非晶陶瓷中温塑性形变的实现与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脆性是陶瓷材料的致命缺陷,表现为陶瓷材料在承受外加应力时会突然断裂,断裂前几乎没有塑性变形。陶瓷脆性是由于滑移系统难以在离子键或共价键组成的多晶结构中移动造成的。非晶陶瓷是近年来发现的一种改善陶瓷脆性的新途径。非晶陶瓷中原子长程无序排列,因而结构中不存在位错、晶界等缺陷,有效的避免了晶态陶瓷材料形变时结构的限制。本论文对Al2O3-ZrO2、Al2O3-SiO2和Al2O3-MgO三种非晶陶瓷中温下的压缩形变及温度、晶相对形变的影响进行了分析。非晶陶瓷的制备分为非晶粉体制备和非晶粉体热压成型。非晶粉体通过适当温度煅烧前驱体制备,成型则选择六面顶高压热压成型。非晶陶瓷压缩形变的实验结果表明,三种体系的非晶陶瓷在室温下压缩时都在弹性变形阶段断裂,压缩应变<10%。室温下的压缩形变主要来自于剪切带的承担及可能的气孔坍塌。非晶Al2O3-ZrO2陶瓷在500-700°C下进行压缩测试时,随测试温度的升高,形变由脆性断裂转变为塑性形变,弹性模量呈下降趋势。700°C压缩时,试样屈服点处的压缩应变约为28%,卸载前形变可达35%,试样弹性模量为2870MPa。随着非晶陶瓷组分中晶相含量的增大,弹性模量先减小后增大,表明少量晶相有利于压缩形变的提高,过多晶相则出现反效果。非晶Al2O3-SiO2陶瓷在600-800°C下进行压缩测试时,试样呈现出高弹性形变,压缩过程中试样应变达到30%时卸载,卸载前试样仍处于弹性变形阶段。随测试温度的升高,试样的弹性模量逐渐减小,800°C压缩时试样的弹性模量约为1922MPa。非晶Al2O3-MgO陶瓷在500-600°C下进行压缩测试时,试样弹性模量随压缩温度升高呈减小趋势。试样在弹性变形阶段断裂,断裂前没有塑性形变的发生。对非晶陶瓷中温压缩形变机理进行总结,认为压缩过程中首先是气孔的坍塌压实,而后结构中原子跃迁导致自由体积的移动压缩及非晶基体中形成的剪切带的共同作用使非晶陶瓷具有一定压缩形变。自由体积运动起主导作用(空间网络结构较强)时,形变能力较强;剪切带作用为主导(空间网络结构较差)时,形变能力较差。
Ceramics are known to be hard and brittle. They normally exhibit little to noplastic deformation prior to fracture. This is a consequence of the strong ionic andcovalent bonds, which make the movement of dislocation through the structuredifficult. In recent years, some researchers tried to improve the plasticity bydeveloping amorphous ceramics. Because of the long-distance disordering structure,there exists none dislocation and grainboudary in the amorphous materials, whichavoids the structural limits of the crystalline ceramics. In this paper, we investigatedthe moderate temperature compressive behavior of the Al2O3-ZrO2, Al2O3-SiO2andAl2O3-MgO amorphous ceramcis. Effects of the temperature and crystallites on thecompressive behavior were also addressed. The prepatation of amorphous sampleincluded the production of amorphous powders and the hot pressing of the cyclinders.Amorphous powders were obtained through the calcination of the percursor. Thecylinders were hot pressed by using a cubic hydraulic pressing machine. Amorphoussamples were all fractured in the elastic deformation region when compressed at roomtemperature. The largest compressive strain was smaller than10%. The compressivestrains at room temperature were acributed to the compression of the possible poresand the formation of shear bands in the amorphous matrix. When the amorphousAl2O3-ZrO2samples were compressed at500-700°C, the brittle fracture transited toplastic deformation with the increasing temperature. The sample compressed at700°Cexhibited elasticity up to a strain of28%followed by a plateau region to about35%.The elastic modulus was2870MPa. The existence of nanocrystals in the amorphoussamples was found to lead to an increase of the compressive porperty. However,excess nanocrystals would induce the negative effect on the compressive behavior.When compressed at600-800°C, the amorphous Al2O3-SiO2exhibited high elasticity.The samples were still in the elastic region before unloading. The elastic modulusreduced with the increasing temperature. The elastic modulus was1922MPa whenthe sample was compressed at800°C. Amorphous Al2O3-MgO samples were facturedin the elastic region when compressed at500-600°C. During the compression test ofthe amorphous ceramics, the pores were compressed firstly. The deformation behavior of the amorphous materials was achieved through the free volume compression andshear bands formation in the amorphous structure. In the sample with strong networkstructure, higher compressive strain could be achived, which due to the major role offree volume compression. In the sample with weak network structure, the major roleof shear bands movement led to smaller compressive strain.
引文
[1]潘金生,仝建民,田民波,材料科学基础,北京:清华大学出版社,2009.1
    [2]顾淑华,浅谈陶瓷脆性与改善脆性的途径,河北陶瓷,2000,28(2):42~43
    [3]王耀明,陈虹,陶瓷材料的脆性及其改善,河北陶瓷,1987,45~52
    [4]郭景坤,关于陶瓷材料的脆性问题,复旦学报,2003,42(6):822~826
    [5]魏先斗,陶瓷材料的结构功能及其发展前景,材料技术,2006,(4):122~124
    [6]靳正国,郭瑞松,师春生,等,材料科学基础,天津:天津大学出版社,2005.1
    [7]张国军,金宗哲,颗粒增韧陶瓷的增韧机理,硅酸盐学报,1994,22(3):259~269
    [8]郝春成,崔作林,尹衍升,等,颗粒增韧陶瓷的研究进展,材料导报,2002,16(2):28~30
    [9]Takei T, Hatta H, Taya M. Theraml expansion behaviors of particulate-filledcomposites Ⅰ: Single reinforcing phase.Mater Sci EngA,1991,131:133~143
    [10]Sekino T, Niihara K. Fabrication and mechanical properties offine-tungsten-dispersed alumina-based composite. J Mater Sci,1997,32:3943~3949
    [11]Oh ST, Sando M, Niihara K. Preparation and properties ofAlumina/Nickel-Cobalt alloy nanocomposites. J Am Ceram Soc,1998,81(11):3013~3015
    [12]闫洪,窦明民,李和平,二氧化锆陶瓷的相变增韧激励和应用,陶瓷学报,2000,21(1):46~50
    [13]李包顺,黄校先,郭景坤,等,四方氧化锆陶瓷的力学性能及其增韧机理的研究,无机材料学报,1986,85(2):129~134
    [14]陈尔凡,郝春功,李素莲,等,晶须增韧陶瓷复合材料,化工新型材料,2006,(5):1~4
    [15]Wang CA, Huang Y, Zhai HX. The effect of whisker orientation in SiCwhisker-reinforced Si3N4ceramics matrix composites. J Eur Ceram Soc,1999,19(10):1903~1909
    [16]黄康明,李伟信,饶平根,等,陶瓷增韧技术的研究进展,中国陶瓷,2007,43(11):6~9
    [17]周曦亚,方培育,自增韧陶瓷复合材料的研究,中国陶瓷,2003,39(6):30~32
    [18]Wang RZ, Wen HB, Cui FZ, et al. Obserbations of damage morphologies innacre during deformation and fracture. J Mater Sci,1995,30:2299~2304
    [19]李东云,乔冠军,金志浩,层状复合材料的研究进展,无机材料学报,2002,17(1):10~16
    [20]Clegg WJ, Kendall K, Mun N, et al. A simple way to make tough ceramics.Nature,1990,347(10):455~457
    [21]郑慧雯,茹克也木·沙吾提,章娴君,功能梯度材料的研究进展,西南师范大学学报,2002,27(5):788~793
    [22]Niino M, Hirai T, Watanabe R. Functionally gradient materials (in Japanse).Jpn J Soc Comp Mater,1987,13(6):257~264
    [23]Koizumi M. FGM activities in Japan. Compos B,1997,28(1~2):1~4
    [24]Mortensen A, Suresh S. Functionally graded metals and metal-ceramiccomposites: Part1Processing. Int Mater Rev,1995,40(6):239~265
    [25]宋玉泉,刘颖,徐进,等,结构陶瓷及其超塑性Ⅱ.陶瓷材料的超塑性,金属学报,2009,45(1):6~17
    [26]Maehara Y. Review superplasticity in ceramics. J Mater Sci,1990,25:2275~2286
    [27]Wakai F, Sakaguchi S, Matsuno Y. Superplasticity of yttria-stabilizedtetragonal ZrO2polycrystals. Adv Ceram Meter,1986,1(3):259~163
    [28]Yoshizawa Y, Sakuma T. Improvement of tensile ductility in high-purityalumina due to magnesia addition. Acta Metall Mater,1992,40(11):2943~2950
    [29]Yoshizawa Y, Sakuma T. High-temperature deformation and cavitation infine-grained alumina. Mater Sci Eng A,1994,176(1~2):447~453
    [30]Venkatachari KR, Rai R. Superplastic flow in fine-grained alumina. J AmCeram Soc,1986,69(2):135~138
    [31]Davies TJ, Ogwu AA, Ridley N, et al. Superplasticity in ceramics materialsⅠ.The observation of a “superplastic partition”in ceramics. Acta Mater,1996,44(6):2373~2382
    [32]Wang ZC, Davies TJ, Ridley N, et al. Superplasticity of ceramics material-Ⅱ.Effect of initial porosity and doping on the superplastic behavior of alumins. ActaMater,1996,44(11):4301~4309
    [33]Bataille A, Crampon J, Duclos R. Upgrading superplastic deformationperformance of fine-grained alumina by graphite particles. Ceram Inter,1999,25(3):215~222
    [34]Takigawa Y,Yoshizawa Y, Sakuma T. Superplasticity in Al2O3-20vol%spinel(MgO·1.5Al2O3) ceramics. Ceram Inter,1998,24(1):61~66
    [35]Oada K, Sakuma T. Tensile ductility in zirconia-dispersed alumina at hightemperature. JAm Ceram Soc,1996,76(2):499~502
    [36]Hiraga K, Nakano K, Suzuki TS, et al. Cavitation damage during hightemperature tensile deformation in fine-grained alumina doped magnesia or zirconia.Scr Mater,1998,39(9):1273~1279
    [37]叶建东,陈楷,陶瓷材料的超塑性,无机材料学报,1998,13(3):257~268
    [38]Lange FF, Diaz ES, Anderson CA. Tensile creep testing of improved Si3N4.Am Ceram Soc Bull,1979,58(9):845~848
    [39]Carry C, Mocellin A. High temperature creep of dense fine grained siliconcarbides. Mater Sci Res,1984,18:391~403
    [40]Kondo N, Wakai F, Nishioka T, et al. Superplastic Si3N4ceramics consistingof rod-shaped grains. J Mater Sci Lett,1995,44(19):1369~1371
    [41]Mitomo M, Kim YW, Hirotsuru H. Fabrication of silicon carbidenanoceramics. J Mater Res,1996,11(7):1601~1603
    [42]Wang CM, Mitomo M, Emoto H. Microstructure of liquid phase sinteredsuperplastic silicon carbide ceramics. J Mater Res,1997,12(12):3266~3270
    [43]Nagano T, Kaneko K, Zhan GD, et al. Superplastic behavior of liquid-phasesintered β-SiC prepared with oxynitride glasses in an N2atmosphere. J Eur Ceram Soc,2002,22(2):263~270
    [44]Shinoda Y, Nagano T, Gu H, et al. Superplasticity of Silicon Carbide. J AmCeram Soc,1999,82(10):2916~2918
    [45]Suchanek W, Yoshimura M. Processing and properties ofhydroxyapatite-based biomaterials for use as hard tissue replacement implants. JMater Res,1998,13(1):94~117
    [46]Wakai F, Yasuharu K, Sakaguchi S. Superplasticity of hot isostaticallypressed hydroxyapatite. JAm Ceram Soc,1990,73(2):457~460
    [47]Tago K, Itatani K, Sakka Y, et al. Densification and superplasticity ofhydroxyapatite ceramics. J Ceram Soc Japan,2005,113:669~673
    [48]Yoshida H, Kim BY, Son HW, et al. Superplastic deformation of transparenthydroxyapatite. Script Mater,2013, In Press
    [49]Itatani K, Tsuchiya K, Sakka, Y, et al. Superplastic deformation ofhydroxyapatite ceramics with B2O3or Na2O addition fabricated by pulse currentpressure sintering. J Eur Ceram Soc,2011,31(14):2641~2648
    [50]Nagano T, Kato H. Superplasticity of mullite zirconia composite,1992,27(13):3575~3580
    [51]张凯峰,陈国清,王国锋,陶瓷材料超塑性研究进展,无机材料学报,2003,18(4):705~715
    [52]Wakai F.Superplasticity of ceramics. Ceram Int,1991,17(3):153~163
    [53]Wakai F, Kondo N, Ogawa H, et al. Ceramics superplasticity: Deformationmechanisms and microstructures. Meter Charact,1996,37(5):331~341
    [54]Wakai F, Kondo N, Shinoda Y. Ceramics superplasticity. Curr Opin SolidMater Sci,1999,4:461~465
    [55]Nieh TG, Wadsworth J, Wakai F. Recent advance in superplastic ceramics andceramic composites. Int Meter Rev,1991,36:146~161
    [56]Owen DM, Chokshi AH. The high temperature mechanical characteristics ofsuperplasticity3mol%yittria stabilized zirconia. Acta Mater,1998,46(2):667~679
    [57]Berbon MZ, Langdon TG. An examination of the flow process in superplasticyttria-stabilized tetragonal zirconia. Acta Mater,1999,47(8):2485~2495
    [58]Charit I, Chokshi AH. Experimental evidence for diffusion creep in thesuperplastic3mol%yittria stabilized zirconia.Acta Mater,2001,49(12):2239~2249
    [59]Jiménez-Melendo M, Domínguez-Rodríguez A. High temperature mechanicalcharacteristics of superplastic yittria stabilized zirconia. Acta Mater,2000,48(12):3201~3210
    [60]Morita K, Hiraga K. Critical assessment of high-temperature deformation anddeformed microstructure in high purity tetragonal zirconia containing3mol%yittria.Acta Mater,2002,50(5):1075~1085
    [61]Xie RJ, Mitomo M, Zhan GD. Superplasticity in a fine-grained beta-siliconnitride ceramics containing a transient liquid.Acta Mater,2000,48(29):2049~2058
    [62] Gandhi AS, Jayaram V. Plastically deforming amorphous ZrO2-Al2O3. ActaMater,2003,51(6):1641~1649
    [63]Gandhi AS, Jayaram V, Chokshi AH. Dense amorphous zirconia-alumina bylow-temperature consolidation of spray-pyrolyzed powders. J Am Ceram Soc,1999,82(10):2613~2618
    [64]Gandhi AS, Jayaram V, Chokshi AH. Low temperature densificationbehaviour of metastable phases in ZrO2-Al2O3powders produced by spray pyrolysis.Mater Sci Eng A,2001,304~306:785~789
    [65]Gandhi AS, Jayaram V. Pressure consolidation of amorphous ZrO2-Al2O3byplastic deformation of powder particles. Acta Mater,2002,50(8):2137~2149
    [66]Thangamani N, Gandhi AS, Jayaram V, et al. Low-temperature high-pressureconsolidation of amorphous Al2O3-15mol%Y2O3. J Am Ceram Soc,2005,88(10):2696~2701
    [67]Choudhury S, Gandhi AS, Jayaram V. Bulk, dense, nanocrystalline yttriumgarnet by consolidation of amorphous powders at low temperature and high pressures.JAm Ceram Soc,2003,86(2):247~251
    [68]Paul A, Jayaram V. Deformation and structural densification in Al2O3-Y2O3glass. Acta Mater,2011,59(1):82~99
    [69]陆佩文,无机材料科学基础,武汉:武汉理工大学出版社,1996.99~100
    [70]靳正国,郭瑞松,师春生,等,材料科学基础,天津:天津大学出版社,2005.132
    [71]Tu Y, Tersoff J, Grinstein G, et al. Properties of a continuous-random-networkmodel for amorphous systems. Phy Rev Lett,1998,81(22):4899~4902
    [72]Steinhardt P, Alben R, Weaire D. Relaxed continusous random networkmodels:(Ⅰ). Structural characteristics. J Non-crystal Solids,1974,15(2):199~214
    [73]Ching WY. Theory of amorphous SiO2and SiOXⅠ. Atomic structuralmodels. Phys Rev B,1982,26(12):6610~6621
    [74]White RW. Random network model for amorphous alloys. J Non-crystalSolids,1974,16(3):387~398
    [75]卢柯,非晶态金属的结构与合金的玻璃形成能力,金属学报,1992,28(1):B17~B25
    [76]Maeda K, Takeuchi S. Asimple computer modelling of metallic amorphousstructure. J Phys F: Met Phys,1978,8(12): L283~L288
    [77]Cargill Ⅲ GS, Kirkapatrick S. Structure ordering in some amorphous metalsand alloys. AIP Conf Proc,1976,31:339~350
    [78]Brant DA, Flory PJ. The configuration of random polypetide chains.Ⅱ.Theory. JAm Chen Soc,1965,87(13):2791~2800
    [79]Smith LJ, Fiebig KM, Schwalbe H, et al. The concept of a random coil:Residul structure in peptieds and denatured proteins. Fold Des,1996,1(5): R95~R106
    [80]Graessley WW. Statistical mechanics of random coil networks.Macromolecules,1975,8(2):186~190
    [81]陆佩文,无机材料科学基础,武汉:武汉理工大学出版社,1996.96
    [82]Bhatia T, Chattopadhyay K, Jayaram V. Effect of rapid solidification onmicrostructural evolution in MgO-MgAl2O4. J Am Ceram Soc,2001,84(8):1873~1880
    [83]Jacobson LA, McKittrick J. Rapid solidification processing. Mater Sci EngRep,1994,11(8):335~408
    [84]Duwez P, Willens RH, Klement W. Continuous series of metastable solidsolutions in silver-copper alloys. JAppl Phys,1960,31:1136~1137
    [85]Sarjent PT, Roy R. New glassy and polymorphic oxide phases using rapidquenching techniques. JAm Ceram Soc,1967,50(10):500~503
    [86]McKittrick J, Tunaboylu B. Microwave and conventional sintering of rapidlysolidified Al2O3-ZrO2powders. J Mater Scien,1994,29(8):2119~2125
    [87]Freim J, McKittrick J, Nellis WJ. Denification behavior of dynamically shockcompacted Al2O3/ZrO2powders synthesised through rapid solidification.1995,26(10):2503~2509
    [88]宋宝来,周军,快速定向凝固技术的研究及发展,现代铸铁,2006,26(6):70~73
    [89]Benjamin JS. Dispersion strengthened superalloys by mechanical alloying.Met Trans,1970,1(10):2943~2951
    [90]Ermakov AE, Yurchikov EE, Barinov VA. Effect of milling-inducedamorphization on the mag-netic properties of Gd-Co powders. Fiz Met Metalloved,1981,52(6):1184~1193
    [91]吕俊,陈晓闽,黄东亚,等,机械合金化与非晶合金材料的研究进展,材料导报,2006,20(9):93~97
    [92]武建,机械合金化法制备Finemet非晶粉体的研究,装备制造技术,2012,8:6~8
    [93]Murty BS, Ranganathan S. Novel materials synthesis by mechanicalalloying/milling. Inter Mater Rev,1998,43(3):101~141
    [94]Messing GL, Zhang SC, Jayanthi GV. Ceramic nanoparticles synthesis byspray pyrolysis. JAm Ceram Soc,1993,76(11):2707~2726
    [95]Ishiizawa H, Sakurai O, Mizutani N, et al. Preparation and formationmechanism of TiO2fine particles by spray pyrolysis of metal alkoxide. YogyoKyokaishi,1985,93(7):382~386
    [96]Matin CB, Kurosky RP, Maupin B, et al. Spray pyrolysis of multicomponentceramic powder.1990,12:99~106
    [97]徐志军,初瑞清,李国荣,等,喷雾热分解合成技术及其在材料研究中的应用,无机材料学报,2004,19(6):1231~1248
    [98]Ullal CK, Balasubramaniam KR, Gandhi AS, et al. Non-equilibrim phasesynthesis in Al2O3-Y2O3by spray pyrolysis of nitrate precursors. Acta Mater,2001,49(14):2691~2699
    [99]Nyman M, Caruso J, Hampden-Smith MJ. Comparison of solid-state andspray-pyrolysis synthesis of yttrium aluminate powders. J Am Ceram Soc,1997,80(5):1231~1238
    [100]Zhang JR, Gao L. Synthesis and characterization of nanocrystalline tinoxide by sol-gel method. J Solid State Chem,2004,177(4~5):1425~1430
    [101]张健泓,陈优生,溶胶-凝胶法的应用研究,广东化工,2008,35(3):47~49
    [102]黄传真,艾兴,侯志刚,等,溶胶-凝胶法的研究和应用现状,材料导报,1997,11(6):8~13
    [103]王焆,李晨,徐博,溶胶-凝胶法的基本原理、发展及应用现状,材料工业与工程,2009,26(3):273~277
    [104]白玲,葛昌纯,沈卫平,放电等离子烧结技术,粉末冶金技术,2007,25(3):217~223
    [105]Tokita M. Development of large-size ceramic/metal bulk FGM fabricated byspark plasma sintering. Mater Sci Forum,1999,308~311:83~88
    [106]Wang W, Chen LD, Hirai T. Densification of Al2O3powder using sparkplasma sintering. J Mater Res,2000,15(4):982~987
    [107]Shen ZJ, Johnsson M, Zhao Z, et al. Spark plasma sintering of alumina. JAm Ceram Soc,2002,85(8):1921~1927
    [108]Mangsen GE, Lambertson WA, Best B. Hot pressing of alumina oxide. J AmCeram Soc,1960,43(2):55~59
    [109]德·白鹤纳施-阿松朗,张颖,热压烧结-理解烧结机理的新途径,无机材料学报,1988,3(4):289~304
    [110]李辉,六方碳硼氮化合物的高温高压合成:[硕士学位论文],河北;燕山大学,2006
    [111]李小雷,AlN陶瓷的高压烧结研究:[博士学位论文],吉林:吉林大学,2008
    [112]徐军峰,六面顶压机控制系统的研制:[硕士学位论文],天津;天津大学,2003
    [113]van Melick HEH. Deformation and failure of polymer glasses, TheNetherlands: Eindhoven University Press,2002.5~16
    [114]Anand L, Gurtin ME. A theory of amorphous solids undergoing largedeformations, with application to polymeric glasses. Int J Solids Struct,2003,40(6):1465~1487
    [115]Walley SM, Field JE. Strain rate sensitivity of polymers in compressionfrom low to high rates. DYMAT J,1994,1:211~228
    [116]王广言,贾雪梅,非晶合金塑性变形机理的研究现状,新材料产业,2011,7:41~44
    [117]陈德民,大块非晶合金变形机制及本构行为:[博士学位论文],黑龙江;哈尔滨工业大学,2003
    [118]黄永江,TiZrCuBe块体非晶合金的力学行为:[博士学位论文],黑龙江;哈尔滨工业大学,2008
    [119]王晓东,ZrCuAgAlf非晶合金体系中的塑性变形能力研究:[硕士学位论文],浙江;浙江大学,2011
    [120]Spaepen F. Microscopic mechanism for steady state inhomogeneous flow inmetallic glasses. Acta Metall,1977,25(4):407~415
    [121]Argon AS. Plastic deformation in metallic glasses. Acta Metall,1979,27(1):47~58
    [122]Bouchbinder E, Langer JS, Procaccia I. Athermal shear-transformation-zonetheory of amorphous plastic deformation Ⅰ: Basic principles. Phys Rev E,2007,75(3):1~7
    [123]Zink M, Samwer K, Johnson WL, et al. Plastic deformation of metallicglasses: Size of shear transformation zones from molecular dynamics simulations.Phys Rev B,2006,73(17):172203-1~172203-3
    [124]Langer JS. Shear-transformation-zone theroy of plastic deformation near theglass transition. Phys Rev E,2008,77(2):021502-1~021502-14
    [125]黄春舒,多空轻质莫来石陶瓷制备及性能的研究:[硕士学位论文],天津;天津大学,2012
    [126]李世慧,粉煤灰基多空莫来石陶瓷的性能优化及低温烧结:[硕士学位论文],天津;天津大学,2012
    [127]梁艳媛,郭英奎,郭海峰,纳米ZrO2/Al2O3复合陶瓷粉体的制备及XRD研究,哈尔滨理工大学学报,2006,11(4):95~98
    [128]李全明,邱发贵,张梅,溶胶凝胶燃烧法合成YAG纳米粉,稀有金属材料与工程,200,;31(增刊1):292~295
    [129]Xu YB, He YY, Yuan X. Preparation of nanocrystalline Sr3Al2O6powdersvia citric acid precursor. Powder Tehnol,2007,172(2):99~102
    [130]Hwang BJ, Santhanam R, Liu DG. Characterization of nanoparticles ofLiMn2O4synthesized by citric acid sol-gel method. J Power Sources,2001,97~98:443~446
    [131]Chandradass J, Yoon JH, Bae DS. Synthesis and characterization of zirconiadoped alumina nanopowder by citrate-nitrate process. Mater Sci Eng A,2008,473(1~2):360~364
    [132]叶丰,非晶态固体在压力下的晶化,中国材料科技与设备,2007,2:101~104
    [133]Yao B, Li FS, Lin XM, et al. High pressure crystallization of amorphous(Fe0.99, Mo0.01)78Si9B13. J Non-Cryst Solids,1997,217(2~3):317~322
    [134]Tang JC, Zhou L, Tan DQ, et al. Crystallization process of amorphousFe86Zr7B6Cu1alloy under hot isothermal pressing. J Alloys Compd,2005,394(1~2):215~218
    [135]杜娟,李伟,金学军,等,四方相纳米氧化锆低温稳定机制的研究现状,功能材料,2006,11(37):1691~1696
    [136]李磊,魏炳忱,张泰华,等,块状非晶合金在低温下的剪切带特征,稀有金属材料与工程,2008,37(增刊4):725~729
    [137]Jiang WH, Atzmon M. The effect of compression and tension on shear-bandstructure and nanocrystallization in amorphous Al90Fe5Gd5: a high–resolutiontransmission electron microscopy study. Acta Mater,2003,51(14):4095~4105
    [138]Tang CG, Li Y, Zeng KY. Effect of residual shear bands on serrated flow in ametallic glass. Mater Lett,2005,59(26):3325~3329
    [139Jiang WH, Pinkerton FE, Atzmon M. Mechanical behavior of shear bandsand the effect of their relaxation in a rolled amorphous Al-based alloy. Acta Mater,2005,53(12):3469~3477
    [140]Eswar Prasad K, Ramamurty U. Effect of temperature on the plastic zonesize and the shear band density in a bulk metallic glass. Mater Sci Eng A,2012,535(15):48~52
    [141]严峻,塑性变形诱导非晶合金晶化动力学研究:[硕士学位论文],山西:太原科技大学,2010
    [142]林晓敏,姚斌,苏文辉,静高压下非晶(Fe0.99,Mo0.01)78Si9B13合金晶化过程的热力学研究,高压物理学报,1997,11(4):260~265
    [143]Liu L, Chen Q, Chan KC, et al. The effect of high temperature plasticdeformation on the thermal stability and microstructure of Zr55Cu30Ni5Al10bulkmetallic glass. Mater Sci Eng A,2007,449~451:949~951
    [144]Ishihara S, Hirayama T, Bill J, et al. Compressive deformation of partiallycrystallized amorphous Si-B-C-N ceramics at elevated temperature. Mater Trans,2003,44(2):226~231
    [145]Hajlaoui K, Yavari AR, LeMoulec A, et al. Plasticity induced bynanoparticle dispersions in bulk metallic glasses. J Non-Crystal Solids,2007,353(1):327~331
    [146]Boucharat N, Hebert R, R sner H, et al. Nanocrystallization of amorphousAl88Y7Fe5alloy induced by plastic deformation. Script Mater,2005,53(7):823~828
    [147]Lee SW, Huh MY, Chae SW, et al. Mechanism of the deformation-inducednanocrystallization in a Cu-based bulk amorphous alloy under uniaxial compression.Script Mater,2006,51(8):1439~1444
    [148]Deng YF, He LL, Zhang QS, et al. HRTEM analysis of nanocrystallizationduring uniaxial compression of a bulk metallic glass at room temperature.Ultramicroscopy,2004,98(2~4):201~208
    [149]曹庆平,Cu基块体非晶合金的玻璃形成能力、晶化机制及变形诱发的结构和力学性能变化:[博士学位论文],上海;上海交通大学,2007
    [150]张鹏娜,Zr基块体非晶合金在塑性变形过程中的结构和性能变化:[博士学位论文],上海;上海交通大学,2009
    [151]Gao MC, Hackenberg RE, Shiflet GJ. Deformation-induced nanocrystalprecipitation in Al-base metallic glasses. Mater Trans,2001,42(8):1741~1747
    [152]Lee JC, Kim YC, Ahn JP, et al. Deformation-induced nanocrystallizationand its influence on work hardening in a bulk amorphous matrix composite. ActaMater,2004,52(6):1525~1533
    [153]Jiang WH, Pinkerton FE, Atzmon M. Deformation-inducednanocrystallization in an Al-based amorphous alloy at a subambient temperature.Script Mater,2003,48(8):1195~1200
    [154]Qiu F, Shen P, Liu T, et al. Enhanced ductility in a Zr65Cu15Al10Ni10bulkmetallic glass by nanocrystallization during compression. Mater Design,2012,36:168~171
    [155]Zhang LC, Jiang F, Zhang DH, et al. In-situ precipitated nanocrystalbeneficial to enhanced plasticity of Cu-Zr based bulk metallic glasses. Adv Eng Mater,2008,10(10):943~950
    [156]Nagahama D, Ohkubo T, Mukai T, et al. Characterization of nanocrystaldispersed Cu60Zr30Ti10metallic glass. Mater Trans,2005,46(6):1264~1270
    [157]Dong WB, Zhang HF, Cai J, et al. Enhanced plasticity in a Zr-based bulkmetallic glass containing nanocrystalline precipitates. J Alloys Compd,2006,425(1~2): L1~L4
    [158]Yamada Y, Shimojima K, Mabuchi M, et al. Compressive deformationbehavior ofAl2O3foam. Mater Sci Eng A,2000,227(1~2):213~217
    [159]Tu ZH, Shim VPW, Lim CT. Plastic deformation modes in rigidpolyurethane foam under static loading. Inter J Solids Struct,2001,38(50~51):9267~9279
    [160]Shen JH, Lu GX, Ruan D. Compressive behavior of closed-cell aluminiumfoams at high strain rates. Compos Part B: Eng,2010,41(8):678~685
    [161]康颖安,张俊彦,泡沫陶瓷的压缩破坏行为,湘潭大学自然科学学报,2005,27(1):112~115
    [162]周树年,刘乐平,薛兴勇,等,无定形Al2O3·2SiO2合成粉体的表征研究,广西大学学报:自然科学版,2010,35(3):441~450
    [163]郑广俭,崔学民,张伟鹏,等,溶胶-凝胶法制备具有碱激发活性的无定形Al2O3·2SiO2粉体,稀有金属材料与工程,2007,36(1):137~139
    [164]周树年,无定形Al2O3·nSiO2超细粉体材料的制备及应用综述,广西民族师范大学学报,2010,27(3):22~28
    [165] Ma CX, Liu G, Wang ZL, et al. Aldol condensation of acetone over Mg-Almixed oxides catalyst prepared by a citric acid route. React Kinet Catal Lett,2009,98(1):149~156
    [166]Lu J, Ravichandran G, Johnson WL. Deformation behavior of theZr41.2Ti13.8Cu12.5Ni10Be22.5bulk metallic glass over a wide range of strain-rates andtemperatures. Acta Mater,2003,51(12):3429~3443
    [167]Li QK, Li M. Free volume evolution in metallic glasses subjected tomechanical deformation. Meter Trans,2007,48(7):1816~1821
    [168]李工,孙懿楠,高云鹏,高压Ni77P23非晶合金自由体积变化的同步辐射研究,物理学报,2006,55(10):5394~5397
    [169]Zhang LC, Wei BC, Xing DM, et al. The characterization of plasticdeformation in Ce-based bulk metallic glasses. Intermetallics,2007,15(5~6):791~795
    [170]Chandler HW, Sands CM, Song JH, et al. A plasticity model for powdercompaction processes incorporating particle deformation and rearrangement. Inter JSolids Struct,2008,45(7~8):2056~2076
    [171]邓玉福,杨飞,杨建林,等,室温单轴压缩断裂后块状非晶局部自由体积增加的直接观察,沈阳师范大学学报(自然科学版),2006,24(4):415~418
    [172]汪江艇,Cu46Zr54非晶合金剪切带分子动力学模拟机孔洞对剪切带的影响:[硕士学位论文],山东:山东大学,2008
    [173]Bian Z, He G, Chen GL. Investigation of shear bands under compressivetesting for Zr-based bulk metallic glasses containing nanocrystals. Script Mater,2002,46(6):407~412
    [174]Kim HL, Lee JH, Lee CS, et al. Shear band formation during hotcompression ofAZ31Mg alloy sheets. Mater Sci Eng A,2012,558:431~438
    [175]Maa R, Klaumünzer D, Prei EI, et al. Single shear-band plasticity in abulk metallic glass at cryogenic temperature. Script Mater,2012,66(5):231~234
    [176]刘龙飞,张厚安,胡义伟,大块金属玻璃剪切带形成的“原位”压缩实验研究,湖南科技大学学报,2009,24(1):23~28
    [177]郭秀丽,李德俊,王英敏,等,块状非晶合金Zr65Al7.5Ni10Cu17.5的室温单轴压缩断裂行为,金属学报,2003,39(10):1089~1093
    [178]Ohkubo T, Nagahama D, Mukai T, et al. Stress-strain behaviors of Ti-basedbulk metallic glass and their microstructures. J Mater Rev,2007,22(5):1406~1413
    [179]Mondal K, Ohkubo T, Toyama T, et al. The effect of nanocrystallization andfree volume on the room temperature plasticity of Zr-based bulk metallic glasses. ActaMater,2008,56(18):5329~5339
    [180]Fan C, Li CF, Inoue A, et al. Deformation behavior of Zr-based bulknanocrystalline amorphous alloys. Phys Rev B: Condens Matter,2000,61(6):R3761~R3763