WC-MgO复合材料的热压烧结工艺与组织性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硬质合金具有高强度、高硬度、高弹性模量和低热膨胀系数等优点,在切削刀具、石油与矿产勘探、精密模具和耐磨零件等领域有着广泛应用,因此受到国内外学术界、产业界的重视,成为新型工具和结构材料的研究热点之一。钨钴类(WC-Co)硬质合金是该领域材料的研究主题,其中金属钴(Co)是合金材料韧性的前提,碳化钨(WC)作为硬质相是材料高硬度的保证。但Co是一种昂贵而稀缺的战略资源,且由于其特殊的物理、化学性能,在催化剂、电池、电子部件等领域的需求量也在增加。此外,由于Co的低熔点、高温时易软化、高化学活性等特点使得合金材料的硬度和耐蚀性受到影响。因此,研制兼具高硬度和高韧性、原材料易得的新型复合材料,成为钨钴类合金的理想替代物,具有重要的战略和经济意义。
     本文中,以氧化镁(MgO)作为Co的替代材料,采用机械合金化法制备出具有纳米结构的WC-MgO复合粉末以及运用热压烧结工艺获得WC-MgO块体复合材料。研究工作从分析复合粉末的烧结致密化过程开始,通过改善烧结体的显微组织结构来提高其力学性能,然后再考察该材料的腐蚀、磨损等性能。主要工作包括:研究复合粉末的烧结致密化过程;设计针对纳米复合粉末的热压烧结工艺,系统观察烧结过程中材料显微结构变化;考察该复合材料的断裂韧性;研究烧结试样在酸性、碱性环境中的腐蚀和腐蚀磨损行为;探讨烧结试样的抗冲蚀磨损规律;比较添加晶粒长大抑制剂(碳化钒/碳化铬)对烧结试样组织和性能的影响等内容。主要研究结果如下:
     1.对于具有纳米结构的WC-MgO复合粉末而言,烧结温度和时间对其成型块体的致密化程度有着重要影响。研究了该复合粉体在烧结过程中的致密化速率,运用主烧结曲线理论对该粉体在不同加热速率下的致密度演化过程进行研究。结果表明:适合于WC-4.3wt.%MgO纳米复合粉末的烧结温度区间为1500℃-1800℃。基于全期烧结模型理论,建立了该纳米复合粉体的主烧结曲线,并估算出该粉体的烧结激活能为361.8kJ/mol。经过多组重复实验验证该主烧结曲线的有效性。已建立的主烧结曲线可以预测复合粉体在不同加热速率或不同保温时间条件下的致密度化速率和最终致密度,并且实现根据所需的最终致密度来制定相应的烧结工艺。
     2.以同样的纳米复合粉末为研究对象,系统地分析不同热压烧结制度对烧结体的致密度和晶粒生长过程的影响,研究添加碳化钒(VC)和碳化铬(Cr3C2)对烧结体的致密化过程、晶粒生长和力学性能的影响。实验结果表明:综合考量材料在烧结过程中的致密化程度与晶粒生长速率,确定了最佳的烧结制度为烧结温度1650℃、保温时间90min、烧结压力39.6MPa的真空条件。在此条件下可获得致密度97.58%TD、维氏硬度15.43GPa、抗弯强度1065.3MPa的块体烧结材料。添加一定量的VC/Cr3C2可以减缓烧结体的致密化速率并有效地抑制晶粒生长过程,促使晶粒生长时所需激活能从426.85kJ/mol增加至492.53kJ/mol,进而细化基体WC的显微组织,提高MgO颗粒分布的均匀性以及颗粒与基体的结合性能,以致提高其宏观力学性能。
     3.以在最佳烧结制度条件下获得的块体复合材料为研究对象,考察烧结试样的断裂韧性。研究烧结试样的断裂韧性受加载载荷变化的影响,准确地确定该材料断裂韧性值并且分析其增韧机制。研究结果表明:在研究烧结试样的压痕断裂韧性时,得出Niihara力学模型能够较准确的估算此类新材料的压痕断裂韧性,对应硬度加载载荷为49N。结合断裂力学模型分析发现,较小的第二相颗粒粒径与均匀的第二相颗粒分布状态使裂纹在该复合材料中扩展路径加长,发生偏转,产生一定的增韧效果。
     4.采用浸泡腐蚀和电化学腐蚀方法对不同成分烧结试样在酸性(pH=1)和碱性(pH=13)环境下的腐蚀行为进行研究,探讨添加VC/Cr3C2对WC-MgO复合材料耐蚀性的影响,考察烧结试样在两种腐蚀环境下的磨损规律,研究结果表明:在酸性溶液中,第二相MgO颗粒优先被溶解,而基体WC保持稳定,烧结体呈现出较好的耐蚀性和钝化趋势,钝化膜是由WO3·H2O和WO3·2H2O组成,添加VC/Cr3C2后材料的耐蚀性得到提高。然而,在碱性溶液中,基体WC受到明显的腐蚀,基体与第二相界面被破坏,材料无钝化现象,力学性能受严重影响,且添加VC/Cr3C2加速了材料的腐蚀速度。类似于耐蚀性的差异,烧结试样在酸性环境中的耐磨性较高,且组织细化能够提高其耐磨性;在碱性环境中烧结试样的磨损量较高,且组织细化未能显著的帮助材料减少磨损量。
     5.以石英砂(SiO2)为冲蚀颗粒,考察不同冲蚀角度下烧结试样的冲蚀磨损规律,建立一种微观动力学模型以深入研究冲蚀条件和靶材的显微组织对磨损机制的影响。研究结果表明:WC-MgO复合材料的冲蚀磨损规律与陶瓷类材料类似,随着冲蚀角度的增加,冲蚀磨损量也增加。靶材受颗粒冲蚀时材料表面发生沿晶断裂和穿晶断裂。添加VC/Cr3C2后,材料在各个角度的磨损量均有减少,且高角度(90。)冲蚀时其抗冲蚀能力的提高程度最为明显。基于牛顿力学定律和材料自身的性能(杨氏模量、屈服强度、拉伸强度和断裂强度)建立了一种用于模拟WC-MgO复合材料冲蚀磨损行为的微观动力学模型,发现晶粒尺寸和晶界强度对抗冲蚀磨损能力有重要影响:只有当晶界强度足够强时,晶粒细化才能发挥其正面有效的作用;当晶界强度很弱时,晶粒细化反而加速了材料的磨损。
     本文中,作者以纳米WC-MgO复合粉末及其热压成型技术为研究基础,利用现代测试技术,对热压烧结成型的复合材料的物相、显微组织、力学性能、腐蚀行为、腐蚀磨损和冲蚀磨损规律进行深入研究,探讨晶粒长大抑制齐(VC/Cr3C2)对烧结试样的组织和性能的影响,为WC-MgO复合材料的进一步研究和推广奠定了坚实的基础。
Cemented carbides with superior strength and hardness, high elastic modulus and low thermal expansion coefficient, have been taking an important role in the industrial areas of cutting tools, milling and drilling, molds and wear resistant parts. Among hard alloys, WC-Co materials embrace the widest applications, in which Co guarantees the good toughness and WC ensures the high hardness. However, Co is rare and expensive strategic resource. Moreover, due to its attracting physical and chemical properties, the demand of Co in catalyst, batteries, electronic components and other aspects is increasing rapidly. In addition, the hardness and corrosion resistance of WC-Co composites are deteriorated because of the low melting point, easily soften phenomenon and high chemical activity of Co. Therefore, it is of great urgency and significance to fabricate new composites with higher hardness and strength using economical raw materials, which could be considered as the alternative materials for WC-Co composites.
     In this paper, MgO was chosen as the substitute of Co. The nanocomposite WC-MgO powders were produced using mechanical alloying method and the subsequent consolidation of WC-MgO bulk materials was conducted using hot pressing sintering technique. This study was begun with the investigation on the densification process of composite powders. Methods were conducted to improve the microstructures and mechanical properties of sintered materials. Then, the corrosion and wear behavior of sinterined samples were studied. The main aims of this study are: Studying the densification process of composite powders during sintering; Observing the microstructural evolution of bulk materials under different designed sintering regimes; Evaluating the method to determine the hardness and fracture toughness of as-sintered materials; Studying the corrosion and corrosive wear behaviors of compacts in the acidic and alkaline solutions, respectively; Investigating the solid particle erosion behavior of compacts; Comparing the effects of adding grain growth inhibitors on the microstructures properties of as-sintered samples. Significant original results are listed as follows:
     Firstly, sintering temperature and time largely affect the densification process of the nanocomposites WC-MgO powders. The densification process of composites powders was investigated. Master sintering curve was also established based on the results of densification rate under different heating rate. The experimental results demonstrated that the optimum sintering temperature regime for WC-4.3wt%MgO nanocomposites powder is1500℃-1800℃. The master sintering curve was established based on the combined sintering theory. The apparent activation energy for the powders is361.8kJ/mol. The ability of MSC models to predict and control the sintering process for identical WC-MgO compacts was verified by a series of sintering experiments. The established sintering curve could be used to predict the final density and desification process of this materials under different heating rate and sintering time. In addition, suitable sintering parameters could be decided based on a required final density using this master sintering curve.
     Secondly, the same nanocomposites powders were used as raw materials powders. The influence of sintering parameters on the density and grain size of as-sintered samples was studied. The effects of adding VC and Cr3C2on the densification process, grain growth and mechanical properties were also studied. The results demonstrated that optimum sintering parameters for this composites were found after carefully investigating the densification process and gran growth during sintering. Hot pressing sintering at the temperature of1650℃with applied pressure of39.6MPa for90min could achieve compacts with a relative density of97.58TD%and desired mechanical properties, i.e. Vickers hardness of15.43GPa and flexural strength of1065.3MPa. The addition of0.25wt.%VC and0.25wt.%Cr3C2decreased the densification rate of sintered samples and retarded the grain growth during sintering. The apparent activation energy for grain growth during isothermal sintering was increased from492.53kJ/mol to426.85kJ/mol. Correspondingly, this addition of VC/Cr3C2decreased the grain size, improved the dispersion statues of second phase, increased the interfacial bonding strength between the matrix and second phase and thus enhanced the mechanical properties of sintered samples.
     Thirdly, WC-MgO compacts sintered at the optimum sintering parameters were used to investigate their fracture toughness. The influences of applied load on the fracture toughness of sintered compacts were also studied. Then the techniques to accurately determine the fracture toughness and mechanisms responsible for increasing tougheness were discussed. The experimental results revealed that values of fracture toughness determined using the Niihara's equation under the load of49N was chose to represent the indentation fracture toughness of WC-MgO composites. The improved toughness of this composite can be attributed to the second phase toughening effects. Cracks deflections and extentions that enhance the toughenss were induced by smaller particle size and better degree on dispersion of-second phase.
     Fourthly, the corrosion behavior of WC-MgO compacts in the acidic (pH=1) and alkaline (pH=13) solutions was investigated using immersion corrosion method and electrochemical tests. The influence of adding VC/Cr3C2on the corrosion resistance was also studied. Then the corrosive wear behavior of samples in the same corrosive environments was observed. The experimental results demonstrated that the MgO phases were preferentially dissolved and WC matrix had a chemical stability in the acidic solution. Samples could become passivate in this solution and the passive layers were made of WO3·H2O and WO3·2H2O. The addition of VC/Cr3C2improved the corrosion resistance in the acidic solution. However, in the alkaline solution, WC matrix was severely attacked and the interfacial bonding between the matrix and second phase was deteriorated. Samples had no the ability to become passivate in this situation. Interestingly, the addition of VC/Cr3C2accelerated the corrosion rate in the alkaline solution. Similar to the corrosion behaviors of the materials, samples revealed a higher wear resistance in the acidic solution. VC/Cr3C2addition also increased the wear resistance in the acidic solution. On the contrary, the wear loss of materials in the alkaline was more pronounced and could be reduced slightly by improving the mechanical properties.
     Fifthly, SiO2was taken as erodent particles. The solid particle erosion behaviors of sintered samples under different impingement angles were investigated. A micro scale dynamic model (MSDM) was established to study the effect of experimental parameters and microstructure on the erosion resistance. The results revealed that the erosion behavior of WC-MgO composites was similar to that of ceramics based materials. The wear loss caused by solid particle erosion increased with increased impingement angle. The dominant fracture model for this composites is combined by intergranular and transgranular fracture. With the addition of VC/Cr3C2, the erosion resistance at each impingement angle was improved. The grain growth inhibitors particularly benefited the high-angle erosion resistance of the material due to the elevated toughness. A micro scale dynamic model was established based on the Newton's law and mechanical properties (Young's modulus, yield modulus, tensile strength and fracture strength) to study erosive behaviors and mechanisms of WC-MgO composites. Modeling results demonstrated that grain size and grain boundary strength play considerably roles in the erosion resistance. Reduced grain size could benefit the erosion resistance only when the grain boundary is reasonably strong. The wear loss caused by erosion became much more pronounced with a weak grain boundary.
     The experiments and results in this dissertation were based on the synthesis of nanocomposites WC-MgO powders and its hot pressed sintering technique. The microstructures, mechanical properties, corrosion, corrosive wear and erosion wear of the as-sintered samples were investigated in detail. The effects of adding a small amount of VC/Cr3C2on the microstructures and properties of WC-MgO composites were also discussed. This study laid a solid and profound foundation for the understanding and applications of WC-MgO composites.
引文
[1]张凤林,王成勇,宋月贤.WC-Co硬质合金的强韧化.粉末冶金技术.2003,21(4):236-40.
    [2]王国栋.硬质合金生产原理.冶金工业出版社,1982:4-5.
    [3]贾佐诚,陈飞雄,吴诚.硬质合金新进展.粉末冶金工业.2010,20(3):52-57.
    [4]葛启录,肖振声,韩欢庆.高性能难熔材料在尖端领域的应用与发展趋势.粉末冶金工业.2000,10(1):7-13.
    [5]徐涛.硬质合金高端产品及新材料发展趋势分析.硬质合金.2011,28(6):395-402.
    [6]Lay S, Loubradou M, Daonnadieu P. Ultra Fine Microstructure in WC-Co Cermet. Adv. Eng. Mater.2004,6:811-4.
    [7]Mortensen A, Suresh S. Functionally Gradient Metals and Metal-ceramic Composites Part 1: Processing. Int. Mater. Rev.1995,40(6):239-265.
    [8]何焕华,蔡乔方.中国镍钴冶金.北京:冶金工业出版社.2000.
    [9]曹异生.世界钻工业现状及前景展望.矿产资源.2007,42:30-34.
    [10]徐涛WC/Co纳米复合粉质量特性的研究.硬质合金.2011,28(4):219-227.
    [11]钴业分会.国内外钴市场现状及展望.中国有色金属.2011,18:62-63.
    [12]杨晓菲.钻:小幅下探市场低迷.中国金属通报.2010,32:32-33.
    [13]徐爱东,顾其德.钻价地位震荡需求稳中有增,世界有色金属.2011,8:58-61.
    [14]杨晓菲.低价进口引发钴价下滑.中国金属通报.2009,23:22-23.
    [15]徐爱东.钴为今用.中国金属通报.2010,40:14-16.
    [16]杨晓菲.从供求关系看未来钴价走势.中国金属通报.2012,30:23-25.
    [17]Imasato S, Kei T, Tetsunori K, Shigeya S. Properties of ultra-fine grain binderless cemented carbide 'RCCFN'. Int. J. Refract. Met. Hard Mater.1995,13:305-312.
    [18]Kim H C, Shon I J, Yoon J K, Doh J M, Munir Z A. Rapid sintering of ultrafine WC-Ni cermets. Int. J. Refract. Met. Hard Mater.2006,24:427-431.
    [19]Fernandes C M, Popovich V, Matos M, Senos A M R, Vieira M T. Carbide phases formed in WC-M(M=Fe/Ni/Cr) systems. Ceram. Int.2009,35:369-372.
    [20]吝楠,吴冲浒,张端锋,江垚,贺跃辉.Cu部分代Co超细硬质合金研究.材料研究学报.2011,25(6):667-672.
    [21]Subramanian R, Schneibel J H. Intermetallic bonded WC-based cermets by pressureless melt infiltration. Intermetallics.1997,5:401-408.
    [22]Kim H C, Kim D K, Ko I Y, Shon I J. Sintering behavior and mechanical properties of binderless WC-TiC produced by pulsed current activated sintering. J. Ceram. Proc. Res.2007, 8(2):91-97.
    [23]Basu B, Lee J H, Kim D Y. Development of WC-ZrO2 nanocomposites by spark plasma sintering. J. Am. Ceram. Soc.2004,87(2):317-319.
    [24]张梅林.纳米复合粉体材料WC/MgO的合成工艺及烧结技术研究.上海:东华大学博士论文.2004.
    [25]Endo H, Ueki M. Hot-pressing and Pressureless Sintering of WC-Al2O3 Ceramic Composites. Trans. Mat. Res. Soc.1994,16B:819-822.
    [26]Uhrenius B. On the composition of Fe-Ni-Co-WC-Based cemented carbides. Int. J. Refract. Met. Hard Mater.1997,15:139-149.
    [27]Suzuki H. Mechanism of the pore formation in the WC-Co cemented carbide. Powder Powder Metall.1975,6:22.
    [28]Almond E A, Roebuck B. Identification of optimum binder phase compositions for improved WC hard metals. Mater. Sci. Eng.1988,105-106A:237-248.
    [29]El-Eskandarany M S. Fabrication and characterizations of new nanocomposite WC/Al2O3 materials by room temperature ball milling and subsequent consolidation. J. Alloys Compd.2005, 391:228-235.
    [30]E1-Eskandarany M S, Fabrication of nanocrystalline WC and nanocomposite WC-MgO refractory materials at room temperature. J. Alloys Compd.2000,296:175-182.
    [31]Zhang M L, Zhu S G, Ma J, Wu C X. Preparation of WC/MgO composite nanopowders by high-energy reactive ball milling and their plasma-activated sintering. Powd. Metal. Metal Ceram. 2008,47(9-10):525-530.
    [32]Wu C X, Zhu S G, Ma J, Zhang M L. Synthesis and formation mechanisms of nanocomposite WC-MgO powders by high-energy reactive milling. J. Alloys Compd.2009,478(1-2):615-619.
    [33]Ma J, Zhu S G, Wu C X, Zhang M L. Application of back-propagation neural network technique to high energy planetary ball milling process for synthesizing nanocomposite WC-MgO powders. Mater. Des.2009,30:2867-2874.
    [34]Zhu S G, Ma J, Zhang M L, Wu C X. Mechanical Alloying:For formation of nanocomposite materials. In Advances in Nanocomposites-Synthesis, Characterization and Industrial Applications, Reddy B. ed. Intech, Viena,2011, pp.883-908.
    [35]傅小明.纳米碳化钨的制备技术及研究现状.稀有金属与硬质合金.2011,39(1):57-60.
    [36]邱波.真空碳还原三氧化钨和人造白钨制取钨粉及碳化钨粉的工艺探索.铁合金.1999,2:23-29.[37]郭琳.高温快速直接碳化制取超细碳化钨粉末.华南理工大学学报(自然科学版).2002,
    30(3):87-89.
    [38]李继刚,吴希俊,谭洪波,刘金芳.纳米碳化钨粉的制备及其热稳定性研究.稀有金属材料与工程.2004,33(7):736-739.
    [39]Spriggs G E. A history of fine grained hardmetal. Int. J. Refract. Met. Hard Mater.1995, 13(5):241-255.
    [40]谭国龙,吴希俊,王彦起,李宗全,张鸿飞.纳米WC硬质合金的制备、结构和力学性能.材料科学与工程.1998,1:283-285.
    [41]欧阳亚非,邬荫芳,彭泽辉.WC-Co复合粉末的流态化合成及其应用.中国钨业.1999,14(5-6):210-215.
    [42]吴伯麟,邵刚勤,段兴龙,谢济仁,魏明坤,袁润章.纳米晶复合碳化钨-钴粉末的工业化制备技术.材料导报.2000,11(7):55-58.
    [43]闫波,孙彦平,王俊文.RF-PCVD法碳化钨纳米粉的制备.中国钨业.2006,21(4):38-40.
    [44]李艳,林晨光,曹瑞军.超细晶WC-Co硬质合金用纳米钴粉的研究现状与展望.稀有金属.2011,35(3):451-457.
    [45]羊建高,戴煜.硬质合金的发展趋势及特殊粉末的制备技术.稀有金属与硬质合金.2011,39(1):48-51.
    [46]Tan G L, Wu X J. Mechanochemical synthesis of nanocrystalline tungsten carbide powders. Powd. Metal.1998; 41:300-302.
    [47]Butler B G, Lu J, Fang Z Z, Rajamani R K. Production of nanometric tungsten carbide powders by planetary milling. Int. J. Powd. Metal.2007,43(1):35-43.
    [48]刘珍,梁伟.纳米材料制备方法及其研究进展.材料科学与工艺.2000,8(3):103-108.
    [49]张武装,刘咏,黄伯云.纳米晶WC-Co硬质合金的研究现状.材料导报.2007,21(2):79-82.
    [50]Liu L, Li B, Ding X Z, Ma X M, Qi Z Z, Dong Y D. Preparation of nanocrystalline metal-carbides by mechanical alloying. Chin. Sci. Bul.1994,39(14):1166-1170.
    [51]El-Eskandarany M S, Mahday A A, Ahmed A H, Amer A H. Synthesis and characterizations of ball-milled nanocrystalline WC and nanocomposite WC-Co powders and Subsequent Consolidations. J. Alloys Compd.2000,312(1-2):315-325.
    [52]宁阳.球磨WC-Co纳米复合末的合成和成形.稀有金属与硬质合金.2003,31(1):53-56.
    [53]缪曙霞,殷声,李建勇,赖和怡.自蔓燃高温合成法制备碳化钨.中国有色金属学报.1994,4(2):79-81.
    [54]陈亚军,金松哲,周振华.用球磨法制取WC-Co纳米粉.吉林工学院学报.2001,22(1):11-14.
    [55]李炯义,曹顺华,林信平,高海燕,李元元.反应热处理技术制备纳米晶WC-6Co硬质合金复合粉末.金属热处理.2005,30(7):56-59.
    [56]吴伯麟,邵刚勤,段兴龙,谢济仁,魏明坤,袁润章.纳米晶复合碳化钨-钴粉末的工业化制备技术.材料导报.2000,11(7):55-58.
    [57]Seegopaul P, McCandlish L E, Shinneman F M. Production capability and powder processing methods for nanostructured WC-Co powder. Int. J. Refract. Met. Hard Mater.1997,15:133-138.
    [58]Sadangi R K, McCandlish L E, Kear B H. Grain growth inhibition in liquid phase sintered nanophase WC/Co alloys. Int. J. Powd. Metal.1999,35(1):27-33.
    [59]Zhang Z Y, Wahlberg S, Wang M S, Muhammed M. Processing of nanostructured WC-Co powder from precursor obtained by Co-precipitation. Nanostruct. Mater.1999,12(1-4):163-166.
    [60]Raghunathan S, Bourell D L. Synthesis and evlaution of advanced nanocrystalline tungsten-based materials. P/M Sci. Tech. Brief.1999,1(1):9-14.
    [61]Fang Z G, Wang X, Ryu T, Hwang K S, Sohn S Y. Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide-A review. Int. J. Refract. Met. Hard Mater. 2009,27(2):288-299.
    [62]Tang X, Haubner R, Kieffer B. Preparation of ultrafine CVD WC powders deposited from WC16 gas mixtures. Journal De Physique IV Colloque.1995, C5:1013-1020.
    [63]Ryu T, Sohn H Y, Han G, Kim Y U, Hwang K S, Mena M, Fang Z G. Nanograined WC-Co composite powders by chemical vapor synthesis. Metal. Mater. Trans.2008,39B(1):1-6.
    [64]Medeiros F F P,De Oliveira S A, De Souza C P, Da Silva A G P, Gomes U U, De Souza J F. Synthesis of tungsten carbide through gas-solid at low temperatures. Mater. Sci Eng.2001, 315A(1-2):58-62.
    [65]Subrahnanyam. Composites by combustion synthesis. Key Eng. Mater.1995,108-110: 105-122.
    [66]Nersisyan H H, Won H I, Won C W, Lee J H. Study of the combustion synthesis process of nanostructured WC and WC-Co. Mater. Chem. Phy.2005,94(1):153-158.
    [67]Li Z Q, 'Zhang H F. Nanocrystalline tungsten carbide encapsulated in carbon shells. Nanostruct. Mater.1998,10:179.
    [68]Adorjan C, Bock A, Myllymaki S, Schubert W D, Kontturi K. WC/Co-composite powders via hydrothermal reduction of Co3O4-suspensions. Int. J. Refract. Met. Hard Mater.2008,26(6): 569-574.
    [69]刘舜尧,张春友.纳米硬质合金开发与应用.矿冶工程.2000,20(1):70-72.
    [70]刘文彬WC-Co复合粉末的原位合成与块体硬质合金的烧结.北京:北京工业大学博士学位论文.2009.
    [71]张凤林,王成勇,宋月贤.纳米块体材料烧结技术进展.硬质合金.2002,19(3):177-181.
    [72]Jia C C, Sun L, Tang H, Qu X H. Hot pressing of nanometer WC-Co powder. Int. J. Refract. Met. Hard Mater.2007,25(1):53-56.
    [73]Lin C G, Kny E, Yuan G, Djuricic B. Microstructure and properties of ultrafine WC-0.6VC-10Co hardmetals densified by pressure-assisted critical liquid phase sintering. J. Alloys Compd.2004,383(1-2):98-102.
    [74]Azona I, Ordonez A, Sanchez J M, Castro F. Hot isostatic pressing of ultrafine tungsten carbide-cobalt Hardmetals. J. Mater. Sci.2002,37:4189-4195.
    [75]齐志宇,李静,李成威,杨大正.高压热等静压工艺烧结超细WC-10Co复合粉烧结体.鞍山科技大学学报.2007,30(2):124-127.
    [76]Kim H C, Oh D Y, Jiang G J, Shon I J. Synthesis of WC and dense WC-5vol.%Co hard materials by high-frequency induction heated combustion. Mater. Sci. Eng.2004,368A(1-2): 10-17.
    [77]Agrawal D K. Microwave processing of ceramics. Current Opinion in Solid State and Mater. Sci.1998,3(5):480-485.
    [78]Sivaprahasam D, Chandrasekar S B, Sundaresan R. Microstructure and mechanical properties of nanocrystalline WC-12Co consolidated by spark plasma sintering. Int. J. Refract. Met. Hard Mater.2007,25(2):144-152.
    [79]Michalski A, Siemiaszko D. Nanocrystalline cemented carbides sintered by the pulse plasma method. Int. J. Refract. Met. Hard Mater.2007,25(2):153-158.
    [80]赵海锋,朱丽慧,黄清伟.放电等离子技术快速烧结纳米WC-10%Co-0.8%VC硬质合金.稀有金属材料与工程.2005,34(1):82-85.
    [81]Zhao J F, Holland T, Unuvar C, Munir Z A. Sparking plasma sintering of nanometric tungsten carbide. Int. J. Refract. Met. Hard Mater.2009,27(1):13013-9.
    [82]史晓亮,邵刚勤,段兴龙,张卫丰,袁润章.纳米复合WC-6Co粉末的快速烧结.稀有金属材料与工程.2005,34(8):1283-1286.
    [83]解迎芳,王兴庆,陈立东,李晓东,郭海亮.放电等离子烧结纳米硬质合金的研究.硬质合金.2003,20(3):138-142.
    [84]沈以赴,冯尚龙,李景新,黄因慧,杨明川.纳米WC/Co经激光烧结后的晶粒再细化.焊接学报.2005,26(1):9-11.
    [85]卢芳云,蔡清裕,周新贵.碳化硅粉末的冲击波活化研究.高压物理学报.1999,13(2):115-119.
    [86]陈颢,羊建高,王宝健,刘海浪.硬质合金刀具涂层技术现状及展望.硬质合金.2009,26(1):54-64.
    [87]祝昌军,陈康华,王社权,徐银超,谢灿强,陈响明.基体梯度结构对TiN涂层硬质合金抗氧化性能的影响.中南大学学报(自然科学版).2011,42(10):2984-2989.
    [88]Peng Z J, Miao H Z, Wei P. Characterization of superhard ternary (Ti,A1)N coatings prepared by pulsed high energy density plasma. Key Eng. Mater.2004,264-268:609-612.
    [89]吕继磊,满卫东,陈朋,朱金凤,吴飞飞.硬质合金CVD金刚石涂层最新进展.硬质合金.2011,28(5):321-331.
    [90]钟杰,郑勇,严永林,庞旭明.功能梯度硬质合金与金属陶瓷制备技术的研究进展.机械工程材料.2009,33(2):1-4.
    [91]郑虎春,周建华,蒋超,刘新儒,秦琳.WC-Co梯度结构硬质合金研究进展.超硬材料工程.2012,24(2):14-18.
    [92]张武装,高海燕,刘咏.粘结相梯度结构硬质合金的研究现状.材料导报.2006,20(11):62-64.
    [93]Colin C. Processing of functional-gradient WC-Co cermets by powder metallurgy. Int. J. Refract. Met. Hard Mater.1993,12:145-152.
    [94]Fang Z Z, Oladapo E. Liquid phase sintering of functionally graded WC-Co composites. Scr. Mater.2005,52:785-791.
    [95]宗霞,鲁玉祥.稀土硬质合金的发展现状.矿山机械.2010,38(22):1-6.
    [96]魏庆丰,孙景,李昌青.稀土添加剂在硬质合金中的应用研究.稀有金属与硬质合金. 2002,30(2):33-36.[97]付卫军.稀土硬质合金实验应用分析.工程技术研究.2010,6:118.
    [98]郭继伟,刘钦雷,荣守范,宋春梅.碳化钛系钢结硬质合金的研究现状.铸造设备与工艺.2010,1:48-54.
    [99]张焱,尤显卿,田四光,钟成山,丁峰.钢结硬质合金的发展现状.2008,23(1):12-15.
    [100]王鑫,吴一,龙飞,邹正光.TiC钢结硬质合金的研究进展.材料导报.2007,21(8):72-75.
    [101]陈兆盈,陈蔚.碳化钛硬质合金.硬质合金.20(4):2003,197-199.
    [102]范景莲,李志希,缪群,黄伯云,吴恩熙.超细/纳米硬质合金及晶粒长大抑制的研究.粉末冶金技术.2004,22:259-265.
    [103]金永中,吴卫.VC抑制WC晶粒长大的研究评述.机械工程材料.2005,29(1):6-9.
    [104]李炯义,曹顺华,林信平.硬质合金中的晶粒长大抑制剂.硬质合金.2004,21(1):56-59.
    [105]Morton C W, Wills D J, Stjernberg K. The temperature ranges for maximum effectiveness of grain growth inhibitors in WC-Co alloys. Int. J. Refract. Met. Hard Mater.2005,23:287-293.
    [106]邱智海.WC-Co硬质合金中的添加剂.硬质合金.2004,21(2):121-124.
    [107]Sadangi R K, Mccandish L E, Kear B H, Seegopaul P. Grains growth inhibition in liquid phase sintered nanophase WC-Co alloys. Adv. Powder Metal. Part. Mater.1998(1):51-59.
    [108]Shing T L, Luyckx S, Northrop I T, Wolff I.. The effect of ruthenium additions on the hardness, toughness and grain size of WC-Co. Int. J. Refract. Met. Hard Mater.2001,19:41-44.
    [109]杨逸斐,王兴庆,黄英华.超细硬质合金烧结方法与抑制剂的研究.上海有色金属.2004,25(4):156-162.
    [110]孙东平.晶粒长大抑制剂对WC-8Co超细硬质合金性能的影响.稀有金属与硬质合金.2009,37:7-13.
    [111]Lay S, Hamar Thibault S, Lackner A. Locatoin of VC in VC, Cr3C2 codoped WC-Co cerments by HREM and EELS. Int. J. Refract. Met. Hard Mater.2002,20:61-69.
    [112]张祎,马俊,狄平,朱世根.La203对WC-MgO复合材料组织和力学性能的影响.中国有色金属学报.2010,20:1983-1990.
    [113]Shing T L, Luyckx S, Northrop I T, Wolff I.. The effect of ruthenium additions on the hardness, toughness and grain size of WC-Co. Int. J. Refract. Met. Hard Mater.2001,19:41-44.
    [114]Huang S G, Li L, Van der Biest O, Vleugels J. VC and Cr3C2 doped WC-NbC-Co hardmetals. J. Alloys Compd.2008,464:205-211.
    [115]Huang S G, Li L, Van der Biest O, Vleugels J. VC, Cr3C2 and NbC doped WC-Co cemented carbides prepared by pulsed electric current sintering. Int. J. Refract. Met. Hard Mater.2007,25: 417-422.
    [116]Xiao D H, He Y H, Song M, Lin N, Zhang R F. Y2O3 and NbC doped ultrafine WC-lOCo alloys by low pressure sintering. Int. J. Refract. Met. Hard Mater.2010,28:407-411.
    [117]刘寿荣WC-Co硬质合金中TaC、Cr3C2添加剂的作用机理.稀有金属材料与工程.1997,26(6):31-35.
    [118]Hitoshi Taimatsu, Shigeaki Sugiyama, Masanori Komatsu. Effects of Cr3C2 and V8C7 on the microstructure and mechanikcal properties of WC-SiC whisker ceramic. Mater. Trans.2009,
    [1]黄培云.粉末冶金原理.北京:冶金工业出版社.1997.
    [2]Hansen J D, Rusin R P, Teng M H. Combined-stage sintering model. J. Am. Ceram. Soc.1992, 75:1129-1135.
    [3]Su H, Johnson D L. Master sintering curve:A partical approach to sintering. J. Am. Ceram. Soc.1996,79:3321-3317.
    [4]Schurwanz M, Lombardo S J. Analytic method for determing the activation energy of sintering using the master sintering curve approach. J. Ceram. Pro. Res.2012,13:550-507.
    [5]Park S J, Johnson J L, Wu Y X, Kwon Y S, Lee S, German R M. Analysis of the effect of solubility on the densification behavior of tungsten heavy alloys using the master sintering curve approach. Int. J. Refract. Met. Hard Mater.2013,37:52-59.
    [6]李达.纳米和亚微米氧化钛陶瓷烧结曲线及烧结机理研究.山东:青岛大学博士论文.2008.
    [7]邵渭泉.稀土掺杂氧化铝恒速无压烧结行为及作用机理研究.山东:青岛大学博士论文. 2009.
    [8]马俊.纳米WC-MgO复合粉末的制备及其热压烧结研究.上海:东华大学博士论文.2010.
    [9]陈思忠.超声波清洗技术与进展.洗净技术.2004,2(2):7-12.
    [10]张文阁,刘俊杰.激光粒度分析仪校准方法及校准结果不确定度分析.中国粉体技术.2008,14:129-132.
    [11]Pouchly V, Maca K. Master sintering curve:A pratical approach to its construction. Sci. Sinter. 2010,42:25-32.
    [12]Mazaheri M, Simchi A, Dourandish M, Golestani F F. Master sintering curves of a nanoscale 3Y-TZP powder compacts. Ceram. Int.2009,35:547-554.
    [13]Blaine D C. Park S J, German R M. Linearization of master sintering curve. J. Am. Ceram. Soc.2009,92:1403-1409.
    [14]Caruso R, Mamana N, Benavidez E. Densification kinetics of ZrO2 based ceramics using a master sintering curve. J. Alloys Compd.2010,495:570-573.
    [15]Kinemuchi Y, Watari. Dilatometer analysis of sintering behavior of nano-CeO2 particles. J. Eur. Ceram. Soc.2008,28:2019-2024.
    [16]Park S J, Martin J M, Guo J F, Johnson J L, German R M. Grain growth behavior of tungsten heavy alloys based on the master sintering cruve concept. Metal. Mater. Trans. A.2006,37: 3337-3346.
    [17]Pouchly V, Maca K. Master sintering curve:A pratical approach to its construction. Sci. Sinter. 2010,42:25-32.
    [18]Li D, Chen S, Shao W, Ge X, Zhang Y, Zhang S. Densification evolution of TiO2 ceramics during sintering based on the master sintering curve theory. Mater. Lett.2008,62:849-851.
    [19]Shao W Q, Chen S O, Li D, Cao H S, Zhang Y C, Zhang S S. Prediction and control of microstructure evolution for sub microscale alpha A12O3 during low heating rate sintering based on the master sintering curve theory. J. Eur. Ceram. Soc.2009,29:201-204.
    [20]Pouchly V, Maca K, Shen Z J. Two-stage master sintering curve applied to two step sintering of oxide ceramics. J. Eur. Ceram. Soc.2013,33:2275-2283.
    [21]Robertson I M, Schaffer G B. Some effects of particle size on the sintering of titanium and a master sintering curve model. Metal. Mater. Trans. A.2009,40:1968-1979.
    [22]Kiani S, Pan J. Yeomans J A. A new scheme of finding the master sintering curve. J. Am. Ceram. Soc.2006,89:3393-3396.
    [23]Guillon O, Langer J. Master sintering curve applied to the field assisted sintering technique. J. Mater. Sci.2010,45:5191-5195.
    [1]张梅林.纳米复合粉体材料WC/MgO的合成工艺及烧结技术研究.上海:东华大学博士学位论文.2008.
    [2]陈振华,陈鼎.机械合金化与固液反应球磨.化学工业出版社.北京.2005.
    [3]黄培云.粉末冶金.北京:冶金工业出版社.1983.
    [4]龙坚战.超细硬质合金晶粒长大抑制剂优化及烧结工艺的研究.四川:四川大学硕士学位论文.2007
    [5]张金升,张银燕,王美婷,许凤秀.陶瓷材料显微结构与性能.化学工业出版社.北京.2007.
    [6]Petch N J. The cleavage strength of polycrystals. J. Iron. Steel Inst.1953,174:25-28.
    [7]German R M. Supersolidus liquid phase sintering part Ⅱ:densification theory. Int. J. Powd. Metal.1990,26(1):35-43.
    [8]Alexander K B, Becher P F, Shirl E B. Grain growth kinetics in alumina-zirconia composites. J. Am. Ceram. Soc.1994,77(4):939-46.
    [9]陆佩文.无机材料科学基础.武汉:武汉大学出版社.2005.
    [10]马俊.纳米WC-MgO复合粉末的制备及其热压烧结研究.上海:东华大学博士论文. 2001.
    [11]Wang X, Fang Z Z, Sohn H Y. Grain growth during the early stage of sintering of nanosized WC-Co powder. Int. J. Refract. Met. Hard Mater.2008,26:232-241.
    [12]Mazaheri M, Simchi A, Dourandish M, Golestani F F. Master sintering curves of a nanoscale 3Y-TZP powder compacts. Ceram. Int.2009,35:547-554.
    [13]Park S J, Cowan K, Johnson J L, German R M. Grain size measurement methods and models for nanograined WC-Co. Int. J. Refract. Met. Hard Mater.2008,26:152-163.
    [14]Fang Z Z, Maheshwari P, Wang X, Sohn H Y, Griffo A, Riley R. An experimental study of the sintering of nanocrystalline WC-Co powders. Int. J. Refract. Met. Hard Mater.2005,23: 249-257.
    [15]Theunissen G S A M, Winnubst A J A, Burggraaf A J. Sintering kinetics and microstructure development of nanoscale Y-TZP ceramics. J. Eur. Ceram. Soc.1993,11:315-324.
    [16]German R M, Munir Z A. Surface area reduction during isothermal sintering. J. Am. Ceram. Soc.1976,59:379-383.
    [17]Lay S, Hamar-Thibault S, Lackner A. Location of VC in VC, Cr3C2 codoped WC-Co cermets by HREM and EELS. Int. J. Refract. Met. Hard Mater.2002,20:61-69.
    [18]Engqvist H, Botton G A, Axen N, Hogmark S. A study of grain boundaries in a binderless cemented carbide. Int. J. Refract. Met. Hard Mater.1998,16:309-313.
    [19]Taimatsu H, Sugiyama S, Komatsu M. Effects of Cr3C2 and V8C7 on the microstructure and mechanical properties of WC-SiC whisker ceramics. Mater. Trans.2009,50:2435-2440.
    [20]胡赓祥,蔡殉,戎咏华.材料科学基础.第二版.上海交大出版社.上海.2006.
    [1]Kim H, Kim T. Measurement of hardness on traditional ceramics. J. Eur. Ceram. Soc.2002,22: 1437-1445.
    [2]Quinn J B, Quinn G D. Indentation brittleness of ceramics:A fresh approach. J. Mater. Sci. 1997,32:4331-4346.
    [3]龚江宏,赵喆,吴建军,关振铎.陶瓷材料Vickers硬度的压痕尺寸效应.硅酸盐学报.1999,27(6):693-701.
    [4]胡一文,司文捷,龚江宏.SEVNB法测试陶瓷材料断裂韧性的研究.稀有金属材料与工程.2011,40(1):155-159.
    [5]Quinn G D, Bradt R C. On the Vickers indentation fracture toughness test. J. Am. Ceram. Soc. 2007,90:673-680.
    [6]Ponton C B, Rawlings R D. Vickers indentation fracture toughness test. Part 1:Review of literature and formulation of standardised indentation toughness equation. Mater. Sci. Tech. 1989,5:865-872.
    [7]Laugier M T. New formula for indentation toughness in ceramics. J. Mater. Sci. Lett.1987,6: 355-356.
    [8]Shetty D K, Wright I G, Mincer P N, Clauer A H. Indentation fracture of WC-Co cermets. J. Mater. Sci.1985,20:1873-1882.
    [9]Niihara K, Morena R, Hasselman D P H. Evaluation of KIC of brittle solids by the indentation method with low crack-to-indent ratios. J. Mater. Sci. Lett.1982,1:13-16.
    [10]CEN TS 14425. Technical specification, advanced technical ceramics-test methods for determination of fracture toughness of monolithic ceramics, parts 1-5. Brussels:European Committee for Standardization.2003.
    [11]Gong J H, Wu J J, Guan Z D. Examination of the indentation size effect in low-load Vickers hardness testing of ceramics. J. Eur. Ceram. Soc.1999,19:2625-2631.
    [12]Li H, Bradt R C. The microhardness indentation load/size effect in rutile and cassiterite single crystals. J. Mater. Sci.1993,28:917-926.
    [13]Engqvist H, Botton G A, Axen N, Hogmark S. A study of grain boundaries in a binderless cemented carbide. Int. J. Refract. Met. Hard Mater.1998,16:309-313.
    [14]Nino A, Tanaka A, Sugiyama S, Taimatsu H. Indentation size effect for the hardness of refractory carbides. Mater. Trans.2010,51:1621-1626.
    [15]Gong J H, Wang J Q, Guan Z D. Indentation toughness of ceramics:A modified approach. J. Mater. Sci.2002,37:865-869.
    [16]Gong J H, Pan X T, Miao H Z, Zhao Z. Effect of metallic binder content on the microhardness of TiCN-based cermets. Mater. Sci. Eng. A.2003,359:391-395.
    [17]Niihara K. A fracture mechanics analysis of indentation-induced Palmqvist cracks in ceramics. J. Mater. Sci. Lett.1983,2:221-223.
    [18]Lawn B R, Marshall D B. Hardness, toughness, and brittleness:An indentation analysis. J. Am. Ceram. Soc.1979,62:347-350.
    [19]Evans A G, Charles E A. Fracture toughness determinations by indentation. J. Am. Ceram. Soc.1976,59:371-372.
    [20]Iizuka H, Tanaka M. Fracture toughness measurement with fatigue-precracked single edge-notched beam specimens of WC-Co hard metal. J. Mater. Sci.1991,26:4393-4398.
    [21]黄勇,汪长安.高性能多相复合陶瓷.北京:清华大学出版社.2008.
    [22]Taya M, Hayashi S, Kobayashi A S. Toughening-of a particulate reinforced ceramic matrix composite by thermal residual stress. J. Am.Ceram. Soc.1973,5:1382-1391.
    [1]姜晓霞.金属的腐蚀磨损.第1版.北京:化学工业出版社.2003.
    [2]Konadu D S, Van der Merwe J, Potgieter J H, Vermaak S P, Machio C N. The corrosion behavior of WC-VC-Co hardmetals in acidic media. Corros. Sci.2010,52:3118-3125.
    [3]Kellner F J J, Hilderbrand H, Virtanen S. Effect of WC grain size on the corrosion behavior of WC-Co based hardmetals in alkaline solutions. Int. J. Refract. Met. Hard Mater.2009,27: 806-812.
    [4]Winston R R. Corrosion of refractories and ceramics. Uhlig's corrosion handbook.3rd ed. John Wiley & Sons.2011.
    [5]温诗铸,黄平.摩擦学原理.北京:清华大学出版社.2008.
    [6]ASTM G5-94. Making potentiostatic and potentiodynamic anodic polarisation measurements. Annual Books of ASTM Standards.2000,03.02:57-67.
    [7]Moulder J F, Stickle W F, Sobol P E, Bomben K D. Handbook of X-ray photoelectron spectroscopy.2nd ed. Eden Prairie MN:Perkin-Elmer Corporation.1992.
    [8]Lei T, Ouyang C, Tang W, Li L, Zhou L. Enhanced corrosion protection of MgO coatings on magnesium alloy deposited by an anodic electrodeposition process. Corros. Sci.2010,52: 3504-3508.
    [9]Segall R L. The chemistry and technology of magnesia. United States:Wiley interscience. 2005.
    [10]Li D Y, Chen Q, Cook B. A further simulation study on the dual role of porosity in solid particle erosion of materials. Wear.2011,271:1325-1330.
    [11]Chen Q, Li D Y, Cook B. Is porosity always detrimental to the wear resistance of materials? A computational study. Wear.2009,267:1153-1159.
    [12]Wachtman J B, Cannon W R, Matthewson M J. Mechanical properties of ceramics.2nd ed. John Wiley & Sons.2009.
    [13]Jones C F, Segall R L, Smart S C, Turner P S. Initial dissolution kinetics of ionic oxides. Proc. R. Soc. Lond. A.1981,374:141-153.
    [14]Weidman M C, Esposito D V, Hsu Y C, Chen J G. Comparison of electrochemical stability of transition metal carbides (WC, W2C, Mo2C) over a wide pH range. J. Power Sources.2012, 202:11-17.
    [15]Bozzini B, Gaudenzi G P D, Fanigliulo A, Mele C. Electrochemical oxidation of WC in acidic sulphate solution. Corros. Sci.2004,46:453-469.
    [16]Ralston K D, Birbilis N. Effect of grain size on corrosion:a review. Corrosion.2010,66: 075005.
    [17]Gollapudi S. Grain size distribution effects on the corrosion behaviour of materials. Corros. Sci.2012,62:90-94.
    [18]Ralston K D, Birbilis N, Davies C H J. Revealing the relationship between grain size and corrosion rate of metals. Scr. Mater.2010,63:1201-1204.
    [19]Aminual Islam M d, Farhat Z N. Effect of porosity on dry sliding wear of Al-Si alloys. Tribo. Int.2011,44:498-504.
    [20]Rice R W. Micromechanics of microstructural aspects of ceramic wear. Ceram. Eng. Sci. Proc. 1985,6:940-958.
    [21]Bonny K, De Baets P, Perez Y, Vleugels J, Lauwers B. Friction and wear characteristics of WC-Co cemented carbides in dry reciprocating sliding contact. Wear.2010,268:1504-1517.
    [22]Hutchings I M. Tribology:friction and wear of engineering materials. London:Hodder Headline PLC.1992.
    [23]Lillard R S, Kanner G S, Butt D P. The nature of oxide films on tungsten in acidic and alkaline solutions. J. Electrochem. Soc.1998,145:2718-2725.
    [24]Gant A J, Gee M G. Sliding wear corrosion of ceramics. Wear.2009,267:599-607.
    [25]Bonny K, De Baets P, Vleugels J. Huang S, Van der Biest O, Lauwers B. Impact of Cr3C2/VC addition on the dry sliding friction and wear response of WC-Co cemented carbides. Wear. 2009,267:1642-1652.
    [1]马颖,任俊,李东元.冲蚀磨损研究的进展.兰州理工大学学报.2005,31(1):22-23.
    [2]董刚,张九渊.固体粒子冲蚀磨损研究进展.材料科学与工程学报.2003,21(2):307-313.
    [3]Basu B, Balani K. Advanced structural ceramics. Wiley & Sons.2011.
    [4]温诗铸,黄平.摩擦学原理.北京:清华大学出版社.2008.
    [5]Li D Y, Elalem K, Anderson M J, Chiovelli S. A microscale dynamical model for wear simulation. Wear.1999,225-229:380-386.
    [6]Shimizu K, Noguchi H, Seitoh M, Okada M, Matsubara Y. FEM analysis of erosive wear. Wear. 2001,250:779-784.
    [7]Chen Q, Li D Y. Computer simulation of solid particle erosion of composite materials. Wear. 2003,255:78-84.
    [8]Basu B, Kalin M. Tribology of ceramics and composites. Wiley & Sons.2011.
    [9]邵荷生,张清.金属的磨料磨损与耐磨材料.机械工业出版社.北京.1988.
    [10]Srinivasan S, Scattergood R O. Effect of erodent hardness on erosion of brittle materials. Wear.1988,128:139-152.
    [11]Hussainova I, Antonov M, Zikin A. Erosive wear of advanced composites based on WC. Tribol. Int.2012,46:254-260.
    [12]张梅林.纳米复合粉体材料WC/MgO的合成工艺及烧结技术研究.上海:东华大学博 士论文.2004.
    [13]Evans A G, Gulden M E, Rosenblatt M. Impact damage in brittle materials in the elastic-plastic response regime. Proc. R. Soc. Lond. Ser. A.1978,361:343.
    [14]Kim J J, Park S K. Solid particle erosion of SiC and SiC-TiB2 composite hot-pressed with Y2O3. Wear.1998,222:114-119.
    [15]Hutchings I M. Tribology-Friction and Wear of Engineering Materials. Edward Arnold.1992.
    [16]Marshall D B, Lawn B R, Evans A G. Elastic plastic indentation damage in ceramics:the lateral crack system. J. Am. Ceram. Soc.1982,65:561-566.
    [17]Srinivasan S, Scattergood R O. R curve effects in solid particle erosion of ceramics. Wear. 1991,142:115-133.
    [18]Chen Q, Li D Y. Computer simulation of solid particle erosion of composite materials. Wear. 2003,255:78-84.
    [19]Hu J, Li D Y, Llewellyn R. Computational investigation of Microstructural effects on abrasive wear of composite material. Wear.2005,259:6-17.
    [20]刘家浚.材料磨损原理及其耐磨性.北京.清华大学出版社.1993.
    [21]Shand M A. The chemistry and technology of magnesia. Wiley & Sons.2005.
    [22]马俊.纳米WC-MgO复合粉末的制备及其热压烧结研究.上海:东华大学博士论文.2001.
    [23]Elalem K, Li D Y, Anderson M J, Chiovelli S. Modeling Abrasive Wear of Homogenous and Heterogeneous Materials. Hydraulic Failure Analysis:Fluids, Components and System Effects. 2001:90-104.
    [1]Ma J, Ouyang C X, Zhu S G. Two-step hot-pressing sintering of nanocomposite WC-MgO compacts. J. Eur. Ceram. Soc.2011,31:1927-1935.
    [2]张梅林.纳米复合粉体材料WC/MgO的合成工艺及烧结技术研究.上海:东华大学博士论文.2004.
    [3]Torres Y, Bermejo R, Llanes L, Anglada M. Influence of notch radius and R-curve behaviour on the fracture toughness evaluation of WC-Co cemented carbides. Eng. Fract. Mech.2008,75: 4422-4430.
    [4]Fang Z G, Wang X, Ryu T, Hwang K S, Sohn S Y. Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide-A review. Int. J. Refract. Met. Hard Mater.2009,27(2):288-299.
    [5]Sun J, Zhang F, Shen J. Characterizations of ball-milled nanocrystalline WC-Co composite powders and subsequently rapid hot pressing sintered cermets. Mater. Let.2003,57: 3140-3148.
    [6]孙青竹,陈洪生,冯可芹,王海波,郭智兴,熊计.低温低压烧结WC-8Co硬质合金.四川大学学报(工程科学版).2013,45(3):140-145.
    [7]秦琴.稀土Y203对WC-6%Co超细硬质合金组织及性能的影响.硬质合金.2013,30(1):14-19.
    [8]Konadu D S, Van der Merwe J, Potgieter J H, Vermaak S P, Machio C N. The corrosion behavior of WC-VC-Co hardmetals in acidic media. Corros. Sci.2010,52:3118-3125.
    [9]Kellner F J J, Hilderbrand H, Virtanen S. Effect of WC grain size on the corrosion behavior of WC-Co based hardmetals in alkaline solutions. Int. J. Refract. Met. Hard Mater.2009,27: 806-812.
    [10]Rateick Jr R G, Karasek K R, Cunningham A J, Goretta K C, Routebort J L. Solid-particle erosion of tungsten carbide/cobalt cermet and hardened 440C stainless steel-A comparison. Wear 2006,261:773-778.
    [11]Oka Y I, Mihara S, Yoshida T. Impact-angle dependence and estimation of erosion damage to ceramic materials caused by solid particle impact. Wear 2009,267:129-135.