLEDs based on Ag pastecathode. Single junction PSCs based on AFCPs cathode interlayer reached PCEs of up to9.2%, which is one of the highest PCEs for single junction PSCs.
     The studies demonstrated in this thesis are the development of novel multifunctionalamino-functionalized conjugated polymers by optimizing their backbones and side chains.The novel amino-functionalized conjugated polymers were successfully applied in polymerlight emitting diodes and polymer solar cells.
     In chapter2, a series of novel crosslinkable alcohol soluble conjugated polymers(PF6N-OX, PF3N-OX, PF6N-St) containing oxetane/styrene groups and aminoalkyl groupsin the side chains have been developed and used as highly efficient electroninjection/extraction and transporting material for PLEDs and PSCs. The unique solubility inpolar solvents and crosslinkable ability of the novel conjugated polymers render them a goodcandidate for solution processed multilayer and inverted PLEDs and PSCs.
     It was found that novel conjugated polymers (PF6N-OX, PF6N-St) can greatly enhancethe electron injection from high work-function metal cathode Al or ITO, due to its pendantamino groups, and so high efficiency and stable PLEDs have been realized. The resultingPLEDs and inverted PLEDs showed promising performance with a maximum luminance efficiency of13.53and14.8cd A-1, respectively.
     When the PF3N-OX was used as ITO cathode in inverted PSCs, the PSCs showedsignificantly improved performance, and the best PSCs reached PCEs of up to9%, which isone of the highest PCEs for single junction PSCs.
     In chapter3, a metal-based conjugated polymer PFEN-Hg with pendent amino groupswas synthesized and employed as an efficient interlayer to improve the electron transport andcollection property in high performance I-PSCs. This new polymer offers most of the desiredproperties one would consider for an efficient interface material including orthogonal solventprocessing ability, good film formation property, effective in workfunction modification ofthe ITO substrate, low optical absorption, good electron selectivity and good electrontransporting property. With these improved interfacial properties from the PFEN-Hginterlayer, I-PSCs showed very encouraging PCE of over9%, which is one of the bestreported performance for single-junction PSCs. An even more appealing feature offered bythe new interface material is the feasibility to achieve good device performance with a widerrange of film thickness, those property is good for large-area device processing.
     In chapter4, an amino-functionalized organoplatinum(II) complex called Pt-N wasdeveloped and utilized as an efficient Al cathode interlayer to improve the electrontransporting and collection in high performance PSCs. This new small molecule Pt-N offersmost of the desired properties one would consider for an efficient interface material includingwell-defined chemical structure, orthogonal solvent processing ability, good film formationproperty, low optical absorption, excellent electron selectivity, good hole-blocking ability. Byusing Pt-N as ETL underneath the Al cathode, the PCE values of the PSCs can be increasedfrom the initial3.62%to8.89%, benefiting from the dramatic enhancement in Voc, FF andslightly increase in Jsc. These results indicate that the amino-functionalized organoplatinum(II) complex would be a promising family of interfacial materials for highly efficient PSCs.
     In chapter5, a series of blue, green and red-emitting aminoalkyl functionalizedpolyfluorene derivatives containing FSO, BT and DTBT as chromophores, respectively weresynthesized. We found that the variation of molar ratio of aminoalkyl functional groups didnot significantly influence thermal stability, UV-vis absorption, photoluminescence as well as electrochemical properties of copolymers. The application of the resulted aminoalkylfunctionalized copolymers in polymer light emitting devices exhibited dual-functionincluding efficient light-emission and electron injection from Al cathode. The increase ofmolar ratio of aminoalkyl side groups leads to enhanced device performances for both greenand red-emitting copolymers, however, reduced performance for blue-emitting ones due toformation of excimer. Best device performance with the LEmaxof3.28,7.31and0.79cd A-1was achieved for devices based on blue, green and red-emitting copolymers, respectively wasachieved by using Al as cathode. The results indicated the great potential for the applicationusing this kind of aminoalkyl functionalized copolymers as efficient light emitting layer withhigh workfunction as cathode.
引文
[1] http://news.oled-display.net
    [2] http://www.webofknowledge.com/
    [3] http://www.eia.gov/
    [4] http://www.thomsonscientific.com.cn
    [5] http://www.heliatek.com/
    [6] Pope M, Kallmann H P, Magnante P. Electroluminescence in organic crystals [J]. TheJournal of Chemical Physics,1963,38(8):2042-3.
    [7] Tang C W, Vanslyke S A. Organic electroluminescent diodes [J]. Applied PhysicsLetters,1987,51(12):913-15.
    [8] Burroughes J H, Bradley D D C, Brown A R, et al. Light-emitting diodes based onconjugated polymers [J]. Nature,1990,347(6293):539-41.
    [9] Ma Y G, Zhang H Y, Shen J C, et al. Electroluminescence from triplet metal-ligandcharge-transfer excited state of transition metal complexes [J]. Synthetic Metals,1998,94(3):245-8.
    [10] Baldo M A, O'brien D F, You Y, et al. Highly efficient phosphorescent emission fromorganic electroluminescent devices [J]. Nature,1998,395(6698):151-4.
    [11] Holder E, Langeveld B M W, Schubert U S. New trends in the use of transitionmetal–ligand complexes for applications in electroluminescent devices [J]. AdvancedMaterials,2005,17(9):1109-21.
    [12] Uoyama H, Goushi K, Shizu K, et al. Highly efficient organic light-emitting diodesfrom delayed fluorescence [J]. Nature,2012,492(7428):234-8.
    [13] Sato K, Shizu K, Yoshimura K, et al. Organic luminescent molecule with energeticallyequivalent singlet and triplet excited states for organic light-emitting diodes [J].Physical Review Letters,2013,110(24):247401.
    [14] Grimsdale A C, Chan K L, Martin R E, et al. Synthesis of light-emitting conjugatedpolymers for applications in electroluminescent devices [J]. Chemical Reviews,2009,109(3):897-1091.
    [15] Mitschke U, Bauerle P. The electroluminescence of organic materials [J]. Journal ofMaterials Chemistry,2000,10(7):1471-507.
    [16] Liang B, Wang L, Xu Y, et al. High-efficiency red phosphorescent iridium dendrimerswith charge-transporting dendrons: Synthesis and electroluminescent properties [J].Advanced Functional Materials,2007,17(17):3580-9.
    [17] Wang E, Li C, Zhuang W, et al. High-efficiency red and green light-emitting polymersbased on a novel wide bandgap poly(2,7-silafluorene)[J]. Journal of MaterialsChemistry,2008,18(7):797-801.
    [18] Chen Z, Jiang C, Niu Q, et al. Enhanced green electrophosphorescence by usingpolyfluorene host via interfacial energy transfer from polyvinylcarbazole [J]. OrganicElectronics,2008,9(6):1002-9.
    [19] Wu H, Ying L, Yang W, et al. Progress and perspective of polymer white light-emittingdevices and materials [J]. Chemical Society Reviews,2009,38(12):3391-400.
    [20] Duan C, Zhang K, Guan X, et al. Conjugated zwitterionic polyelectrolyte-basedinterface modification materials for high performance polymer optoelectronic devices[J]. Chemical Science,2013,4(3):1298-307.
    [21] Huang F, Wu H, Cao Y. Water/alcohol soluble conjugated polymers as highly efficientelectron transporting/injection layer in optoelectronic devices [J]. Chemical SocietyReviews,2010,39(7):2500-21.
    [22] Huang F, Cheng Y-J, Zhang Y, et al. Crosslinkable hole-transporting materials forsolution processed polymer light-emitting diodes [J]. Journal of Materials Chemistry,2008,18(38):4495-509.
    [23] Ma H, Yip H-L, Huang F, et al. Interface engineering for organic electronics [J].Advanced Functional Materials,2010,20(9):1371-88.
    [24] Tang C W. Two-layer organic photovoltaic cell [J]. Applied Physics Letters,1986,48(2):183-5.
    [25] Sariciftci N S, Smilowitz L, Heeger A J, et al. Photoinduced electron transfer from aconducting polymer to buckminsterfullerene [J]. Science,1992,258(5087):1474-6.
    [26] Morita S, Zakhidov A A, Yoshino K. Doping effect of buckminsterfullerene inconducting polymer: change of absorption spectrum and quenching of luminescene [J].Solid State Communications,1992,82(4):249-52.
    [27] Sariciftci N S, Smilowitz L, Heeger A J, et al. Semiconducting polymers (as donors)and buckminsterfullerene (as acceptor): photoinduced electron transfer andheterojunction devices [J]. Synthetic Metals,1993,59(3):333-52.
    [28] Yu G, Gao J, Hummelen J C, et al. Polymer photovoltaic cells: enhanced efficienciesvia a network of internal donor-acceptor heterojunctions [J]. Science,1995,270(5243):1789-91.
    [29] Clarke T M, Durrant J R. Charge photogeneration in organic solar cells [J]. ChemicalReviews,2010,110(11):6736-67.
    [30] Chen J, Cao Y. Development of novel conjugated donor polymers for high-efficiencybulk-heterojunction photovoltaic devices [J]. Accounts of Chemical Research,2009,42(11):1709-18.
    [31] Cheng Y-J, Yang S-H, Hsu C-S. Synthesis of conjugated polymers for organic solar cellapplications [J]. Chemical Reviews,2009,109(11):5868-923.
    [32] Liang Y, Yu L. A new class of semiconducting polymers for bulk heterojunction solarcells with exceptionally high performance [J]. Accounts of Chemical Research,2010,43(9):1227-36.
    [33] Duan C, Huang F, Cao Y. Recent development of push-pull conjugated polymers forbulk-heterojunction photovoltaics: rational design and fine tailoring of molecularstructures [J]. Journal of Materials Chemistry,2012,22(21):10416-34.
    [34] Li Y. Molecular design of photovoltaic materials for polymer solar cells: towardsuitable electronic energy levels and broad absorption [J]. Accounts of ChemicalResearch,2012,45(5):723-33.
    [35] Li G, Shrotriya V, Huang J S, et al. High-efficiency solution processable polymerphotovoltaic cells by self-organization of polymer blends [J]. Nature Materials,2005,4(11):864-8.
    [36] Peet J, Kim J Y, Coates N E, et al. Efficiency enhancement in low-bandgap polymersolar cells by processing with alkane dithiols [J]. Nature Materials,2007,6(7):497-500.
    [37] Li G, Chu C W, Shrotriya V, et al. Efficient inverted polymer solar cells [J]. AppliedPhysics Letters,2006,88(25):253503.
    [38] Kim J Y, Lee K, Coates N E, et al. Efficient tandem polymer solar cells fabricated byall-solution processing [J]. Science,2007,317(5835):222-5.
    [39] He Z, Zhong C, Huang X, et al. Simultaneous enhancement of open-circuit voltage,short-circuit current density, and fill factor in polymer solar cells [J]. AdvancedMaterials,2011,23(40):4636-4639.
    [40] Yuan Y, Reece T J, Sharma P, et al. Efficiency enhancement in organic solar cells withferroelectric polymers [J]. Nature Materials,2011,10(4):296-302.
    [41] Jorgensen M, Norrman K, Gevorgyan S A, et al. Stability of polymer solar cells [J].Advanced Materials,2012,24(5):580-612.
    [42] He Z, Zhong C, Su S, et al. Enhanced power-conversion efficiency in polymer solarcells using an inverted device structure [J]. Nature Photonics,2012,6(9):591-5.
    [43] You J, Dou L, Yoshimura K, et al. A polymer tandem solar cell with10.6%powerconversion efficiency [J]. Nature Communications,2013,4:1446.
    [44] Dang M T, Hirsch L, Wantz G, et al. Controlling the morphology and performance ofbulk heterojunctions in solar cells. Lessons learned from the benchmarkpoly(3-hexylthiophene):[6,6]-phenyl-c61-butyric acid methyl ester system [J].Chemical Reviews,2013,113(5):3734-65.
    [45] Waldauf C, Morana M, Denk P, et al. Highly efficient inverted organic photovoltaicsusing solution based titanium oxide as electron selective contact [J]. Applied PhysicsLetters,2006,89(23):233517.
    [46] White M S, Olson D C, Shaheen S E, et al. Inverted bulk-heterojunction organicphotovoltaic device using a solution-derived ZnO underlayer [J]. Applied PhysicsLetters,2006,89(14):143517.
    [47] Hau S K, Yip H-L, Baek N S, et al. Air-stable inverted flexible polymer solar cellsusing zinc oxide nanoparticles as an electron selective layer [J]. Applied PhysicsLetters,2008,92(25):253301.
    [48] Hau S K, Yip H-L, Acton O, et al. Interfacial modification to improve inverted polymersolar cells [J]. Journal of Materials Chemistry,2008,18(42):5113-9.
    [49] Hau S K, Yip H-L, Jen A K Y. A review on the development of the inverted polymersolar cell architecture [J]. Polymer Reviews,2010,50(4):474-510.
    [50] Zhong C, Liu S, Huang F, et al. Highly efficient electron injection from indium tinoxide/cross-linkable amino-functionalized polyfluorene interface in inverted organiclight emitting devices [J]. Chemistry of Materials,2011,23(21):4870-6.
    [51] Xu Z, Chen L-M, Yang G, et al. Vertical phase separation in poly(3-hexylthiophene):fullerene derivative blends and its advantage for inverted structure solar cells [J].Advanced Functional Materials,2009,19(8):1227-34.
    [52] De Jong M P, Van Ijzendoorn L J, De Voigt M J A. Stability of the interface betweenindium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) inpolymer light-emitting diodes [J]. Applied Physics Letters,2000,77(14):2255-7.
    [53] Wong K W, Yip H L, Luo Y, et al. Blocking reactions between indium-tin oxide andpoly (3,4-ethylene dioxythiophene): poly(styrene sulphonate) with a self-assemblymonolayer [J]. Applied Physics Letters,2002,80(15):2788-90.
    [54] Chu C W, Li S H, Chen C W, et al. High-performance organic thin-film transistors withmetal oxide/metal bilayer electrode [J]. Applied Physics Letters,2005,87(19):193508.
    [55] Chen L-M, Xu Z, Hong Z, et al. Interface investigation and engineering-achievinghigh performance polymer photovoltaic devices [J]. Journal of Materials Chemistry,2010,20(13):2575-98.
    [56] Yang T, Cai W, Qin D, et al. Solution-processed zinc oxide thin film as a buffer layerfor polymer solar cells with an inverted device structure [J]. Journal of PhysicalChemistry C,2010,114(14):6849-53.
    [57] Liao H-H, Chen L-M, Xu Z, et al. Highly efficient inverted polymer solar cell by lowtemperature annealing of Cs2CO3interlayer [J]. Applied Physics Letters,2008,92(17):173303.
    [58] Duan C, Cai W, Hsu B B Y, et al. Toward green solvent processable photovoltaicmaterials for polymer solar cells: the role of highly polar pendant groups in chargecarrier transport and photovoltaic behavior [J]. Energy&Environmental Science,2013,6(10):3022-34.
    [59] Son H J, Wang W, Xu T, et al. Synthesis of fluorinatedpolythienothiophene-co-benzodithiophenes and effect of fluorination on thephotovoltaic properties [J]. Journal of the American Chemical Society,2011,133(6):1885-94.
    [60] Zhou H, Yang L, Stuart A C, et al. Development of fluorinated benzothiadiazole as astructural unit for a polymer solar cell of7%efficiency [J]. AngewandteChemie-International Edition,2011,50(13):2995-8.
    [61] Price S C, Stuart A C, Yang L, et al. Fluorine substituted conjugated polymer ofmedium band gap yields7%efficiency in polymer-fullerene solar cells [J]. Journal ofthe American Chemical Society,2011,133(12):4625-31.
    [62] Chu T-Y, Lu J, Beaupre S, et al. Bulk heterojunction solar cells using thieno3,4-cpyrrole-4,6-dione and dithieno3,2-b:2',3'-d silole copolymer with a power conversionefficiency of7.3%[J]. Journal of the American Chemical Society,2011,133(12):4250-3.
    [63] Amb C M, Chen S, Graham K R, et al. Dithienogermole as a fused electron donor inbulk heterojunction solar cells [J]. Journal of the American Chemical Society,2011,133(26):10062-5.
    [64] Huo L, Zhang S, Guo X, et al. Replacing alkoxy groups with alkylthienyl groups: afeasible approach to improve the properties of photovoltaic polymers [J]. AngewandteChemie-International Edition,2011,50(41):9697-702.
    [65] Wang M, Hu X, Liu P, et al. Donor acceptor conjugated polymer based on naphtho1,2-c:5,6-c bis1,2,5thiadiazole for high-performance polymer solar cells [J]. Journalof the American Chemical Society,2011,133(25):9638-41.
    [66] Dong Y, Hu X, Duan C, et al. A series of new medium-bandgap conjugated polymersbased on naphtho1,2-c:5,6-c bis(2-octyl-1,2,3triazole) for high-performance polymersolar cells [J]. Advanced Materials,2013,25(27):3683-8.
    [67] Osaka I, Shimawaki M, Mori H, et al. Synthesis, characterization, and transistor andsolar cell applications of a naphthobisthiadiazole-based semiconducting polymer [J].Journal of the American Chemical Society,2012,134(7):3498-507.
    [68] Osaka I, Kakara T, Takemura N, et al. Naphthodithiophene-naphthobisthiadiazolecopolymers for solar cells: alkylation drives the polymer backbone flat and promotesefficiency [J]. Journal of the American Chemical Society,2013,135(24):8834-7.
    [69] Huang F, Chen K-S, Yip H-L, et al. Development of new conjugated polymers withdonor-pi-bridge-acceptor side chains for high performance solar cells [J]. Journal of theAmerican Chemical Society,2009,131(39):13886-13887.
    [70] Duan C, Cai W, Huang F, et al. Novel silafluorene-based conjugated polymers withpendant acceptor groups for high performance solar cells [J]. Macromolecules,2010,43(12):5262-8.
    [71] Duan C, Chen K-S, Huang F, et al. Synthesis, characterization, and photovoltaicproperties of carbazole-based two-dimensional conjugated polymers withdonor-pi-bridge-acceptor side chains [J]. Chemistry of Materials,2010,22(23):6444-52.
    [72] Chen Y, Wan X, Long G. High performance photovoltaic applications usingsolution-processed small molecules [J]. Accounts of Chemical Research,2013,46(11):2645-55.
    [73] Mishra A, Baeuerle P. Small molecule organic semiconductors on the move: promisesfor future solar energy technology [J]. Angewandte Chemie-International Edition,2012,51(9):2020-67.
    [74] Coughlin J E, Henson Z B, Welch G C, et al. Design and synthesis of molecular donorsfor solution-processed high-efficiency organic solar cells [J]. Accounts of ChemicalResearch,2013,47(1):257-70.
    [75] Sun Y, Welch G C, Leong W L, et al. Solution-processed small-molecule solar cellswith6.7%efficiency [J]. Nature Materials,2012,11(1):44-8.
    [76] Li Z, He G, Wan X, et al. Solution processable rhodanine-based small molecule organicphotovoltaic cells with a power conversion efficiency of6.1%[J]. Advanced EnergyMaterials,2012,2(1):74-7.
    [77] Zhou J, Zuo Y, Wan X, et al. Solution-processed and high-performance organic solarcells using small molecules with a benzodithiophene unit [J]. Journal of the AmericanChemical Society,2013,135(23):8484-7.
    [78] Gilot J, Barbu I, Wienk M M, et al. The use of ZnO as optical spacer in polymer solarcells: Theoretical and experimental study [J]. Applied Physics Letters,2007,91(11):113520.
    [79] Hirose Y, Kahn A, Aristov V, et al. Chemistry, diffusion, and electronic properties of ametal/organic semiconductor contact: In/perylenetetracarboxylic dianhydride [J].Applied Physics Letters,1996,68(2):217-9.
    [80] Shrotriya V, Li G, Yao Y, et al. Transition metal oxides as the buffer layer for polymerphotovoltaic cells [J]. Applied Physics Letters,2006,88(7):073508.
    [81] Irwin M D, Buchholz B, Hains A W, et al. p-Type semiconducting nickel oxide as anefficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(8):2783-7.
    [82] Han S, Shin W S, Seo M, et al. Improving performance of organic solar cells usingamorphous tungsten oxides as an interfacial buffer layer on transparent anodes [J].Organic Electronics,2009,10(5):791-7.
    [83] Duarte A, Pu K-Y, Liu B, et al. Recent advances in conjugated polyelectrolytes foremerging optoelectronic applications [J]. Chemistry of Materials,2011,23(3):501-15.
    [84] Duan C, Zhang K, Zhong C, et al. Recent advances in water/alcohol-soluble [smallpi]-conjugated materials: new materials and growing applications in solar cells [J].Chemical Society Reviews,2013,42(23):9071-104.
    [85] Li C-Y, Wen T-C, Guo T-F, et al. A facile synthesis of sulfonated poly (diphenylamine)and the application as a novel hole injection layer in polymer light emitting diodes [J].Polymer,2008,49(4):957-64.
    [86] Kim J S, Friend R H, Grizzi I, et al. Spin-cast thin semiconducting polymer interlayerfor improving device efficiency of polymer light-emitting diodes [J]. Applied PhysicsLetters,2005,87(2):
    [87] Shi W, Fan S, Huang F, et al. Synthesis of novel triphenylamine-based conjugatedpolyelectrolytes and their application as hole-transport layers in polymericlight-emitting diodes [J]. Journal of Materials Chemistry,2006,16(24):2387-94.
    [88] Shi W, Wang L, Huang F, et al. Anionic triphenylamine-and fluorene-based conjugatedpolyelectrolyte as a hole-transporting material for polymer light-emitting diodes [J].Polymer International,2009,58(4):373-9.
    [89] Huang F, Wu H B, Wang D, et al. Novel electroluminescent conjugatedpolyelectrolytes based on polyfluorene [J]. Chemistry of Materials,2004,16(4):708-16.
    [90] Huang F, Hou L T, Wu H B, et al. High-efficiency, environment-friendlyelectroluminescent polymers with stable high work function metal as a cathode: Green-and yellow-emitting conjugated polyfluorene polyelectrolytes and their neutralprecursors [J]. Journal of the American Chemical Society,2004,126(31):9845-53.
    [91] Huang F, Hou L T, Shen H L, et al. Synthesis, photophysics, and electroluminescenceof high-efficiency saturated red light-emitting polyfluorene-based polyelectrolytes andtheir neutral precursors [J]. Journal of Materials Chemistry,2005,15(25):2499-507.
    [92] Huang F, Hou L T, Shen H L, et al. Synthesis and optical and electroluminescentproperties of novel conjugated polyelectrolytes and their neutral precursors derivedfrom fluorene and benzoselenadiazole [J]. Journal of Polymer Science Part a-PolymerChemistry,2006,44(8):2521-32.
    [93] Huang F, Hou L, Shi W, et al. High-efficiency electroluminescent polymers with stablehigh work function metal Al and Au as cathode [J]. European Polymer Journal,2006,42(10):2320-7.
    [94] Zhang Y, Xu Y, Niu Q, et al. Synthesis and optoelectronic characterization ofconjugated phosphorescent polyelectrolytes with a neutral Ir complex incorporated intothe polymer backbone and their neutral precursors [J]. Journal of Materials Chemistry,2007,17(10):992-1001.
    [95] Zhang Y, Xiong Y, Sun Y, et al. Phosphorescent chelating polyelectrolytes and theirneutral precursors: Synthesis, characterizations, photoluminescence andelectroluminescence [J]. Polymer,2007,48(12):3468-76.
    [96] Zhang Y, Xiong Y, Liu R-S, et al. Synthesis, characterization and optoelectronicproperties of conjugated phosphorescent polymers based on polyfluorene withaminoalkyl side-chain [J]. Acta Chimica Sinica,2007,65(24):2929-34.
    [97] Zhang Y, Huang Z, Zeng W, et al. Synthesis and properties of novelelectrophosphorescent conjugated polyfluorenes based on aminoalkyl-fluorene andbipyridine with rhenium(I) complexes [J]. Polymer,2008,49(5):1211-9.
    [98] Ying L, Xu Y, Yang W, et al. Efficient red-light-emitting diodes based on novelamino-alkyl containing electrophosphorescent polyfluorenes with Al or Au as cathode[J]. Organic Electronics,2009,10(1):42-7.
    [99] Zhou G, Geng Y, Cheng Y, et al. Efficient blue electroluminescence from neutralalcohol-soluble polyfluorenes with aluminum cathode [J]. Applied Physics Letters,2006,89(23):233501.
    [100] Zhang B, Qin C, Ding J, et al. High-performance all-polymer white-light-emittingdiodes using polyfluorene containing phosphonate groups as an efficientelectron-injection layer [J]. Advanced Functional Materials,2010,20(17):2951-7.
    [101] Wu H B, Huang F, Mo Y Q, et al. Efficient electron injection from a bilayer cathodeconsisting of aluminum and alcohol-/water-soluble conjugated polymers [J]. AdvancedMaterials,2004,16(20):1826-1830.
    [102] Wu H B, Huang F, Peng J B, et al. High-efficiency electron injection cathode of Au forpolymer light-emitting devices [J]. Organic Electronics,2005,6(3):118-28.
    [103] Huang F, Niu Y-H, Zhang Y, et al. A conjugated, neutral surfactant as electron-injectionmaterial for high-efficiency polymer light-emitting diodes [J]. Advanced Materials,2007,19(15):2010-2014.
    [104] Jin Y, Bazan G C, Heeger A J, et al. Improved electron injection in polymerlight-emitting diodes using anionic conjugated polyelectrolyte [J]. Applied PhysicsLetters,2008,93(12):123304.
    [105] Yang R, Wu H, Cao Y, et al. Control of cationic conjugated polymer performance inlight emitting diodes by choice of counterion [J]. Journal of the American ChemicalSociety,2006,128(45):14422-3.
    [106] Hoven C, Yang R, Garcia A, et al. Ion motion in conjugated polyelectrolyte electrontransporting layers [J]. Journal of the American Chemical Society,2007,129(36):10976-10977.
    [107] Li C-Y, Wen T-C, Guo T-F. Sulfonated poly(diphenylamine) as a novel hole-collectinglayer in polymer photovoltaic cells [J]. Journal of Materials Chemistry,2008,18(37):4478-82.
    [108] Zhao Y, Xie Z, Qin C, et al. Enhanced charge collection in polymer photovoltaic cellsby using an ethanol-soluble conjugated polyfluorene as cathode buffer layer [J]. SolarEnergy Materials and Solar Cells,2009,93(5):604-8.
    [109] Luo J, Wu H, He C, et al. Enhanced open-circuit voltage in polymer solar cells [J].Applied Physics Letters,2009,95(4):043301
    [110] Na S-I, Oh S-H, Kim S-S, et al. Efficient organic solar cells with polyfluorenederivatives as a cathode interfacial layer [J]. Organic Electronics,2009,10(3):496-500.
    [111] He C, Zhong C, Wu H, et al. Origin of the enhanced open-circuit voltage in polymersolar cells via interfacial modification using conjugated polyelectrolytes [J]. Journal ofMaterials Chemistry,2010,20(13):2617-22.
    [112] Seo J H, Gutacker A, Sun Y, et al. Improved high-efficiency organic solar cells viaincorporation of a conjugated polyelectrolyte interlayer [J]. Journal of the AmericanChemical Society,2011,133(22):8416-9.
    [113] Tang Z, Andersson L M, George Z, et al. Interlayer for modified cathode in highlyefficient inverted ITO-free organic solar cells [J]. Advanced Materials,2012,24(4):554-558.
    [114] Sun J, Zhu Y, Xu X, et al. High efficiency and high Vocinverted polymer solar cellsbased on a low-lying homo polycarbazole donor and a hydrophilic polycarbazole interlayer on ito cathode [J]. Journal of Physical Chemistry C,2012,116(27):14188-98.
    [115] Xu X, Zhu Y, Zhang L, et al. Hydrophilic poly(triphenylamines) with phosphonategroups on the side chains: synthesis and photovoltaic applications [J]. Journal ofMaterials Chemistry,2012,22(10):4329-36.
    [116] Zhu Y, Xu X, Zhang L, et al. High efficiency inverted polymeric bulk-heterojunctionsolar cells with hydrophilic conjugated polymers as cathode interlayer on ITO [J]. SolarEnergy Materials and Solar Cells,2012,97:83-88.
    [117] Liao S-H, Li Y-L, Jen T-H, et al. Multiple functionalities of polyfluorene grafted withmetal ion-intercalated crown ether as an electron transport layer for bulk-heterojunctionpolymer solar cells: optical interference, hole blocking, interfacial dipole, and electronconduction [J]. Journal of the American Chemical Society,2012,134(35):14271-4.
    [118] Duan C, Zhong C, Liu C, et al. Highly efficient inverted polymer solar cells based onan alcohol soluble fullerene derivative interfacial modification material [J]. Chemistryof Materials,2012,24(9):1682-9.
    [119] Chen D, Zhou H, Liu M, et al. Novel cathode interlayers based on neutralalcohol-soluble small molecules with a triphenylamine core featuring polarphosphonate side chains for high-performance polymer light-emitting and photovoltaicdevices [J]. Macromolecular Rapid Communications,2013,34(7):595-603.
    [120] Huang F, Cheng Y-J, Zhang Y, et al. Crosslinkable hole-transporting materials forsolution processed polymer light-emitting diodes [J]. Journal of Materials Chemistry,2008,18(38):4495-509.
    [121] Zhong C, Duan C, Huang F, et al. Materials and devices toward fully solutionprocessable organic light-emitting diodes [J]. Chemistry of Materials,2011,23(3):326-40.
    [122] Zuniga C A, Barlow S, Marder S R. Approaches to solution-processed multilayerorganic light-emitting diodes based on cross-linking [J]. Chemistry of Materials,2010,23(3):658-81.
    [123] Veinot J G C, Marks T J. Toward the ideal organic light-emitting diode. The versatilityand utility of interfacial tailoring by cross-linked siloxane interlayers [J]. Accounts ofChemical Research,2005,38(8):632-43.
    [124] Liu S, Jiang X Z, Ma H, et al. Triarylamine-containing poly(perfluorocyclobutane) ashole-transporting material for polymer light-emitting diodes [J]. Macromolecules,2000,33(10):3514-7.
    [125] Cheng Y-J, Liu M S, Zhang Y, et al. Thermally cross-linkable hole-transportingmaterials on conducting polymer: Synthesis, characterization, and applications forpolymer light-emitting devices [J]. Chemistry of Materials,2008,20(2):413-22.
    [126] Zacharias P, Gather M C, Rojahn M, et al. New crosslinkable hole conductors forblue-phosphorescent organic light-emitting diodes [J]. AngewandteChemie-International Edition,2007,46(23):4388-92.
    [127] Domercq B, Hreha R D, Zhang Y D, et al. Photo-patternable hole-transport polymersfor organic light-emitting diodes [J]. Chemistry of Materials,2003,15(7):1491-6.
    [128] Niu Y H, Liu M S, Ka J W, et al. Thermally crosslinked hole-transporting layers forcascade hole-injection and effective electron-blocking/exciton-confinement inphosphorescent polymer light-emitting diodes [J]. Applied Physics Letters,2006,88(9):093505.
    [129] Wang P-H, Ho M-S, Yang S-H, et al. Synthesis of thermal-stable andphoto-crosslinkable polyfluorenes for the applications of polymer light-emitting diodes[J]. Journal of Polymer Science Part A: Polymer Chemistry,2010,48(3):516-24.
    [130] Davis A R, Maegerlein J A, Carter K R. Electroluminescent networks via photo “click”chemistry [J]. Journal of the American Chemical Society,2011,133(50):20546-51.
    [131] Baycan Koyuncu F, Davis A R, Carter K R. Emissive conjugated polymer networkswith tunable band-gaps via thiol–ene click chemistry [J]. Chemistry of Materials,2012,24(22):4410-6.
    [132] Miyanishi S, Tajima K, Hashimoto K. Morphological stabilization of polymerphotovoltaic cells by using cross-linkable poly(3-(5-hexenyl)thiophene)[J].Macromolecules,2009,42(5):1610-8.
    [133] Kim B J, Miyamoto Y, Ma B, et al. Photocrosslinkable polythiophenes for efficient,thermally stable, organic photovoltaics [J]. Advanced Functional Materials,2009,19(14):2273-81.
    [134] Griffini G, Douglas J D, Piliego C, et al. Long-term thermal stability of high-efficiencypolymer solar cells based on photocrosslinkable donor-acceptor conjugated polymers[J]. Advanced Materials,2011,23(14):1660-4.
    [135] Kim H J, Han A R, Cho C-H, et al. Solvent-resistant organic transistors and thermallystable organic photovoltaics based on cross-linkable conjugated polymers [J].Chemistry of Materials,2011,24(1):215-21.
    [136] Hsieh C-H, Cheng Y-J, Li P-J, et al. Highly efficient and stable inverted polymer solarcells integrated with a cross-linked fullerene material as an interlayer [J]. Journal of theAmerican Chemical Society,2010,132(13):4887-93.
    [137] Cheng Y-J, Cao F-Y, Lin W-C, et al. Self-assembled and cross-linked fullereneinterlayer on titanium oxide for highly efficient inverted polymer solar cells [J].Chemistry of Materials,2011,23(6):1512-8.
    [138] Zhang J-J, Lu W, Sun R W-Y, et al. Organogold(iii) supramolecular polymers foranticancer treatment [J]. Angewandte Chemie-International Edition,2012,51(20):4882-6.
    [139] Camerel F, Ziessel R, Donnio B, et al. Formation of gels and liquid crystals induced bypt pt and π–π*interactions in luminescent σ-alkynyl platinum(ii) terpyridinecomplexes [J]. Angewandte Chemie International Edition,2007,46(15):2659-62.
    [140] Chen Y, Li K, Lu W, et al. Photoresponsive supramolecular organometallic nanosheetsinduced by Pt Pt and CH π interactions [J]. Angewandte Chemie InternationalEdition,2009,48(52):9909-13.
    [141] Lu W, Chui S S-Y, Ng K-M, et al. A submicrometer wire-to-wheel metamorphism ofhybrid tridentate cyclometalated platinum(ii) complexes [J]. Angewandte ChemieInternational Edition,2008,47(24):4568-72.
    [142] Lu W, Law Y-C, Han J, et al. A dicationic organoplatinum(II) complex containing abridging2,5-bis-(4-ethynylphenyl)-[1,3,4]oxadiazole ligand behaves as aphosphorescent gelator for organic solvents [J]. Chemistry–An Asian Journal,2008,3(1):59-69.
    [143] Kishimura A, Yamashita T, Aida T. Phosphorescent organogels via “metallophilic”interactions for reversible RGB color switching [J]. Journal of the American ChemicalSociety,2004,127(1):179-83.
    [144] Wong W Y, Choi K H, Lu G L, et al. Bis(alkynyl) mercury(II) complexes ofoligothiophenes and bithiazoles [J]. Organometallics,2002,21(21):4475-81.
    [145] Baldo M A, Lamansky S, Burrows P E, et al. Very high-efficiency green organiclight-emitting devices based on electrophosphorescence [J]. Applied Physics Letters,1999,75(1):4-6.
    [146] Zhang Y, Baer C D, Camaioni-Neto C, et al. Steady-state voltammetry withmicroelectrodes: determination of heterogeneous charge transfer rate constants formetalloporphyrin complexes [J]. Inorganic Chemistry,1991,30(8):1682-5.
    [147] Adachi C, Baldo M A, Thompson M E, et al. Nearly100%internal phosphorescenceefficiency in an organic light-emitting device [J]. Journal of Applied Physics,2001,90(10):5048-51.
    [148] Lamansky S, Djurovich P, Murphy D, et al. Synthesis and characterization ofphosphorescent cyclometalated iridium complexes [J]. Inorganic Chemistry,2001,40(7):1704-11.
    [149] Adachi C, Baldo M A, Forrest S R, et al. High-efficiency red electrophosphorescencedevices [J]. Applied Physics Letters,2001,78(11):1622-4.
    [150] Holmes R J, Forrest S R, Tung Y-J, et al. Blue organic electrophosphorescence usingexothermic host–guest energy transfer [J]. Applied Physics Letters,2003,82(15):2422-4.
    [151] Tsai M-H, Ke T-H, Lin H-W, et al. Triphenylsilyl-and trityl-substitutedcarbazole-based host materials for blue electrophosphorescence [J]. ACS AppliedMaterials&Interfaces,2009,1(3):567-74.
    [152] Baek N S, Hau S K, Yip H-L, et al. High performance amorphous metallatedpi-conjugated polymers for field-effect transistors and polymer solar cells [J].Chemistry of Materials,2008,20(18):5734-6.
    [153] Wong W-Y. Metallopolyyne polymers as new functional materials for photovoltaic andsolar cell applications [J]. Macromolecular Chemistry and Physics,2008,209(1):14-24.
    [154] Wong W-Y, Wang X-Z, He Z, et al. Metallated conjugated polymers as a new avenuetowards high-efficiency polymer solar cells [J]. Nature Materials,2007,6(7):521-7.
    [155] Wong W-Y, Ho C-L. Organometallic photovoltaics: a new and versatile approach forharvesting solar energy using conjugated polymetallaynes [J]. Accounts of ChemicalResearch,2010,43(9):1246-56.
    [156] Burrows P E, Sapochak L S, Mccarty D M, et al. Metal ion dependent luminescenceeffects in metal tris‐quinolate organic heterojunction light emitting devices [J].Applied Physics Letters,1994,64(20):2718-20.
    [157] Hamada Y, Sano T, Fujita M, et al. Organic electroluminescent devices with8-hydroxyquinoline derivative-metal complexes as an emitter [J]. Japanese Journal ofApplied Physics, Part2(Letters),1993,32(4A): L514-15.
    [158] Lu W, Roy V A L, Che C-M. Self-assembled nanostructures with tridentatecyclometalated platinum(ii) complexes [J]. Chemical Communications,2006,38:3972-4.
    [159] Wong W-Y, Ho C-L. Di-, oligo-and polymetallaynes: syntheses, photophysics,structures and applications [J]. Coordination Chemistry Reviews,2006,250(19–20):2627-90.
    [160] Goudreault T, He Z, Guo Y, et al. Synthesis, light-emitting, and two-photon absorptionproperties of platinum-containing poly(arylene-ethynylene)s linked by1,3,4-oxadiazoleunits [J]. Macromolecules,2010,43(19):7936-49.
    [161] Ho C-L, Chui C-H, Wong W-Y, et al. Efficient electrophosphorescence from a platinummetallopolyyne featuring a2,7-carbazole chromophore [J]. Macromolecular Chemistryand Physics,2009,210(21):1786-98.
    [162] Wong W Y, Liu L, Shi J X. Triplet emission in soluble mercury(II) polyyne polymers[J]. Angewandte Chemie-International Edition,2003,42(34):4064-8.
    [163] Liu L, Li M, Wong W. Synthesis and luminescent properties of mercury(II) polyynescontaining derivatized benzene in the backbone [J]. Australian Journal of Chemistry,2005,58(11):799-802.
    [164] Niu Y H, Liu M S, Ka J W, et al. Thermally crosslinked hole-transporting layers forcascade hole-injection and effective electron-blocking/exciton-confinement inphosphorescent polymer light-emitting diodes [J]. Applied Physics Letters,2006,88(9):093505.
    [165] Cheng Y-J, Liu M S, Zhang Y, et al. Thermally cross-linkable hole-transportingmaterials on conducting polymer: Synthesis, characterization, and applications forpolymer light-emitting devices [J]. Chemistry of Materials,2008,20(2):413-22.
    [166] Kulkarni A P, Tonzola C J, Babel A, et al. Electron transport materials for organiclight-emitting diodes [J]. Chemistry of Materials,2004,16(23):4556-73.
    [167] Hughes G, Bryce M R. Electron-transporting materials for organic electroluminescentand electrophosphorescent devices [J]. Journal of Materials Chemistry,2005,15(1):94-107.
    [168] Hoven C V, Garcia A, Bazan G C, et al. Recent applications of conjugatedpolyelectrolytes in optoelectronic devices [J]. Advanced Materials,2008,20(20):3793-810.
    [169] Zeng W, Wu H, Zhang C, et al. Polymer light-emitting diodes with cathodes printedfrom conducting Ag paste [J]. Advanced Materials,2007,19(6):810-814.
    [170] Bolink H J, Coronado E, Repetto D, et al. Inverted solution processable oleds using ametal oxide as an electron injection contact [J]. Advanced Functional Materials,2008,18(1):145-50.
    [171] Hou L T, Huang F, Zeng W J, et al. High-efficiency inverted top-emitting polymerlight-emitting diodes [J]. Applied Physics Letters,2005,87(15):
    [172] Yang T, Wang M, Duan C, et al. Inverted polymer solar cells with8.4%efficiency byconjugated polyelectrolyte [J]. Energy&Environmental Science,2012,5(8):8208-14.
    [173] Sista S, Hong Z, Chen L-M, et al. Tandem polymer photovoltaic cells-current status,challenges and future outlook [J]. Energy&Environmental Science,2011,4(5):1606-20.
    [174] Koehnen A, Riegel N, Kremer J H W M, et al. The simple way to solution-processedmultilayer oleds-layered block-copolymer networks by living cationic polymerization[J]. Advanced Materials,2009,21(8):879-884.
    [175] Muller C D, Falcou A, Reckefuss N, et al. Multi-colour organic light-emitting displaysby solution processing [J]. Nature,2003,421(6925):829-33.
    [176] Liu M S, Niu Y-H, Ka J-W, et al. Thermally cross-linkable hole-transporting materialsfor improving hole injection in multilayer blue-emitting phosphorescent polymerlight-emitting diodes [J]. Macromolecules,2008,41(24):9570-80.
    [177] Ma B, Lauterwasser F, Deng L, et al. New thermally cross-linkable polymer and itsapplication as a hole-transporting layer for solution processed multilayer organic lightemitting diodes [J]. Chemistry of Materials,2007,19(19):4827-32.
    [178] Niu Y-H, Liu M S, Ka J-W, et al. Crosslinkable hole-transport layer on conductingpolymer for high-efficiency white polymer light-emitting diodes [J]. AdvancedMaterials,2007,19(2):300-304.
    [179] Huang F, Wu H, Wang D, et al. Novel electroluminescent conjugated polyelectrolytesbased on polyfluorene [J]. Chemistry of Materials,2004,16(4):708-16.
    [180] Huang F, Hou L, Wu H, et al. High-efficiency, environment-friendly electroluminescentpolymers with stable high work function metal as a cathode: green-andyellow-emitting conjugated polyfluorene polyelectrolytes and their neutral precursors[J]. Journal of the American Chemical Society,2004,126(31):9845-53.
    [181] Liu B, Yu W L, Lai Y H, et al. Blue-light-emitting cationic water-soluble polyfluorenederivatives with tunable quaternization degree [J]. Macromolecules,2002,35(13):4975-82.
    [182] Duan C, Wang L, Zhang K, et al. Conjugated zwitterionic polyelectrolytes and theirneutral precursor as electron injection layer for high-performance polymerlight-emitting diodes [J]. Advanced Materials,2011,23(14):1665-1669.
    [183] Wen G-A, Zhu X-R, Wang L-H, et al. Synthesis and characterization of amain-chain-type conjugated copolymer containing rare earth with photocrosslinkablegroup [J]. Journal of Polymer Science Part A: Polymer Chemistry,2007,45(3):388-94.
    [184] Liang Y, Xu Z, Xia J, et al. For the bright future-bulk heterojunction polymer solarcells with power conversion efficiency of7.4%[J]. Advanced Materials,2010,22(20):E135-E318.
    [185] Li Y F, Cao Y, Gao J, et al. Electrochemical properties of luminescent polymers andpolymer light-emitting electrochemical cells [J]. Synthetic Metals,1999,99(3):243-8.
    [186] Parker I D, Cao Y, Yang C Y. Lifetime and degradation effects in polymerlight-emitting diodes [J]. Journal of Applied Physics,1999,85(4):2441-7.
    [187] Wu H B, Huang F, Mo Y Q, et al. Efficient electron injection from bilayer cathodeconsisting of aluminum and alcohol/water-soluble conjugated polymers [J]. Journal ofthe Society for Information Display,2005,13(2):123-30.
    [188] Wu H B, Huang F, Peng J B, et al. Efficient electron injection from bilayer cathodewith aluminum as cathode [J]. Synthetic Metals,2005,153(1-3):197-200.
    [189] Deng X Y, Lau W M, Wong K Y, et al. High efficiency low operating voltage polymerlight-emitting diodes with aluminum cathode [J]. Applied Physics Letters,2004,84(18):3522-4.
    [190] Cahen D, Kahn A. Electron energetics at surfaces and interfaces: Concepts andexperiments [J]. Advanced Materials,2003,15(4):271-7.
    [191] Mihailetchi V D, Blom P W M, Hummelen J C, et al. Cathode dependence of theopen-circuit voltage of polymer:fullerene bulk heterojunction solar cells [J]. Journal ofApplied Physics,2003,94(10):6849-54.
    [192] He Z, Zhang C, Xu X, et al. Largely enhanced efficiency with a PFN/al bilayer cathodein high efficiency bulk heterojunction photovoltaic cells with a low bandgappolycarbazole donor [J]. Advanced Materials,2011,23(27):3086-3089.
    [193] Liu M, Liang Y, Chen P, et al. Three pyrido2,3,4,5-lmn phenanthridine derivatives andtheir large band gap copolymers for organic solar cells [J]. Journal of MaterialsChemistry A,2014,2(2):321-5.
    [194] Liu S, Zhang Z, Chen D, et al. Synthesis and optoelectronic properties ofamino-functionalized carbazole-based conjugated polymers [J]. ScienceChina-Chemistry,2013,56(8):1119-28.
    [195] Reinhard M, Hanisch J, Zhang Z, et al. Inverted organic solar cells comprising asolution-processed cesium fluoride interlayer [J]. Applied Physics Letters,2011,98(5):053303.
    [196] Sun Y, Seo J H, Takacs C J, et al. Inverted polymer solar cells integrated with alow-temperature-annealed sol-gel-derived ZnO film as an electron transport layer [J].Advanced Materials,2011,23(14):1679-1683.
    [197] Liu J, Shao S, Fang G, et al. High-efficiency inverted polymer solar cells withtransparent and work-function tunable moo3-al composite film as cathode buffer layer[J]. Advanced Materials,2012,24(20):2774-9.
    [198] Jin Y, Wang J, Sun B, et al. Solution-processed ultraviolet photodetectors based oncolloidal zno nanoparticles [J]. Nano Letters,2008,8(6):1649-53.
    [199] Guan X, Zhang K, Huang F, et al. Amino N-oxide functionalized conjugated polymersand their amino-functionalized precursors: new cathode interlayers forhigh-performance optoelectronic devices [J]. Advanced Functional Materials,2012,22(13):2846-54.
    [200] Zhou Y, Li F, Barrau S, et al. Inverted and transparent polymer solar cells prepared withvacuum-free processing [J]. Solar Energy Materials and Solar Cells,2009,93(4):497-500.
    [201] Huang F, Zhang Y, Liu M S, et al. Electron-rich alcohol-soluble neutral conjugatedpolymers as highly efficient electron-injecting materials for polymer light-emittingdiodes [J]. Advanced Functional Materials,2009,19(15):2457-66.
    [202] Krebs F C. Polymer solar cell modules prepared using roll-to-roll methods:Knife-over-edge coating, slot-die coating and screen printing [J]. Solar EnergyMaterials and Solar Cells,2009,93(4):465-75.
    [203] Kim J Y, Kim S H, Lee H H, et al. New architecture for high-efficiency polymerphotovoltaic cells using solution-based titanium oxide as an optical spacer [J].Advanced Materials,2006,18(5):572-576.
    [204] Park S H, Roy A, Beaupre S, et al. Bulk heterojunction solar cells with internalquantum efficiency approaching100%[J]. Nature Photonics,2009,3(5):297-302.
    [205] Huang Q L, Evmenenko G A, Dutta P, et al. Covalently bound hole-injectingnanostructures. Systematics of molecular architecture, thickness, saturation, andelectron-blocking characteristics on organic light-emitting diode luminance, turn-onvoltage, and quantum efficiency [J]. Journal of the American Chemical Society,2005,127(29):10227-42.
    [206] Blom P W M, Mihailetchi V D, Koster L J A, et al. Device physics of polymer:fullerene bulk heterojunction solar cells [J]. Advanced Materials,2007,19(12):1551-66.
    [207] Oji H, Ito E, Furuta M, et al. p-Sexiphenyl/metal interfaces studied by photoemissionand metastable atom electron spectroscopy [J]. Journal of Electron Spectroscopy andRelated Phenomena,1999,101–103(0):517-21.
    [208] Chen L-M, Xu Z, Hong Z, et al. Interface investigation and engineering-achievinghigh performance polymer photovoltaic devices [J]. Journal of Materials Chemistry,2010,20(13):2575-98.
    [209] Yip H-L, Jen A K Y. Recent advances in solution-processed interfacial materials forefficient and stable polymer solar cells [J]. Energy&Environmental Science,2012,5(3):5994-6011.
    [210] Brabec C J, Shaheen S E, Winder C, et al. Effect of LiF/metal electrodes on theperformance of plastic solar cells [J]. Applied Physics Letters,2002,80(7):1288-90.
    [211] Jorgensen M, Norrman K, Krebs F C. Stability/degradation of polymer solar cells [J].Solar Energy Materials and Solar Cells,2008,92(7):686-714.
    [212] Slooff L H, Veenstra S C, Kroon J M, et al. Determining the internal quantumefficiency of highly efficient polymer solar cells through optical modeling [J]. AppliedPhysics Letters,2007,90(14):
    [213] He Z, Wu H, Cao Y. Recent advances in polymer solar cells: realization of high deviceperformance by incorporating water/alcohol-soluble conjugated polymers as electrodebuffer layer [J]. Advanced materials (Deerfield Beach, Fla),2014,26(7):1006-24.
    [214] Ho C-L, Wong W-Y. Metal-containing polymers: Facile tuning of photophysical traitsand emerging applications in organic electronics and photonics [J]. CoordinationChemistry Reviews,2011,255(21-22):2469-502.
    [215] Wang Q, He Z, Wild A, et al. Platinum-acetylide polymers with higher dimensionalityfor organic solar cells [J]. Chemistry-an Asian Journal,2011,6(7):1766-77.
    [216] Man K Y K, Wong H L, Chan W K, et al. Efficient photodetectors fabricated from ametal-containing conjugated polymer by a multilayer deposition process [J]. Chemistryof Materials,2004,16(3):365-7.
    [217] Zhu X-H, Peng J, Caoa Y, et al. Solution-processable single-material molecularemitters for organic light-emitting devices [J]. Chemical Society Reviews,2011,40(7):3509-24.
    [218] C Rdenas D J, Echavarren A M, Ram Rez De Arellano M C. Divergent behavior ofpalladium(II) and platinum(II) in the metalation of1,3-di(2-pyridyl)benzene [J].Organometallics,1999,18(17):3337-41.
    [219] Lu W, Chen Y, Roy V A L, et al. Supramolecular polymers and chromonic mesophasesself-organized from phosphorescent cationic organoplatinum(II) complexes in water [J].Angewandte Chemie,2009,121(41):7757-61.
    [220] Hung L S, Tang C W, Mason M G. Enhanced electron injection in organicelectroluminescence devices using an Al/LiF electrode [J]. Applied Physics Letters,1997,70(2):152-4.
    [221] Huang J, Li G, Wu E, et al. Achieving high-efficiency polymer white-light-emittingdevices [J]. Advanced Materials,2006,18(1):114-7.
    [222] Lee K, Kim J Y, Park S H, et al. Air-stable polymer electronic devices [J]. AdvancedMaterials,2007,19(18):2445-9.
    [223] Niu Y H, Ma H, Xu Q M, et al. High-efficiency light-emitting diodes using neutralsurfactants and aluminum cathode [J]. Applied Physics Letters,2005,86(8):083504.
    [224] Zhou Y, Fuentes-Hernandez C, Shim J, et al. A universal method to produce low-workfunction electrodes for organic electronics [J]. Science,2012,336(6079):327-32.
    [225] Liu H, Zou J, Yang W, et al. Highly efficient and spectrally stable blue-light-emittingpolyfluorenes containing a dibenzothiophene-S,S-dioxide unit [J]. Chemistry ofMaterials,2008,20(13):4499-506.
    [226] Lu H H, Liu C Y, Jen T H, et al. Excimer formation by electric field induction and sidechain motion assistance in polyfluorenes [J]. Macromolecules,2005,38(26):10829-35.
    [227] Romaner L, Pogantsch A, Scandiucci De Freitas P, et al. The origin of green emissionin polyfluorene-based conjugated polymers: on-chain defect fluorescence [J].Advanced Functional Materials,2003,13(8):597-601.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700