用户名: 密码: 验证码:
具有电荷传输特性的有机功能材料的合成及其光电性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近30年以来,基于有机化合物的共轭的聚合物和小分子材料在发光二极管、太阳电池等有机光电领域获得了蓬勃的发展,极大地促进了它们的产业化进程。在这些材料中间,具有电荷传输特性的有机功能材料占据着至关重要的地位。为此,本论文着重研究具有电荷传输特性的有机功能材料及其器件性能,具体涉及发光聚合物,基于有机小分子的主体材料和电子传输材料(ETMs)。
     在第二章,我们通过引入三芴-2-基胺作为构筑单元,设计合成出具有高的最高占有分子轨道(HOMO)能级的蓝色发光共轭聚合物。通过在三芴-2-基胺基团中引入各种取代基团作为悬坠,有效地将这些聚合物的发光颜色从深蓝色调节到天蓝色区域。在不使用任何空穴传输层(HTL)的情况下,以P4FNCz作为发光层(EML)的器件实现了深蓝色发光,最大的电流效率(CEmax)达到2.44cd/A,对应的外量子效率(EQE)达到3.00%,色坐标为(0.16,0.12)。由于改进了空穴的注入和传输能力,通过使用P4FNCz作为一层HTL,我们成功地制作出了红光和绿光器件,CEmax分别达到7和25cd/A,色坐标分别为(0.64,0.34)和(0.29,0.64),均接近于基于常用的4,4’-双(N-(1-萘基)-N-苯基胺)联苯(NPB)作为HTL的器件。而且,红、绿、蓝三种器件的发光颜色的色坐标非常接近于国家电视标准委员会(NTSC)(美国)和高清电视(HDTV)的标准色坐标。我们通过使用不同的电子传输层(ETL)来调节载流子的复合区域而实现的红绿蓝器件有助于基于聚合物的全彩平板显示的发展。
     在第三章,为了提高三芴-2-基胺共轭聚合物的电子传输能力,我们通过共聚的方式在聚合物的主链引入了一种被证明具有优异的电子注入和传输性质的S,S-二氧-二苯并噻吩作为缺电子单元。我们通过控制单体的投料比,有效地抑制分子内的电荷转移(ICT)相互作用,得到了一系列蓝色发光的共轭共聚物。这些聚合物具有优异的热稳定性,合适的最低未占有分子轨道(LUMO)和HOMO能级,其中以PSFOFN15作为EML的单层蓝光器件,表现出最高的亮度(11749cd/m2)和CEmax(2.28cd/A)。而且,所有器件的的色坐标均靠近深蓝光区域,表明这些聚合物在全彩显示和白光照明方面具有潜在的应用前景。
     在第四章,为了进一步研究这类聚合物的电荷传输特性,我们从改变聚合物的主链结构入手,把给电性的三芴-2-基胺构筑单元换成电中性的1,3,5-三芴-2-基苯,再变成吸电性的2,4,6-三芴-2-基三嗪,成功地合成了一系列发光的共轭聚合物,深入研究了它们的结构与性质的关系。含有吸电性的骨架和给电性的悬坠的聚合物P1由于强烈的ICT相互作用,在溶液中的光物理性质强烈地依赖于溶剂的极性。我们通过改变聚合物的主链结构以及三芴-2-基胺,1,3,5-三芴-2-基苯和2,4,6-三芴-2-基三嗪中的取代基有效地调节了它们的发光颜色和能级。其中,基于2,4,6-三芴-2-基三嗪的以第二代树枝状咔唑为悬坠的P1d作为EML的深蓝色发光器件,CEmax达到1.26cd/A,相应的EQE为1.27%,色坐标为(0.16,0.14)。相比之下,由于强烈的ICT相互作用,尽管主链和支链都发蓝光,基于2,4,6-三芴-2-基三嗪的以双(9,9-二辛基-9H-芴-2-基)胺为悬坠的P1c作为EML的器件,CEmax达到4.10cd/A,相应的EQE为2.45%,色坐标为(0.24,0.51)。
     在第五章,我们发展和丰富了小分子主体材料的种类,首次将1,2,4-噁二唑单元引入到溶液加工型的小分子主体材料,深入地研究了它们的热学、光物理和电化学性质。这些材料可以有效地抑制能量的反转,保证磷光器件的发光全部来自客体材料的发光。通过单载流子器件我们发现含有强亲电性的1,3,4-噁二唑环的134OXD具有良好的电子传输能力,相比之下,由于1,2,4-噁二唑环相对较弱的共轭性和亲电性,含有该单元的主体材料更倾向于传输空穴。以双(4,6-二氟苯基吡啶-N,C2)吡啶甲酰合铱(FIrpic)为客体,134OXD为主体的溶液加工型蓝色磷光器件中,最大亮度达到14994cd/m2,CEmax达到8.75cd/A。在以三[2-(对甲苯基)吡啶]合铱(III)[Ir(mppy)3]为客体的溶液加工型单层绿色磷光器件中,基于134OXD为主体的器件最大亮度为9158cd/m2,CEmax达到12.55cd/A。
     在第六章,我们发展了一系列含有吡啶单元的ETMs作为基于FIrpic的蓝色磷光器件的ETL。通过在分子的骨架和周边引入具有不同氮原子取向的吡啶环,有效地调控了这些ETMs的能级。我们仅仅通过调控那些吡啶环的氮原子取向就极大地降低了器件的工作电压却又不影响EQE。我们实现了器件在1和100cd/m2的亮度下极其低的工作电压(2.61和3.03V),并得到了迄今为止最高的65.8和59.7lm/W的功率效率(PE),和EQE(24.4和25.7%)。而且,我们通过选用低单线态-三线态交换能的主体材料,器件在100cd/m2的亮度下的工作电压可被进一步降低至2.70V,发光的门槛电压甚至比理论最小值(光子能量/电荷)还低了0.2-0.3V。除了降低工作电压,通过联合合适的主体材料,器件的效率滚降可进一步降低。我们的工作表明这些材料在移动设备和有机照明等高功率消耗领域有着很大的应用前景。
     在第七章,我们通过Suzuki偶联反应成功地合成了一系列三唑和吡啶杂化的ETMs,我们发现它们的HOMO和LUMO能级强烈地依赖于苯环的连接位置和数量。由于在分子的周边引入了强亲电性的吡啶环,相比于被广泛使用的[3-(联苯基-4-基)-5-(4-叔丁基苯基)-4-苯基-4H-1,2,4-三唑](TAZ),它们的电子注入/传输能力得到了极大地改进。通过把这些分子作为绿色磷光器件的ETL和空穴/激子阻挡层,器件的驱动电压得到了极大地降低。由于基于TPyTAZm的器件具有匹配的能级,较高的电子传输能力,以及平衡的载流子复合,相应的器件表现出最高的效率,最大的PE达到72.2lm/W(73.6cd/A,21.8%)。相比于TAZ的器件,由于TPyTAZm更好的三线态激子限制能力,效率滚降得到进一步地下降,在100和1000cd/m2的实际亮度下,PE仍达到58.3和42.3lm/W。我们的工作有助于推动基于三唑的ETMs的分子设计以进一步提高磷光OLEDs的性能。
     在第八章,我们成功地设计并合成了一系列基于缺电子的吡啶鎓盐的水/醇溶小分子,深入地研究了它们的光物理和电化学性质。由于F8PS具有最好的成膜能力,我们把它作为聚合物太阳电池(PSCs)的ETL。与基于纯铝的器件相比,通过在活性层聚[N-9’-庚癸基-2,7-咔唑-交替-5,5-(4’,7’-二-2-噻吩基-2’,1’,3’-苯并噻二唑)](PCDTBT):[6,6]-苯基-C71-丁酸甲基酯(PC71BM)和金属阴极之间引入一层超薄的F8PS作为ETL,器件的开路电压(Voc),短路电流(Jsc)和填充因子(FF)同时得到了增加,使得能量转换效率(PCE)从最初的4.32%提升到6.56%。这么高的Voc值(0.94V)是文献中迄今为止基于PCDTBT:PC71BM为活性层的PSCs的最好结果之一。而Voc的提高可能是由于F8PS产生的界面偶极所引起的。同时,通过乙醇处理活性层,器件的PCE可从4.32%提升到5.55%。因此,沉积吡啶鎓盐后器件性能的增强可能是乙醇处理和缺电子的吡啶鎓盐层的共同作用。亲水的吡啶鎓盐衍生物具有的良好的水/醇溶解性,理想的HOMO/LUMO能级,优异的电子传输能力,是有机光电器件领域一类有潜力的溶液加工型ETMs。
Conjugated polymers and small molecules based on organic compounds have obtainedvigorous development in organic optoelectronic fields such as light-emitting diodes and solarcells during the past three decades, which greatly accelerates the industrialization process oftheirs. Among these, organic functional materials with charge-transfer characteristic playcrucial role. Therefore, in this thesis, I focus on the study of organic functional materials withcharge-transfer characteristic as well as device performance of theirs, including light-emittingpolymers, host materials and electron-transport materials (ETMs) based on organic smallmolecules.
     In chapter2, a series of blue-light-emitting conjugated polymers that possess high-lying thehighest occupied molecular orbital (HOMO) energy levels were designed and synthesized byintroducing trifluoren-2-yl-amine (TFA) as a building block. The emission color could beeffectively tuned in the region of deep-blue and light-blue by introducing various substituentsonto the TFA as the pendants. Deep-blue light emission was achieved for the device based onP4FNCz as an emitting layer (EML) without using any hole-transport layer (HTL), giving amaximum current efficiency (CEmax) of2.44cd/A, corresponding to external quantumefficiency (EQE) of3.00%, with Commission Internationale de L’Eclairage (CIE) coordinatesof (0.16,0.12). Thanks to the improved hole injection and transport ability, red-andgreen-light-emitting devices based on P4FNCz as a HTL were also successfully fabricated,giving CEmaxof7and25cd/A with CIE coordinates of (0.64,0.34) and (0.29,0.64),respectively, which are comparable to those of the devices based on a general HTL of4,4’-bis(N-(1-naphthyl)-N-phenylamino)biphenyl (NPB). The CIE coordinates of the RGBdevices are very close to those of the National Television System Committee (NTSC)(USA)and High Definition Television (HDTV) standard colors. The RGB devices achieved by tuningthe carrier recombination zone with different electron-transport layers (ETL) will facilitate thedevelopment of the polymer-based full-color flat-panel displays in an alternative process.
     In chapter3, to improve the electron-transport ability of the conjugated polymers based on TFA, electron-deficient S,S-dioxide-dibenzothiophene unit with excellent electron-inject andtransport property was introduced into the main chain by copolymerization. A series of bluelight-emitting conjugated polymers were obtained through the regulation of feed radio of theirmonomers due to effectively restrain the intramolecular charge-transfer (ICT) interaction.These polymers possess excellent thermal stability, favourable the lowest unoccupiedmoleculer orbital (LUMO) and HOMO energy levels, among them, single-layer blue devicebased on PSFOFN15as an EML showed the maximum luminance of11749cd/m2and CEmaxof2.28cd/A. Moreover, the CIE coordinates of all the devices are very close to the deep blueregion. This suggests the potential applications of these polymers in full-color flat-paneldisplays and white lighting.
     In chapter4, to further investigate the charge-transport charactristic of these types ofpolymers, electron-donating TFA building blocks of main chains were replaced by electricallyneutral1,3,5-trifluoren-2-ylbenzene (TFB), and electron-withdrawing2,4,6-trifluoren-2-yltriazine (TFT). Their structure-property relationships were thoroughlystudied. For P1containing electron-withdrawing backbone and electron-donating pendants,their photophysical properties in solution are strongly dependent on the solvent polarity due tothe intense ICT interaction. In addition, their emission colors and energy levels could beeffectively tuned by changing the structure of the main chain as well as the substituent at thependent fluorene of TFT, TFB, and TFA. Deep-blue light emission was achieved for the devicebased on P1d, a polymer based on TFT and the second generation (G2) of carbazoledendrimer pendant, that shows a CEmaxof1.26cd/A, corresponding to EQE of1.27%, withCIE coordinates of (0.16,0.14). In comparison, due to the intense ICT interaction between themain chain and the side chain, light-green emission was achieved for the device based on P1c,a polymer based on TFT and bis(9,9-dioctyl-9H-fluoren-2-yl)amine pendant, giving thehighest CEmaxof4.10cd/A, corresponding to EQE of2.45%, with CIE coordinates of (0.24,0.51), although either of the main chain and the side chain emits blue light.
     In chapter5,1,2,4-oxadiazole units were firstly introduced into the small molecules basedsolution-processable host materials, and their thermal, photophysical, and electrochemical properties were studied thoroughly. These hosts could effectively suppress the energy fromphosphorescent emitter transfer to the host molecules and thus assuring the emission ofdevices was all from the phosphorescent emitter. The good electron transport capacity of134OXD with strong electron affinity of1,3,4-oxadiazole ring was achieved, in contrast,maybe due to the relatively poorer conjugation and electron affinity of1,2,4-oxadiazole ring,those host materials containing1,2,4-oxadiazole unit were more prone to transport hole basedon the electron/hole only devices. For the iridium(III)bis[(4,6-difluorophenyl)-pyridinate-N,C2’]picolinate (FIrpic)-based blue phosphorescentorganic light-emitting diodes (OLEDs), the devices based on134OXD as host exhibited thehighest maximum luminance of14994cd/m2, and the highest CEmaxof8.75cd/A. For theiridium(III) tris[2-(p-tolyl)pyridine](Ir(mppy)3)-based green phosphorescent devices, thehighest maximum luminance of9158cd/m2, and the highest CEmaxof12.55cd/A wereachieved for134OXD.
     In chapter6, a series of pyridine-containing ETMs were developed as an ETL as well as ahole/exciton block layer for FIrpic-based blue phosphorescent OLEDs. The energy levels ofthe ETMs could be finely tuned by the introduction of pyridine rings in the framework and onthe periphery of the molecules. Significantly reduced operating voltage was achieved withoutcompromising EQE by solely tuning the nitrogen atom orientations of those pyidine rings.Unprecedented low operating voltages of2.61and3.03V were realized at1and100cd/m2,giving ever highest power efficiency (PE) values of65.8and59.7lm/W, respectively. Inaddition, the operating voltages at1and100cd/m2could be further reduced to <2.4and2.70V,respectively, by using a host material with a small singlet-triplet exchange energy (ΔEST), andthe threshold voltage for electroluminescence can even be0.2–0.3V lower than the theoreticalminimum value of the photon energy (hv) divided by electron charge (e). Aside from thereduced operating voltage, a further reduced roll-off in efficiency was also achieved by thecombination of an appropriate host material. The current findings make them as potentialcandidates for high-power consumption applications such as in mobile devices and organiclighting.
     In chapter7, a series of triazole and pyridine hybrid molecules were successfullysynthesized by typical Suzuki cross-coupling reactions, and their thermal, photophysical andelectrochemical properties are thoroughly studied. Their HOMO and LUMO energy levels arestrongly dependent on the linkage position and the number of benzene ring. By using thesemolecules as an ETL and a hole/exciton-block layer in green phosphorescent OLEDs, muchbetter electron-injection/transport ability was achieved to give significantly reduced drivingvoltage compared with the widely used ETM of[3-(biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole](TAZ) due to theintroduction of strong electrophilic pyridine rings onto the periphery of the molecules. Thedevice based on TPyTAZm exhibits the highest efficiency with a maximum PE up to73.6lm/W (72.2cd/A,21.8%) due to the matched energy level, high electron transport ability, andthus more balanced carrier recombination. In addition, compared with the device based onTAZ, it shows much higher PE of58.3and42.3lm/W at the practical brightness of100and1000cd/m2due to its good triplet exciton confinement ability and reduced efficiency roll-off.The current findings are beneficial to the design of triazole–based ETMs for furtherimprovement of phosphorescent OLEDs.
     In chapter8, a series of water/alcohol-soluble small molecules based on electron-deficientpyridinium salt were successfully designed and synthesized. Their photophysical andelectrochemical properties were thoroughly studied. Due to its good film-forming ability,F8PS was employed as an ETL in polymer solar cells (PSCs). Simultaneous enhancements inopen-circuit voltage (Voc), short circuit current density (Jsc), and fill factor (FF) were achieved,and power conversion efficiency (PCE) was increased from4.32%to6.56%compared to thedevice based on the bare Al cathode. Vocwas significantly improved from0.76V to0.94V,and it is one of the best results reported in literature to date for the PSCs based on the activelayer of poly [N-9’-heptadecanyl-2,7-carbazole-alt-5,5-(4’,7’-di-2-thienyl-2’,1’,3’-benzothiadiazole)](PCDTBT):[6,6]-phenyl-C71-butyric acid methylester(PC71BM). The greatly increased Vocmay be due to the interface dipoles generated by F8PS. Itwas also demonstrated that post treatment of the active layer with ethanol, improvement of the overall device efficiency from the initial4.32%to5.55%compared to the device with the bareAl cathode. Therefore, the improvement in performance after pyridinium salt deposition maybe due to a combination of the effects of ethanol treatment and the presence of the thinpyridinium salt layer. The good water/alcohol solubility, ideal HOMO/LUMO energy levels,excellent electron transfer ability of the hydrophilic pyridinium salt derivatives urges them tobe a promising family of solution-processable ETMs.
引文
[1] Pope M., Kallmann H. P., Magnante P., Electroluminescence in Organic Crystals [J], TheJournal of Chemical Physics,1963,38,2042.
    [2] Vincett P. S., Barlow W. A., Hann R. A., et al., Electrical conduction and low voltage blueelectroluminescence in vacuum-deposited organic films [J], Thin Solid Films,1982,94,171.
    [3] Tang C. W., VanSlyke S. A., Organic electroluminescent diodes [J], Applied PhysicsLetters,1987,51,913.
    [4] Ma Y. G., Zhang H. Y., Shen J. C., et al., Electroluminescence from triplet metal-ligandcharge-transfer excited state of transition metal complexes [J], Synthetic Metals,1998,94,245.
    [5] Baldo M. A., O'Brien D. F., You Y., et al., Highly efficient phosphorescent emission fromorganic electroluminescent devices [J], Nature,1998,395,151.
    [6] Burroughes J. H., Bradley D. D. C., Brown A. R., et al., Light-emitting diodes based onconjugated polymers [J], Nature,1990,347,539.
    [7] Braun D., Heeger A. J., Visible light emission from semiconducting polymer diodes [J],Applied Physics Letters,1991,58,1982.
    [8] Gustafsson G., Cao Y., Treacy G. M., et al., Flexible light-emitting diodes made fromsoluble conducting polymers [J], Nature,1992,357,477.
    [9] Hebner T. R., Wu C. C., Marcy D., et al., Ink-jet printing of doped polymers for organiclight emitting devices [J], Applied Physics Letters,1998,72,519.
    [10] Yu L., Liu J., Hu S., et al., Red, Green, and Blue Light-Emitting PolyfluorenesContaining a Dibenzothiophene-S,S-Dioxide Unit and EfficientHigh-Color-Rendering-Index White-Light-Emitting Diodes Made Therefrom [J],Advanced Functional Materials,2013,23,4366.
    [11] Spreitzer H., Becker H., Kluge E., et al., Soluble phenyl-substituted PPVs-Newmaterials for highly efficient polymer LEDs [J], Advanced Materials,1998,10,1340.
    [12] Huang C.-W., Peng K.-Y., Liu C.-Y., et al., Creating a Molecular-scale Graded ElectronicProfile in a Single Polymer to Facilitate Hole Injection for Efficient BlueElectroluminescence [J], Advanced Materials,2008,20,3709.
    [13] Liu J., Zou J., Yang W., et al., Highly Efficient and Spectrally Stable Blue-Light-EmittingPolyfluorenes Containing a Dibenzothiophene-S,S-dioxide Unit [J], Chemistry ofMaterials,2008,20,4499.
    [14] Liu J., Hu S., Zhao W., et al., Novel Spectrally Stable Saturated Blue-Light-Emitting Poly(fluorene)-co-(dioctyldibenzothiophene-S,S-dioxide) s [J], Macromolecular RapidCommunications,2010,31,496.
    [15] He R., Hu S., Liu J., et al., Bipolar blue-emitting poly(N-9'-heptadecanyl-carbazole-2,7-diyl-co-dibenzothiophene-S,S-dioxide-3,7-diyl)s [J],Journal of Materials Chemistry,2012,22,3440.
    [16] Baldo M. A., O'Brien D. F., Thompson M. E., et al., Excitonic singlet-triplet ratio in asemiconducting organic thin film [J], Physical Review B,1999,60,14422.
    [17] Yeh S. J., Wu M. F., Chen C. T., et al., New dopant and host materials forblue-light-emitting phosphorescent organic electroluminescent devices [J], AdvancedMaterials,2005,17,285.
    [18] Tao Y., Yang C., Qin J., Organic host materials for phosphorescent organic light-emittingdiodes [J], Chemical Society Reviews,2011,40,2943.
    [19] Chu T. Y., Wu Y. S., Chen J. F., et al., Characterization of electronic structure ofaluminum (III) bis(2-methyl-8-quninolinato)-4-phenylphenolate (BAlq) forphosphorescent organic light emitting devices [J], Chemical Physics Letters,2005,404,121.
    [20] Chen F. C., He G. F., Yang Y., Triplet exciton confinement in phosphorescent polymerlight-emitting diodes [J], Applied Physics Letters,2003,82,1006.
    [21] Kanno H., Ishikawa K., Nishio Y., et al., Highly efficient and stable red phosphorescentorganic light-emitting device using bis2-(2-benzothiazoyl)phenolato zinc(II) as hostmaterial [J], Applied Physics Letters,2007,90.
    [22] Tsuzuki T., Tokito S., Highly efficient, low-voltage phosphorescent organic light-emittingdiodes using an iridium complex as the host material [J], Advanced Materials,2007,19,276.
    [23] Hwu T.-Y., Tsai T.-C., Hung W.-Y., et al., An electron-transporting host materialcompatible with diverse triplet emitters used for highly efficient red-andgreen-electrophosphorescent devices [J], Chemical Communications,2008,40,4956.
    [24] Jeon S. O., Yook K. S., Joo C. W., et al., High efficiency red phosphorescent organiclight-emitting diodes using a spirobenzofluorene type phosphine oxide as a host material[J], Organic Electronics,2009,10,998.
    [25] Jeon S. O., Yook K. S., Joo C. W., et al., Simple high efficiency red phosphorescentorganic light-emitting diodes without LiF electron injection layer [J], Journal of PhysicsD-Applied Physics,2009,42.
    [26] Chen H.-F., Wang T.-C., Lin S.-W., et al., Peripheral modification of1,3,5-triazine basedelectron-transporting host materials for sky blue, green, yellow, red, and whiteelectrophosphorescent devices [J], Journal of Materials Chemistry,2012,22,15620.
    [27] Kao M.-T., Hung W.-Y., Tsai Z.-H., et al., Using a double-doping strategy to prepare abilayer device architecture for high-efficiency red PhOLEDs [J], Journal of MaterialsChemistry,2011,21,1846.
    [28] Shih P.-I., Chien C.-H., Wu T.-I., et al., A novel fluorene-triphenylamine hybrid that is ahighly efficient host material for blue-, green-, and red-light-emittingelectrophosphorescent devices [J], Advanced Functional Materials,2007,17,3514.
    [29] Chien C.-H., Hsu F.-M., Shu C.-F., et al., Efficient red electrophosphorescence from afluorene-based bipolar host material [J], Organic Electronics,2009,10,871.
    [30] Hsu F.-M., Chien C.-H., Hsieh Y.-J., et al., Highly efficient red electrophosphorescentdevice incorporating a bipolar triphenylamine/bisphenylsulfonyl-substituted fluorenehybrid as the host [J], Journal of Materials Chemistry,2009,19,8002.
    [31] Su S.-J., Cai C., Kido J., RGB Phosphorescent Organic Light-Emitting Diodes by UsingHost Materials with Heterocyclic Cores: Effect of Nitrogen Atom Orientations [J],Chemistry of Materials,2011,23,274.
    [32] Su S.-J., Cai C., Kido J., Three-carbazole-armed host materials with various cores forRGB phosphorescent organic light-emitting diodes [J], Journal of Materials Chemistry,2012,22,3447.
    [33] Su S.-J., Cai C., Takamatsu J., et al., A host material with a small singlet-triplet exchangeenergy for phosphorescent organic light-emitting diodes: Guest, host, and exciplexemission [J], Organic Electronics,2012,13,1937.
    [34] Tao Y., Wang Q., Ao L., et al., Highly Efficient Phosphorescent Organic Light-EmittingDiodes Hosted by1,2,4-Triazole-Cored Triphenylamine Derivatives: Relationshipbetween Structure and Optoelectronic Properties [J], Journal of Physical Chemistry C,2010,114,601.
    [35] Hung W.-Y., Tu G.-M., Chen S.-W., et al., Phenylcarbazole-dipyridyl triazole hybrid asbipolar host material for phosphorescent OLEDs [J], Journal of Materials Chemistry,2012,22,5410.
    [36] Chou H.-H., Cheng C.-H., A Highly Efficient Universal Bipolar Host for Blue, Green,and Red Phosphorescent OLEDs [J], Advanced Materials,2010,22,2468.
    [37] Tsuji H., Mitsui C., Sato Y., et al., Bis(carbazolyl)benzodifuran: A High-MobilityAmbipolar Material for Homojunction Organic Light-Emitting Diode Devices [J],Advanced Materials,2009,21,3776.
    [38] Adachi C., Baldo M. A., Forrest S. R., et al., High-efficiency organicelectrophosphorescent devices with tris(2-phenylpyridine)iridium doped intoelectron-transporting materials [J], Applied Physics Letters,2000,77,904.
    [39] Chen H.-F., Yang S.-J., Tsai Z.-H., et al.,1,3,5-Triazine derivatives as new electrontransport-type host materials for highly efficient green phosphorescent OLEDs [J],Journal of Materials Chemistry,2009,19,8112.
    [40] Jeon S. O., Lee J. Y., Above20%external quantum efficiency in green and whitephosphorescent organic light-emitting diodes using an electron transport type green hostmaterial [J], Organic Electronics,2011,12,1893.
    [41] Zhao J., Xie G.-H., Yin C.-R., et al., Harmonizing Triplet Level and AmbipolarCharacteristics of Wide-Gap Phosphine Oxide Hosts toward Highly Efficient and LowDriving Voltage Blue and Green PHOLEDs: An Effective Strategy Based onSpiro-Systems [J], Chemistry of Materials,2011,23,5331.
    [42] Sasabe H., Seino Y., Kimura M., et al., A m-Terphenyl-Modifed Sulfone Derivative as aHost Material for High-Efficiency Blue and Green Phosphorescent OLEDs [J], Chemistryof Materials,2012,24,1404.
    [43] Sasabe H., Pu Y.-J., Nakayama K.-i., et al., m-Terphenyl-modified carbazole hostmaterial for highly efficient blue and green PHOLEDS [J], Chemical Communications,2009,26,6655.
    [44] Fan C., Chen Y., Jiang Z., et al., Diarylmethylene-bridged triphenylamine derivativesencapsulated with fluorene: very high T(g) host materials for efficient blue and greenphosphorescent OLEDs [J], Journal of Materials Chemistry,2010,20,3232.
    [45] Chi L.-C., Hung W.-Y., Chiu H.-C., et al., A high-efficiency and low-operating-voltagegreen electrophosphorescent device employing a pure-hydrocarbon host material [J],Chemical Communications,2009,26,3892.
    [46] Jiang Z., Yao H., Zhang Z., et al., Novel Oligo-9,9'-spirobifluorenes throughortho-Linkage as Full Hydrocarbon Host for Highly Efficient Phosphorescent OLEDs [J],Organic Letters,2009,11,2607.
    [47] Tao Y., Wang Q., Yang C., et al., A Simple Carbazole/Oxadiazole Hybrid Molecule: AnExcellent Bipolar Host for Green and Red Phosphorescent OLEDs [J], AngewandteChemie-International Edition,2008,47,8104.
    [48] Tao Y., Wang Q., Yang C., et al., Tuning the Optoelectronic Properties ofCarbazole/Oxadiazole Hybrids through Linkage Modes: Hosts for Highly Efficient GreenElectrophosphorescence [J], Advanced Functional Materials,2010,20,304.
    [49] Tao Y., Wang Q., Yang C., et al., Multifunctional Triphenylamine/Oxadiazole Hybrid asHost and Exciton-Blocking Material: High Efficiency Green Phosphorescent OLEDsUsing Easily Available and Common Materials [J], Advanced Functional Materials,2010,20,2923.
    [50] Gong S., Chen Y., Luo J., et al., Bipolar Tetraarylsilanes as Universal Hosts for Blue,Green, Orange, and White Electrophosphorescence with High Efficiency and LowEfficiency Roll-Off [J], Advanced Functional Materials,2011,21,1168.
    [51] Chen Y.-M., Hung W.-Y., You H.-W., et al., Carbazole-benzimidazole hybrid bipolar hostmaterials for highly efficient green and blue phosphorescent OLEDs [J], Journal ofMaterials Chemistry,2011,21,14971.
    [52] Chen H.-F., Chi L.-C., Hung W.-Y., et al., Carbazole and benzimidazole/oxadiazolehybrids as bipolar host materials for sky blue, green, and red PhOLEDs [J], OrganicElectronics,2012,13,2671.
    [53] Chang C.-H., Kuo M.-C., Lin W.-C., et al., A dicarbazole-triazine hybrid bipolar hostmaterial for highly efficient green phosphorescent OLEDs [J], Journal of MaterialsChemistry,2012,22,3832.
    [54] Huang H., Wang Y., Zhuang S., et al., Simple Phenanthroimidazole/Carbazole HybridBipolar Host Materials for Highly Efficient Green and Yellow Phosphorescent OrganicLight-Emitting Diodes [J], Journal of Physical Chemistry C,2012,116,19458.
    [55] Hudson Z. M., Wang Z., Helander M. G., et al., N-Heterocyclic Carbazole-Based Hostsfor Simplified Single-Layer Phosphorescent OLEDs with High Efficiencies [J], AdvancedMaterials,2012,24,2922.
    [56] Ting H.-C., Chen Y.-M., You H.-W., et al., Indolo3,2-b carbazole/benzimidazole hybridbipolar host materials for highly efficient red, yellow, and green phosphorescent organiclight emitting diodes [J], Journal of Materials Chemistry,2012,22,8399.
    [57] Lin M.-S., Chi L.-C., Chang H.-W., et al., A diarylborane-substituted carbazole as auniversal bipolar host material for highly efficient electrophosphorescence devices [J],Journal of Materials Chemistry,2012,22,870.
    [58] Jeon S. O., Lee J. Y., Fluorenobenzofuran as the core structure of high triplet energy hostmaterials for green phosphorescent organic light-emitting diodes [J], Journal of MaterialsChemistry,2012,22,10537.
    [59] Lee C. W., Lee J. Y., Highly electron deficient pyrido3',2':4,5furo2,3-b pyridine as acore structure of a triplet host material for high efficiency green phosphorescent organiclight-emitting diodes [J], Chemical Communications,2013,49,6185.
    [60] Lee C. W., Seo J.-A., Gong M.-S., et al., The Effect of the Substitution Position ofDibenzofuran on the Photophysical and Charge-Transport Properties of Host Materialsfor Phosphorescent Organic Light-Emitting Diodes [J], Chemistry-A European Journal,2013,19,1194.
    [61] Holmes R. J., D'Andrade B. W., Forrest S. R., et al., Efficient, deep-blue organicelectrophosphorescence by guest charge trapping [J], Applied Physics Letters,2003,83,3818.
    [62] Tokito S., Iijima T., Suzuri Y., et al., Confinement of triplet energy on phosphorescentmolecules for highly-efficient organic blue-light-emitting devices [J], Applied PhysicsLetters,2003,83,569.
    [63] Holmes R. J., Forrest S. R., Tung Y. J., et al., Blue organic electrophosphorescence usingexothermic host-guest energy transfer [J], Applied Physics Letters,2003,82,2422.
    [64] Xiaofan R., Jian L., Holmes R. J., et al., Ultrahigh energy gap hosts in deep blue organicelectrophosphorescent devices [J], Chemistry of Materials,2004,16,4743.
    [65] Jiang Z., Chen Y., Fan C., et al., Bridged triphenylamines as novel host materials forhighly efficient blue and green phosphorescent OLEDs [J], Chemical Communications,2009,23,3398.
    [66] Tsai M. H., Lin H. W., Su H. C., et al., Highly efficient organic blueelectrophosphorescent devices based on3,6-bis(triphenylsilyl)carbazole as the hostmaterial [J], Advanced Materials,2006,18,1216.
    [67] Tsai M.-H., Ke T.-H., Lin H.-W., et al., Triphenylsilyl-and Trityl-SubstitutedCarbazole-Based Host Materials for Blue Electrophosphorescence [J], Acs AppliedMaterials&Interfaces,2009,1,567.
    [68] Mamada M., Ergun S., Perez-Bolivar C., et al., Charge transport, carrier balance, andblue electrophosphorescence in diphenyl4-(triphenylsilyl)phenyl phosphine oxidedevices [J], Applied Physics Letters,2011,98.
    [69] Kim O. Y., Lee J. Y., High efficiency deep blue phosphorescent organic light-emittingdiodes using a tetraphenylsilane based phosphine oxide host material [J], Journal ofIndustrial and Engineering Chemistry,2012,18,1029.
    [70] Liu H., Cheng G., Hu D., et al., A Highly Efficient, Blue-Phosphorescent Device Basedon a Wide-Bandgap Host/FIrpic: Rational Design of the Carbazole and Phosphine OxideMoieties on Tetraphenylsilane [J], Advanced Functional Materials,2012,22,2830.
    [71] Zheng C.-J., Ye J., Lo M.-F., et al., New Ambipolar Hosts Based on Carbazole and4,5-Diazafluorene Units for Highly Efficient Blue Phosphorescent OLEDs with LowEfficiency Roll-Off [J], Chemistry of Materials,2012,24,643.
    [72] Ding J., Wang Q., Zhao L., et al., Design of star-shaped molecular architectures based oncarbazole and phosphine oxide moieties: towards amorphous bipolar hosts with hightriplet energy for efficient blue electrophosphorescent devices [J], Journal of MaterialsChemistry,2010,20,8126.
    [73] Su S.-J., Sasabe H., Takeda T., et al., Pyridine-containing bipolar host materials for highlyefficient blue phosphorescent OLEDs [J], Chemistry of Materials,2008,20,1691.
    [74] Sasabe H., Toyota N., Nakanishi H., et al.,3,3'-Bicarbazole-Based Host Materials forHigh-Efficiency Blue Phosphorescent OLEDs with Extremely Low Driving Voltage [J],Advanced Materials,2012,24,3212.
    [75] Burrows P. E., Padmaperuma A. B., Sapochak L. S., et al., Ultravioletelectroluminescence and blue-green phosphorescence using an organic diphosphine oxidecharge transporting layer [J], Applied Physics Letters,2006,88.
    [76] Cai X., Padmaperuma A. B., Sapochak L. S., et al., Electron and hole transport in a widebandgap organic phosphine oxide for blue electrophosphorescence [J], Applied PhysicsLetters,2008,92.
    [77] Jeon S. O., Yook K. S., Joo C. W., et al., Phenylcarbazole-Based Phosphine Oxide HostMaterials For High Efficiency In Deep Blue Phosphorescent Organic Light-EmittingDiodes [J], Advanced Functional Materials,2009,19,3644.
    [78] Son H. S., Seo C. W., Lee J. Y., Correlation of the substitution position ofdiphenylphosphine oxide on phenylcarbazole and device performances of bluephosphorescent organic light-emitting diodes [J], Journal of Materials Chemistry,2011,21,5638.
    [79] Jeon S. O., Yook K. S., Joo C. W., et al., High-Efficiency Deep-Blue-PhosphorescentOrganic Light-Emitting Diodes Using a Phosphine Oxide and a Phosphine SulfideHigh-Triplet-Energy Host Material with Bipolar Charge-Transport Properties [J],Advanced Materials,2010,22,1872.
    [80] Chang H.-H., Tsai W.-S., Chang C.-P., et al., A new tricarbazole phosphine oxide bipolarhost for efficient single-layer blue PhOLED [J], Organic Electronics,2011,12,2025.
    [81] Padmaperuma A. B., Sapochak L. S., Burrows P. E., New charge transporting hostmaterial for short wavelength organic electrophosphorescence:2,7-bis(diphenylphosphine oxide)-9,9-dimethylfluorene [J], Chemistry of Materials,2006,18,2389.
    [82] Jeon S. O., Yook K. S., Joo C. W., et al., A high triplet energy phosphine oxide derivativeas a host and exciton blocking material for blue phosphorescent organic light-emittingdiodes [J], Thin Solid Films,2010,518,3716.
    [83] Jang S. E., Joo C. W., Jeon S. O., et al., The relationship between the substitution positionof the diphenylphosphine oxide on the spirobifluorene and device performances of bluephosphorescent organic light-emitting diodes [J], Organic Electronics,2010,11,1059.
    [84] Hsu F.-M., Chien C.-H., Shih P.-I., et al., Phosphine-Oxide-Containing Bipolar HostMaterial for Blue Electrophosphorescent Devices [J], Chemistry of Materials,2009,21,1017.
    [85] Yu D., Zhao Y., Xu H., et al., Fluorene-Based Phosphine Oxide Host Materials for BlueElectrophosphorescence: An Effective Strategy for a High Triplet Energy Level [J],Chemistry-A European Journal,2011,17,2592.
    [86] Yu D., Zhao F., Han C., et al., Ternary Ambipolar Phosphine Oxide Hosts Based onIndirect Linkage for Highly Efficient Blue Electrophosphorescence: Towards High TripletEnergy, Low Driving Voltage and Stable Efficiencies [J], Advanced Materials,2012,24,509.
    [87] Polikarpov E., Swensen J. S., Chopra N., et al., An ambipolar phosphine oxide-based hostfor high power efficiency blue phosphorescent organic light emitting devices [J], AppliedPhysics Letters,2009,94.
    [88] Jiang W., Yang W., Ban X., et al., Synthesis of new bipolar materials based ondiphenylphosphine oxide and triphenylamine units: efficient host for deep-bluephosphorescent organic light-emitting diodes [J], Tetrahedron,2012,68,9672.
    [89] Bhansali U. S., Polikarpov E., Swensen J. S., et al., High-efficiency turquoise-blueelectrophosphorescence from a Pt(II)-pyridyltriazolate complex in a phosphine oxide host[J], Applied Physics Letters,2009,95.
    [90] Han C., Zhao Y., Xu H., et al., A Simple Phosphine-Oxide Host with a Multi-insulatingStructure: High Triplet Energy Level for Efficient Blue Electrophosphorescence [J],Chemistry-A European Journal,2011,17,5800.
    [91] Tao Y., Xiao J., Zheng C., et al., Dynamically Adaptive Characteristics of ResonanceVariation for Selectively Enhancing Electrical Performance of Organic Semiconductors[J], Angewandte Chemie-International Edition,2013,52,10491.
    [92] Han C., Zhang Z., Xu H., et al., Controllably Tuning Excited-State Energy in TernaryHosts for Ultralow-Voltage-Driven Blue Electrophosphorescence [J], AngewandteChemie-International Edition,2012,51,10104.
    [93] Fan C., Zhu L., Liu T., et al., Using an Organic Molecule with Low Triplet Energy as aHost in a Highly Efficient Blue Electrophosphorescent Device [J], Angewandte ChemieInternational Edition,2014,53,2147.
    [94] Han C., Zhang Z., Xu H., et al., Short-Axis Substitution Approach Selectively OptimizesElectrical Properties of Dibenzothiophene-Based Phosphine Oxide Hosts [J], Journal ofthe American Chemical Society,2012,134,19179.
    [95] Lee C. W., Lee J. Y., High Quantum Efficiency in Solution and Vacuum Processed BluePhosphorescent Organic Light Emitting Diodes Using a Novel Benzofuropyridine-BasedBipolar Host Material [J], Advanced Materials,2013,25,596.
    [96] Lee C. W., Lee J. Y., Above30%External Quantum Efficiency in Blue PhosphorescentOrganic Light-Emitting Diodes Using Pyrido2,3-b indole Derivatives as Host Materials[J], Advanced Materials,2013,25,5450.
    [97] Lee C. W., Lee J. Y., Structure–Property Relationship of Pyridoindole-Type HostMaterials for High-Efficiency Blue Phosphorescent Organic Light-Emitting Diodes [J],Chemistry of Materials,2014,26,1616.
    [98] Im Y., Lee J. Y., Effect of the position of nitrogen in pyridoindole on photophysicalproperties and device performances of alpha-, beta-, gamma-carboline based high tripletenergy host materials for deep blue devices [J], Chemical Communications,2013,49,5948.
    [99] Lee C. W., Im Y., Seo J.-A., et al., Thermally stable carboline derivative as a host materialfor blue phosphorescent organic light-emitting diodes [J], Organic Electronics,2013,14,2687.
    [100] Lee C. W., Im Y., Seo J.-A., et al., Carboline derivatives with an ortho-linked terphenylcore for high quantum efficiency in blue phosphorescent organic light-emitting diodes[J], Chemical Communications,2013,49,9860.
    [101] Zhu M., Ye T., He X., et al., Highly efficient solution-processed green and redelectrophosphorescent devices enabled by small-molecule bipolar host material [J],Journal of Materials Chemistry,2011,21,9326.
    [102] Aizawa N., Pu Y.-J., Sasabe H., et al., Solution-processable carbazole-based hostmaterials for phosphorescent organic light-emitting devices [J], Organic Electronics,2012,13,2235.
    [103] Huang H., Fu Q., Pan B., et al., Butterfly-Shaped Tetrasubstituted Carbazole Derivativesas a New Class of Hosts for Highly Efficient Solution-Processable GreenPhosphorescent Organic Light-Emitting Diodes [J], Organic Letters,2012,14,4786.
    [104] Li J., Zhang T., Liang Y., et al., Solution-Processible Carbazole Dendrimers as HostMaterials for Highly Efficient Phosphorescent Organic Light-Emitting Diodes [J],Advanced Functional Materials,2013,23,619.
    [105] Ting Z., Renjie W., Liming W., et al., Fluorene/tridurylborane hybrids assolution-processible hosts for phosphorescent organic light-emitting diodes [J], Dyesand Pigments,2013,97,155.
    [106] Ge Z., Hayakawa T., Ando S., et al., Spin-coated highly efficient phosphorescentorganic light-emitting diodes based on bipolar triphenylamine-benzimidazolederivatives [J], Advanced Functional Materials,2008,18,584.
    [107] Ge Z., Hayakawa T., Ando S., et al., Solution-processible bipolartriphenylamine-benzimidazole derivatives for highly efficient single-layer organiclight-emitting diodes [J], Chemistry of Materials,2008,20,2532.
    [108] Lee C. W., Yook K. S., Lee J. Y., Synthesis and device application of hybrid hostmaterials of carbazole and benzofuran for high efficiency solution processed bluephosphorescent organic light-emitting diodes [J], Organic Electronics,2013,14,1009.
    [109] Ye S., Liu Y., Chen J., et al., Solution-Processed Solid Solution of a Novel CarbazoleDerivative for High-Performance Blue Phosphorescent Organic Light-Emitting Diodes[J], Advanced Materials,2010,22,4167.
    [110] Jiang W., Duan L., Qiao J., et al., High-triplet-energy tri-carbazole derivatives as hostmaterials for efficient solution-processed blue phosphorescent devices [J], Journal ofMaterials Chemistry,2011,21,4918.
    [111] Hu D., Cheng G., Liu H., et al., Carbazole/oligocarbazoles substituted silanes as widebandgap host materials for solution-processable electrophosphorescent devices [J],Organic Electronics,2012,13,2825.
    [112] Ding J., Zhang B., Lue J., et al., Solution-Processable Carbazole-Based ConjugatedDendritic Hosts for Power-Efficient Blue-Electrophosphorescent Devices [J], AdvancedMaterials,2009,21,4983.
    [113] Jiang W., Tang J., Yang W., et al., Synthesis of carbazole-based dendrimer: host materialfor highly efficient solution-processed blue organic electrophosphorescent diodes [J],Tetrahedron,2012,68,5800.
    [114] Jiang W., Ge Z., Cai P., et al., Star-shaped dendritic hosts based on carbazole moietiesfor highly efficient blue phosphorescent OLEDs [J], Journal of Materials Chemistry,2012,22,12016.
    [115] Gong S., Fu Q., Wang Q., et al., Highly Efficient Deep-Blue ElectrophosphorescenceEnabled by Solution-Processed Bipolar Tetraarylsilane Host with Both a High TripletEnergy and a High-Lying HOMO Level [J], Advanced Materials,2011,23,4956.
    [116] Gong S., Fu Q., Zeng W., et al., Solution-Processed Double-Silicon-BridgedOxadiazole/Arylamine Hosts for High-Efficiency Blue Electrophosphorescence [J],Chemistry of Materials,2012,24,3120.
    [117] Su S.-J., Tanaka D., Li Y.-J., et al., Novel four-pyridylbenzene-armed biphenyls aselectron-transport materials for phosphorescent OLEDs [J], Organic Letters,2008,10,941.
    [118] Su S.-J., Chiba T., Takeda T., et al., Pyridine-containing triphenylbenzene derivativeswith high electron mobility for highly efficient phosphorescent OLEDs [J], AdvancedMaterials,2008,20,2125.
    [119] Su S.-J., Takahashi Y., Chiba T., et al., Structure-Property Relationship ofPyridine-Containing Triphenyl Benzene Electron-Transport Materials for HighlyEfficient Blue Phosphorescent OLEDs [J], Advanced Functional Materials,2009,19,1260.
    [120] Sasabe H., Chiba T., Su S.-J., et al.,2-Phenylpyrimidine skeleton-basedelectron-transport materials for extremely efficient green organic light-emitting devices[J], Chemical Communications,2008,44,5821.
    [121] Sasabe H., Tanaka D., Yokoyama D., et al., Influence of Substituted Pyridine Rings onPhysical Properties and Electron Mobilities of2-Methylpyrimidine Skeleton-BasedElectron Transporters [J], Advanced Functional Materials,2011,21,336.
    [122] Liu M., Su S.-J., Jung M.-C., et al., Hybrid Heterocycle-Containing Electron-TransportMaterials Synthesized by Regioselective Suzuki Cross-Coupling Reactions for HighlyEfficient Phosphorescent OLEDs with Unprecedented Low Operating Voltage [J],Chemistry of Materials,2012,24,3817.
    [123] Su S.-J., Sasabe H., Pu Y.-J., et al., Tuning Energy Levels of Electron-TransportMaterials by Nitrogen Orientation for Electrophosphorescent Devices with an 'Ideal'Operating Voltage [J], Advanced Materials,2010,22,3311.
    [124] Huang F., Wu H., Cao Y., Water/alcohol soluble conjugated polymers as highly efficientelectron transporting/injection layer in optoelectronic devices [J], Chemical SocietyReviews,2010,39,2500.
    [125] Duan C., Zhang K., Zhong C., et al., Recent advances in water/alcohol-solubleπ-conjugated materials: new materials and growing applications in solar cells [J],Chemical Society Reviews,2013,42,9071.
    [126] He Z., Wu H., Cao Y., Recent Advances in Polymer Solar Cells: Realization of HighDevice Performance by Incorporating Water/Alcohol-Soluble Conjugated Polymers asElectrode Buffer Layer [J], Advanced Materials,2014,26,1006.
    [127] Duan C., Cai W., Hsu B. B. Y., et al., Toward green solvent processable photovoltaicmaterials for polymer solar cells: the role of highly polar pendant groups in chargecarrier transport and photovoltaic behavior [J], Energy&Environmental Science,2013,6,3022.
    [128] Duan C., Wang L., Zhang K., et al., Conjugated Zwitterionic Polyelectrolytes and TheirNeutral Precursor as Electron Injection Layer for High-Performance PolymerLight-Emitting Diodes [J], Advanced Materials,2011,23,1665.
    [129] Fang J., Wallikewitz B. H., Gao F., et al., Conjugated Zwitterionic Polyelectrolyte as theCharge Injection Layer for High-Performance Polymer Light-Emitting Diodes [J],Journal of the American Chemical Society,2011,133,683.
    [130] Guan X., Zhang K., Huang F., et al., Amino N-Oxide Functionalized ConjugatedPolymers and their Amino-Functionalized Precursors: New Cathode Interlayers forHigh-Performance Optoelectronic Devices [J], Advanced Functional Materials,2012,22,2846.
    [131] He Z., Zhang C., Xu X., et al., Largely Enhanced Efficiency with a PFN/Al BilayerCathode in High Efficiency Bulk Heterojunction Photovoltaic Cells with a LowBandgap Polycarbazole Donor [J], Advanced Materials,2011,23,3086.
    [132] Huang F., Niu Y.-H., Zhang Y., et al., A conjugated, neutral surfactant aselectron-injection material for high-efficiency polymer light-emitting diodes [J],Advanced Materials,2007,19,2010.
    [133] Huang F., Zhang Y., Liu M. S., et al., Electron-Rich Alcohol-Soluble NeutralConjugated Polymers as Highly Efficient Electron-Injecting Materials for PolymerLight-Emitting Diodes [J], Advanced Functional Materials,2009,19,2457.
    [134] Oh S.-H., Na S.-I., Jo J., et al., Water-Soluble Polyfluorenes as an Interfacial LayerLeading to Cathode-Independent High Performance of Organic Solar Cells [J],Advanced Functional Materials,2010,20,1977.
    [135] Oh S.-H., Vak D., Na S.-I., et al., Water-soluble polyfluorenes as an electron injectinglayer in PLEDs for extremely high quantum efficiency [J], Advanced Materials,2008,20,1624.
    [136] Xu X., Cai W., Chen J., et al., Conjugated Polyelectrolytes and Neutral Polymers withPoly(2,7-carbazole) Backbone: Synthesis, Characterization, and PhotovoltaicApplication [J], Journal of Polymer Science Part a: Polymer Chemistry,2011,49,1263.
    [137] Xu X., Han B., Chen J., et al.,2,7-Carbazole-1,4-phenylene Copolymers with Polar SideChains for Cathode Modifications in Polymer Light-Emitting Diodes [J],Macromolecules,2011,44,4204.
    [138] Seo J. H., Gutacker A., Sun Y., et al., Improved High-Efficiency Organic Solar Cells viaIncorporation of a Conjugated Polyelectrolyte Interlayer [J], Journal of the AmericanChemical Society,2011,133,8416.
    [139] Liu S., Zhang K., Lu J., et al., High-Efficiency Polymer Solar Cells via theIncorporation of an Amino-Functionalized Conjugated Metallopolymer as a CathodeInterlayer [J], Journal of the American Chemical Society,2013,135,15326.
    [140] Pho T. V., Kim H., Seo J. H., et al., Quinacridone-Based Electron Transport Layers forEnhanced Performance in Bulk-Heterojunction Solar Cells [J], Advanced FunctionalMaterials,2011,21,4338.
    [141] Earmme T., Jenekhe S. A., High-performance multilayered phosphorescent OLEDs bysolution-processed commercial electron-transport materials [J], Journal of MaterialsChemestry,2012,22,4660.
    [142] Ahmed E., Earmme T., Jenekhe S. A., New Solution-Processable Electron TransportMaterials for Highly Efficient Blue Phosphorescent OLEDs [J], Advanced FunctionalMaterials,2011,21,3889.
    [143] Earmme T., Jenekhe S. A., Solution-Processed, Alkali Metal-Salt-Doped,Electron-Transport Layers for High-Performance Phosphorescent OrganicLight-Emitting Diodes [J], Advanced Functional Materials,2012,22,5126.
    [144] Baldo M. A., Thompson M. E., Forrest S. R., High-efficiency fluorescent organiclight-emitting devices using a phosphorescent sensitizer [J], Nature,2000,403,750.
    [145] D'Andrade B. W., Forrest S. R., White organic light-emitting devices for solid-statelighting [J], Advanced Materials,2004,16,1585.
    [146] Friend R. H., Gymer R. W., Holmes A. B., et al., Electroluminescence in conjugatedpolymers [J], Nature,1999,397,121.
    [147] Grimsdale A. C., Chan K. L., Martin R. E., et al., Synthesis of Light-EmittingConjugated Polymers for Applications in Electroluminescent Devices [J], ChemicalReviews,2009,109,897.
    [148] Misra A., Kumar P., Kamalasanan M. N., et al., White organic LEDs and their recentadvancements [J], Semiconductor Science and Technology,2006,21, R35.
    [149] Hung M. C., Liao J. L., Chen S. A., et al., Fine tuning the purity of blue emission frompolydioctylfluorene by end-capping with electron-deficient moieties [J], Journal of theAmerican Chemical Society,2005,127,14576.
    [150] Pei Q. B., Yang Y., Efficient photoluminescence and electroluminescence from a solublepolyfluorene [J], Journal of the American Chemical Society,1996,118,7416.
    [151] Scherf U., List E. J. W., Semiconducting polyfluorenes-Towards reliablestructure-property relationships [J], Advanced Materials,2002,14,477.
    [152] Mo Y.-Q., Deng X.-Y., Jiang X., et al., Blue Electroluminescence from3,6-Silafluorene-Based Copolymers [J], Journal of Polymer Science Part a: PolymerChemistry,2009,47,3286.
    [153] Wang J., Zhang C.-q., Zhong C.-m., et al., Highly Efficient and Stable Deep Blue LightEmitting Poly(9,9-dialkoxyphenyl-2,7-silafluorene): Synthesis and ElectroluminescentProperties [J], Macromolecules,2011,44,17.
    [154] Wang L., Jiang Y., Luo J., et al., Highly Efficient and Color-Stable Deep-Blue OrganicLight-Emitting Diodes Based on a Solution-Processible Dendrimer [J], AdvancedMaterials,2009,21,4854.
    [155] Liu Q.-D., Lu J., Ding J., et al., Monodisperse starburst oligofluorene-functionalized4,4',4''-tris(carbazol-9-yl)-triphenylamines: Their synthesis and deep-blue fluorescenceproperties for organic light-emitting diode applications [J], Advanced FunctionalMaterials,2007,17,1028.
    [156] Tao S., Li L., Yu J., et al., Bipolar Molecule as an Excellent Hole-Transporter forOrganic-Light Emitting Devices [J], Chemistry of Materials,2009,21,1284.
    [157] Van Slyke S. A., Chen C. H., Tang C. W., Organic electroluminescent devices withimproved stability [J], Applied Physics Letters,1996,69,2160.
    [158] Tao Y., Wang Q., Ao L., et al., Molecular design of host materials based ontriphenylamine/oxadiazole hybrids for excellent deep-red phosphorescent organiclight-emitting diodes [J], Journal of Materials Chemestry,2010,20,1759.
    [159] Lu J. P., Jin Y. N., Ding J. F., et al., High-efficiency multilayer polymeric bluelight-emitting diodes using boronate esters as cross-linking linkages [J], Journal ofMaterials Chemestry,2006,16,593.
    [160] Lu J. P., Tao Y., D'Iorio M., et al., Pure deep blue light-emitting diodes from alternatingfluorene/carbazole copolymers by using suitable hole-blocking materials [J],Macromolecules,2004,37,2442.
    [161] Ego C., Grimsdale A. C., Uckert F., et al., Triphenylamine-substituted polyfluorene-Astable blue-emitter with improved charge injection for light-emitting diodes [J],Advanced Materials,2002,14,809.
    [162] Miteva T., Meisel A., Knoll W., et al., Improving the performance of polyfluorene-basedorganic light-emitting diodes via end-capping [J], Advanced Materials,2001,13,565.
    [163] Chen J. P., Markiewicz D., Lee V. Y., et al., Improved efficiencies of light-emittingdiodes through incorporation of charge transporting components in tri-block polymers[J], Synthetic Metals,1999,107,203.
    [164] Yu W. L., Pei J., Huang W., et al., A novel triarylamine-based conjugated polymer andits unusual light-emitting properties [J], Chemical Communications,2000,8,681.
    [165] Wu C. C., Liu T. L., Hung W. Y., et al., Unusual nondispersive ambipolar carriertransport and high electron mobility in amorphous ter(9,9-diarylfluorene)s [J], Journalof the American Chemical Society,2003,125,3710.
    [166] Ji F.-Y., Zhu L.-L., Ma X., et al., A new thermo-and photo-driven2rotaxane [J],Tetrahedron Letters,2009,50,597.
    [167] Xu T., Lu R., Liu X., et al., Phosphorus(V) porphyrins with axial carbazole-baseddendritic substituents [J], Organic Letters,2007,9,797.
    [168] Lee J. I., Klaerner G., Miller R. D., Oxidative stability and its effect on thephotoluminescence of poly(fluorene) derivatives: End group effects [J], Chemistry ofMaterials,1999,11,1083.
    [169] Yang R. Q., Tian R. Y., Yan J. G., et al., Deep-red electroluminescent polymers:Synthesis and characterization of new low-band-gap conjugated copolymers forlight-emitting diodes and photovoltaic devices [J], Macromolecules,2005,38,244.
    [170] Hou Q., Xu Y. S., Yang W., et al., Novel red-emitting fluorene-based copolymers [J],Journal of Materials Chemistry,2002,12,2887.
    [171] Ranger M., Rondeau D., Leclerc M., New well-defined poly(2,7-fluorene) derivatives:Photoluminescence and base doping [J], Macromolecules,1997,30,7686.
    [172] Yang X. H., Yang W., Yuan M., et al., Influences of end-groups and thermal effect on thered-shifted emission in the poly (9,9-dioctylfluorene) light emitting diodes [J], SyntheticMetals,2003,135,189.
    [173] Peng Z., Tao S., Zhang X., et al., New fluorene derivatives for blue electroluminescentdevices: Influence of substituents on thermal properties, photoluminescence, andelectroluminescence [J], Journal of Physical Chemistry C,2008,112,2165.
    [174] Mikroyannidis J. A., Moshopoulou H. A., Anastasopoulos J. A., et al., Novelblue-greenish electroluminescent poly(fluorenevinylene-alt-dibenzothiophenevinylene)sand their model compounds [J], Journal of Polymer Science Part a-Polymer Chemistry,2006,44,6790.
    [175] Ding J. F., Day M., Robertson G., et al., Synthesis and characterization of alternatingcopolymers of fluorene and oxadiazole [J], Macromolecules,2002,35,3474.
    [176] Salbeck J., Yu N., Bauer J., et al., Low molecular organic glasses for blueelectroluminescence [J], Synthetic Metals,1997,91,209.
    [177] Yan H., Huang Q. L., Cui J., et al., High-brightness blue light-emitting polymer diodesvia anode modification using a self-assembled monolayer [J], Advanced Materials,2003,15,835.
    [178] Guan R., Xu Y., Ying L., et al., Novel green-light-emitting hyperbranched polymerswith iridium complex as core and3,6-carbazole-co-2,6-pyridine unit as branch [J],Journal of Materials Chemistry,2009,19,531.
    [179] Thomas K. R. J., Lin J. T., Tao Y. T., et al., New carbazole-Oxadiazole dyads forelectroluminescent devices: Influence of acceptor substituents on luminescent andthermal properties [J], Chemistry of Materials,2004,16,5437.
    [180] Okumoto K., Kanno H., Hamaa Y., et al., Green fluorescent organic light-emittingdevice with external quantum efficiency of nearly10%[J], Applied Physics Letters,2006,89.
    [181] Su H. J., Wu F. I., Shu C. F., Tuning wavelength: Synthesis and characterization ofspiro-DPVF-containing polyfluorenes and applications in organic light-emitting diodes[J], Macromolecules,2004,37,7197.
    [182] Cho N. S., Hwang D. H., Jung B. J., et al., Synthesis, characterization, andelectroluminescence of new conjugated polyfluorene derivatives containing variousdyes as comonomers [J], Macromolecules,2004,37,5265.
    [183] Zhao Z., Li J.-H., Lu P., et al., Fluorescent, carrier-trapping dopants for highly efficientsingle-layer polyfluorene LEDs [J], Advanced Functional Materials,2007,17,2203.
    [184] Zhen C.-G., Dai Y.-F., Zeng W.-J., et al., Achieving Highly Efficient Fluorescent BlueOrganic Light-Emitting Diodes Through Optimizing Molecular Structures and DeviceConfiguration [J], Advanced Functional Materials,2011,21,699.
    [185] Virgili T., Lidzey D. G., Bradley D. D. C., Efficient energy transfer from blue to red intetraphenylporphyrin-doped poly(9,9-dioctylfluorene) light-emitting diodes [J],Advanced Materials,2000,12,58.
    [186] Chen X. W., Liao J. L., Liang Y. M., et al., High-efficiency red-light emission frompolyfluorenes grafted with cyclometalated iridium complexes and charge transportmoiety [J], Journal of the American Chemical Society,2003,125,636.
    [187] Ego C., Marsitzky D., Becker S., et al., Attaching perylene dyes to polyfluorene: Threesimple, efficient methods for facile color tuning of light-emitting polymers [J], Journalof the American Chemical Society,2003,125,437.
    [188] He G. F., Liu J., Li Y. F., et al., Efficient polymer light-emitting diodes using conjugatedpolymer blends [J], Applied Physics Letters,2002,80,1891.
    [189] Chen L., Zhang B., Cheng Y., et al., Pure and Saturated Red ElectroluminescentPolyfluorenes with Dopant/Host System and PLED Efficiency/Color Purity Trade-Offs[J], Advanced Functional Materials,2010,20,3143.
    [190] Pu Y.-J., Higashidate M., Nakayama K.-i., et al., Solution-processable organicfluorescent dyes for multicolor emission in organic light emitting diodes [J], Journal ofMaterials Chemistry,2008,18,4183.
    [191] Ye H., Zhao B., Liu M., et al., Dual-functional conjugated polymers based ontrifluoren-2-yl-amine for RGB organic light-emitting diodes [J], Journal of MaterialsChemistry,2011,21,17454.
    [192] Ren S., Zeng D., Zhong H., et al., Star-Shaped Donor-pi-Acceptor ConjugatedOligomers with1,3,5-Triazine Cores: Convergent Synthesis and MultifunctionalProperties [J], Journal of Physical Chemistry B,2010,114,10374.
    [193] Singh P., Baheti A., Thomas K. R. J., Synthesis and Optical Properties of AcidochromicAmine-Substituted Benzo a phenazines [J], Journal of Organic Chemistry,2011,76,6134.
    [194] Yuan W. Z., Gong Y., Chen S., et al., Efficient Solid Emitters with Aggregation-InducedEmission and Intramolecular Charge Transfer Characteristics: Molecular Design,Synthesis, Photophysical Behaviors, and OLED Application [J], Chemistry of Materials,2012,24,1518.
    [195] Gibson G. L., McCormick T. M., Seferos D. S., Atomistic Band Gap Engineering inDonor-Acceptor Polymers [J], Journal of the American Chemical Society,2012,134,539.
    [196] Pasker F. M., Le Blanc S. M., Schnakenburg G., et al.,Thiophene-2-aryl-2H-benzotriazole-thiophene Oligomers with Adjustable ElectronicProperties [J], Organic Letters,2011,13,2338.
    [197] Goudreault T., He Z., Guo Y., et al., Synthesis, Light-Emitting, and Two-PhotonAbsorption Properties of Platinum-Containing Poly(arylene-ethynylene)s Linked by1,3,4-Oxadiazole Units [J], Macromolecules,2010,43,7936.
    [198] Yokoyama D., Sakaguchi A., Suzuki M., et al., Enhancement of electron transport byhorizontal molecular orientation of oxadiazole planar molecules in organic amorphousfilms [J], Applied Physics Letters,2009,95.
    [199] Agneeswari R., Tamilavan V., Song M., et al., Synthesis of polymers containing1,2,4-oxadiazole as an electron-acceptor moiety in their main chain and their solar cellapplications [J], Journal of Polymer Science Part a: Polymer Chemistry,2013,51,2131.
    [200] Hernandez-Ainsa S., Barbera J., Marcos M., et al., Liquid Crystalline Ionic DendrimersContaining Luminescent Oxadiazole Moieties [J], Macromolecules,2012,45,1006.
    [201] Kido J., Kimura M., Nagai K., Multilayer white light-emitting organicelectroluminescent device [J], Science,1995,267,1332.
    [202] Reineke S., Lindner F., Schwartz G., et al., White organic light-emitting diodes withfluorescent tube efficiency [J], Nature,2009,459,234.
    [203] Su S.-J., Gonmori E., Sasabe H., et al., Highly Efficient Organic Blue-andWhite-Light-Emitting Devices Having a Carrier-and Exciton-Confining Structure forReduced Efficiency Roll-Off [J], Advanced Materials,2008,20,4189.
    [204] Sun Y. R., Giebink N. C., Kanno H., et al., Management of singlet and triplet excitonsfor efficient white organic light-emitting devices [J], Nature,2006,440,908.
    [205] Komoda T., Yamae K., Kittichungchit V., et al.,45.2: Invited Paper: Extremely HighPerformance White OLEDs for Lighting [J], SID Symposium Digest of Technical Papers,2012,43,610.
    [206] Ohno Y., Spectral design considerations for white LED color rendering [J], OpticalEngineering,2005,44.
    [207] Tyan Y.-S., Organic light-emitting-diode lighting overview [J], Journal of Photonics forEnergy,2011,1.
    [208] D'Andrade B. W., Holmes R. J., Forrest S. R., Efficient organic electrophosphorescentwhite-light-emitting device with a triple doped emissive layer [J], Advanced Materials,2004,16,624.
    [209] Sun Y., Forrest S. R., High-efficiency white organic light emitting devices with threeseparate phosphorescent emission layers [J], Applied Physics Letters,2007,91.
    [210] Bin J.-K., Cho N.-S., Hong J.-I., New Host Material for High-Performance BluePhosphorescent Organic Electroluminescent Devices [J], Advanced Materials,2012,24,2911.
    [211] Lin M.-S., Yang S.-J., Chang H.-W., et al., Incorporation of a CN group into mCP: anew bipolar host material for highly efficient blue and white electrophosphorescentdevices [J], Journal of Materials Chemistry,2012,22,16114.
    [212] Xiao L., Su S.-J., Agata Y., et al., Nearly100%Internal Quantum Efficiency in anOrganic Blue-Light Electrophosphorescent Device Using a Weak Electron TransportingMaterial with a Wide Energy Gap [J], Advanced Materials,2009,21,1271.
    [213] Morteani A. C., Dhoot A. S., Kim J. S., et al., Barrier-free electron-hole capture inpolymer blend heterojunction light-emitting diodes [J], Advanced Materials,2003,15,1708.
    [214] Pandey A. K., Nunzi J.-M., Rubrene/fullerene heterostructures with a half-gapelectroluminescence threshold and large photovoltage [J], Advanced Materials,2007,19,3613.
    [215] Qian L., Zheng Y., Choudhury K. R., et al., Electroluminescence from light-emittingpolymer/ZnO nanoparticle heterojunctions at sub-bandgap voltages [J], Nano Today,2010,5,384.
    [216] Sasabe H., Gonmori E., Chiba T., et al., Wide-Energy-Gap Electron-Transport MaterialsContaining3,5-Dipyridylphenyl Moieties for an Ultra High Efficiency Blue OrganicLight-Emitting Device [J], Chemistry of Materials,2008,20,5951.
    [217] Fukagawa H., Irisa S., Hanashima H., et al., Simply structured, deep-bluephosphorescent organic light-emitting diode with bipolar host material [J], OrganicElectronics,2011,12,1638.
    [218] Hsu C.-W., Lin C.-C., Chung M.-W., et al., Systematic Investigation of theMetal-Structure-Photophysics Relationship of Emissive d(10)-Complexes of Group11Elements: The Prospect of Application in Organic Light Emitting Devices [J], Journalof the American Chemical Society,2011,133,12085.
    [219] Lee J., Lee J.-I., Lee J. Y., et al., Enhanced efficiency and reduced roll-off in blue andwhite phosphorescent organic light-emitting diodes with a mixed host structure [J],Applied Physics Letters,2009,94.
    [220] Mehes G., Nomura H., Zhang Q., et al., Enhanced Electroluminescence Efficiency in aSpiro-Acridine Derivative through Thermally Activated Delayed Fluorescence [J],Angewandte Chemie-International Edition,2012,51,11311.
    [221] Keum M.-J., Han J.-G., Preparation of ITO thin film by using DC magnetron sputtering[J], Journal of the Korean Physical Society,2008,53,1580.
    [222] Kim S.-Y., Kim J.-J., Outcoupling efficiency of organic light emitting diodes and theeffect of ITO thickness [J], Organic Electronics,2010,11,1010.
    [223] Meerheim R., Walzer K., He G., et al., in Organic Optoelectronics and Photonics II, Vol.6192(Eds.: Heremans P. L., Muccini M., Meulenkamp E. A.),2006, pp. P1920.
    [224] He G. F., Pfeiffer M., Leo K., et al., High-efficiency and low-voltage p-i-nelectrophosphorescent organic light-emitting diodes with double-emission layers [J],Applied Physics Letters,2004,85,3911.
    [225] Watanabe S., Ide N., Kido J., High-efficiency green phosphorescent organiclight-emitting devices with chemically doped layers [J], Japanese Journal of AppliedPhysics Part1-Regular Papers Brief Communications&Review Papers,2007,46,1186.
    [226] Lee J., Lee J.-I. K., Lee J. Y., et al., Stable efficiency roll-off in blue phosphorescentorganic light-emitting diodes by host layer engineering [J], Organic Electronics,2009,10,1529.
    [227] Lee S., Tang C. W., Rothberg L. J., Effects of mixed host spatial distribution on theefficiency of blue phosphorescent organic light-emitting diodes [J], Applied PhysicsLetters,2012,101.
    [228] Chou H.-H., Li Y.-K., Chen Y.-H., et al., New Iridium Dopants forg WhitePhosphorescent Devices: Enhancement of Efficiency and Color Stability by anEnergy-Harvesting Layer [J], Acs Applied Materials&Interfaces,2013,5,6168.
    [229] Lai S.-L., Tong W.-Y., Kui S. C. F., et al., High Efficiency White OrganicLight-Emitting Devices Incorporating Yellow Phosphorescent Platinum(II) Complexand Composite Blue Host [J], Advanced Functional Materials,2013,23,5168.
    [230] Ye H., Chen D., Liu M., et al., Pyridine-Containing Electron-Transport Materials forHighly Efficient Blue Phosphorescent OLEDs with Ultralow Operating Voltage andReduced Efficiency Roll-Off [J], Advanced Functional Materials, DOI:2014/adfm.201303785.
    [231] Gao Z. Q., Mi B. X., Tam H. L., et al., High efficiency and small roll-offelectrophosphorescence from a new iridium complex with well-matched energy levels[J], Advanced Materials,2008,20,774.
    [232] Chen J., Cao Y., Development of Novel Conjugated Donor Polymers forHigh-Efficiency Bulk-Heterojunction Photovoltaic Devices [J], Accounts of ChemicalResearch,2009,42,1709.
    [233] Guenes S., Neugebauer H., Sariciftci N. S., Conjugated polymer-based organic solarcells [J], Chemical Reviews,2007,107,1324.
    [234] Li C., Liu M., Pschirer N. G., et al., Polyphenylene-Based Materials for OrganicPhotovoltaics [J], Chemical Reviews,2010,110,6817.
    [235] Thompson B. C., Frechet J. M. J., Organic photovoltaics-Polymer-fullerene compositesolar cells [J], Angewandte Chemie-International Edition,2008,47,58.
    [236] Yu G., Gao J., Hummelen J. C., et al., Polymer photovoltaic cells: enhanced efficienciesvia a network of internal donor-acceptor heterojunctions [J], Science,1995,270,1789.
    [237] Cheng Y.-J., Yang S.-H., Hsu C.-S., Synthesis of Conjugated Polymers for Organic SolarCell Applications [J], Chemical Reviews,2009,109,5868.
    [238] Dou L., Gao J., Richard E., et al., Systematic Investigation of Benzodithiophene-andDiketopyrrolopyrrole-Based Low-Bandgap Polymers Designed for Single Junction andTandem Polymer Solar Cells [J], Journal of the American Chemical Society,2012,134,10071.
    [239] Dou L., You J., Yang J., et al., Tandem polymer solar cells featuring a spectrallymatched low-bandgap polymer [J], Nature Photonics,2012,6,180.
    [240] He Y., Li Y., Fullerene derivative acceptors for high performance polymer solar cells [J],Physical Chemistry Chemical Physics,2011,13,1970.
    [241] Inganas O., Zhang F., Andersson M. R., Alternating Polyfluorenes Collect Solar Light inPolymer Photovoltaics [J], Accounts of Chemical Research,2009,42,1731.
    [242] Li Y., Molecular Design of Photovoltaic Materials for Polymer Solar Cells: TowardSuitable Electronic Energy Levels and Broad Absorption [J], Accounts of ChemicalResearch,2012,45,723.
    [243] He Z., Zhong C., Huang X., et al., Simultaneous Enhancement of Open-Circuit Voltage,Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells [J], AdvancedMaterials,2011,23,4636.
    [244] He Z., Zhong C., Su S., et al., Enhanced power-conversion efficiency in polymer solarcells using an inverted device structure [J], Nature Photonics,2012,6,591.
    [245] Liao S.-H., Li Y.-L., Jen T.-H., et al., Multiple Functionalities of Polyfluorene Graftedwith Metal Ion-Intercalated Crown Ether as an Electron Transport Layer forBulk-Heterojunction Polymer Solar Cells: Optical Interference, Hole Blocking,Interfacial Dipole, and Electron Conduction [J], Journal of the American ChemicalSociety,2012,134,14271.
    [246] Jorgensen M., Norrman K., Krebs F. C., Stability/degradation of polymer solar cells [J],Solar Energy Materials and Solar Cells,2008,92,686.
    [247] Brabec C. J., Shaheen S. E., Winder C., et al., Effect of LiF/metal electrodes on theperformance of plastic solar cells [J], Applied Physics Letters,2002,80,1288.
    [248] Hayakawa A., Yoshikawa O., Fujieda T., et al., High performancepolythiophene/fullerene bulk-heterojunction solar cell with a TiOx hole blocking layer[J], Applied Physics Letters,2007,90.
    [249] Hung L. S., Tang C. W., Mason M. G., Enhanced electron injection in organicelectroluminescence devices using an Al/LiF electrode [J], Applied Physics Letters,1997,70,152.
    [250] Li G., Chu C. W., Shrotriya V., et al., Efficient inverted polymer solar cells [J], AppliedPhysics Letters,2006,88.
    [251] Yip H.-L., Hau S. K., Baek N. S., et al., Polymer solar cells that useself-assembled-monolayer-modified ZnO/Metals as cathodes [J], Advanced Materials,2008,20,2376.
    [252] Huang F., Hou L. T., Wu H. B., et al., High-efficiency, environment-friendlyelectroluminescent polymers with stable high work function metal as a cathode: Green-and yellow-emitting conjugated polyfluorene polyelectrolytes and their neutralprecursors [J], Journal of the American Chemical Society,2004,126,9845.
    [253] Huang F., Wu H. B., Wang D., et al., Novel electroluminescent conjugatedpolyelectrolytes based on polyfluorene [J], Chemistry of Materials,2004,16,708.
    [254] Wu H. B., Huang F., Mo Y. Q., et al., Efficient electron injection from a bilayer cathodeconsisting of aluminum and alcohol-/water-soluble conjugated polymers [J], AdvancedMaterials,2004,16,1826.
    [255] Wu H. B., Huang F., Peng J. B., et al., High-efficiency electron injection cathode of Aufor polymer light-emitting devices [J], Organic Electronics,2005,6,118.
    [256] Pho T. V., Zalar P., Garcia A., et al., Electron injection barrier reduction for organiclight-emitting devices by quinacridone derivatives [J], Chemical Communications,2010,46,8210.
    [257] Blouin N., Michaud A., Gendron D., et al., Toward a rational design ofpoly(2,7-carbazole) derivatives for solar cells [J], Journal of the American ChemicalSociety,2008,130,732.
    [258] Jo M. Y., Ha Y. E., Kim J. H., Polyviologen derivatives as an interfacial layer in polymersolar cells [J], Solar Energy Materials and Solar Cells,2012,107,1.
    [259] Coleridge B. M., Bello C. S., Ellenberger D. H., et al., Negishi coupling of2-pyridylzinc bromide-paradigm shift in cross-coupling chemistry?[J], TetrahedronLetters,2010,51,357.
    [260] Luzung M. R., Patel J. S., Yin J., A Mild Negishi Cross-Coupling of2-HeterocyclicOrganozinc Reagents and Aryl Chlorides [J], Journal of Organic Chemistry,2010,75,8330.
    [261] Ding X., Chen L., Honsho Y., et al., An n-Channel Two-Dimensional Covalent OrganicFramework [J], Journal of the American Chemical Society,2011,133,14510.
    [262] Izuhara D., Swager T. M., Poly(Pyridinium Phenylene)s: Water-Soluble N-TypePolymers [J], Journal of the American Chemical Society,2009,131,17724.
    [263] Li Y. F., Cao Y., Gao J., et al., Electrochemical properties of luminescent polymers andpolymer light-emitting electrochemical cells [J], Synthetic Metals,1999,99,243.
    [264] Liu X., Wen W., Bazan G. C., Post-Deposition Treatment of an Arylated-CarbazoleConjugated Polymer for Solar Cell Fabrication [J], Advanced Materials,2012,24,4505.
    [265] He C., Zhong C., Wu H., et al., Origin of the enhanced open-circuit voltage in polymersolar cells via interfacial modification using conjugated polyelectrolytes [J], Journal ofMaterials Chemistry,2010,20,2617.
    [266] Yang T., Wang M., Duan C., et al., Inverted polymer solar cells with8.4%efficiency byconjugated polyelectrolyte [J], Energy&Environmental Science,2012,5,8208.
    [267] Mihailetchi V. D., Koster L. J. A., Blom P. W. M., Effect of metal electrodes on theperformance of polymer: fullerene bulk heterojunction solar cells [J], Applied PhysicsLetters,2004,85,970.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700