用户名: 密码: 验证码:
煤炭开采对植被—土壤物质量与碳汇的扰动与计量
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着煤炭开采活动的不断深入,煤矿区与煤炭同位异构的各类地表环境因子不同程度地受到到扰动而发生改变。其中,植被和土壤作为地球的主要碳库和考量矿区生态状况的关键因子,对于维持矿区生态稳定,维持碳汇功能起着不可替代的作用,受开采扰动影响,矿区生态环境损失,碳汇功能发生变化。对矿区植被和土壤的物质量和碳汇变化进行准确地测度和计量,是制定环境治理措施、全面核算煤炭开采环境成本的必要环节。
     本文以植被、土壤受扰动的理论—机制—时空特征—物质损害—碳汇变化—成本计量及生态补偿为主线,运用多学科理论和方法,数据分析与模型构建结合,空间信息技术与环境经济相结合,寻求揭示及评价煤矿区植被-土壤物质量与碳汇的扰动规律,测度其物质损害量及生态补偿量。主要研究内容及成果如下:
     (1)煤炭开采对植被-土壤物质量与碳汇扰动与计量的理论和方法。结合生命周期、累积效应和生态矿区等煤矿区发展规律、理论及相关实例,归纳了煤矿区主要碳汇类型,探讨了时空累积性、时序滞后性、空间外延性、结果双向性等煤矿区植被、土壤受扰动的特征及成因和机理,提出了扰动计量的理论和方法,分析了扰动研究和计量研究间的辩证关系。
     (2)煤炭开采对植被-土壤扰动的时空效应,包括植被受扰动的时空变化特征和采煤沉陷对土壤侵蚀的影响机理。在对研究区土地利用演变分析的基础上,利用空间数据分析中的变差函数、分维数、空间自相关、高/低聚类分析、热点分析、异常值分析等方法研究植被时空演变格局,探讨其在全局性、局部性和空间方向上的特征,构建植被受扰动的演化图谱,讨论植被在空间上分布状态,对其驱动力进行详实分析。通过实验研究开采沉陷在全流域不同位置发生时引起的坡面汇流变化,分析其对坡长乃至土壤侵蚀的空间影响格局、作用机理和规律,为煤矿区土壤侵蚀防治提供科学依据。
     (3)煤炭开采对植被-土壤扰动的物质量变化计量,包括植被NDVI受煤炭开采扰动的时间序列分析和采煤沉陷对流域土壤侵蚀量计量。在对矿区多源多时相遥感数据融合的基础上,通过对比保护区、沉陷区和非沉陷区环境状况,构建工作面尺度上的长时期矿区植被受采煤作用的扰动量,推演出植被变化与煤炭开采的关系,提取自然因子和采矿扰动对植被NDVI的复合影响序列。结合开采沉陷学和数字地形分析、土壤侵蚀方程等相关学科的方法和技术,测度了流域尺度上采煤沉陷引起的地表土壤侵蚀方程中坡度、坡长、植被覆盖三大因子在空间上的改变量以及由此导致的矿区土壤侵蚀变化量,讨论了沉陷与侵蚀变化的正负关系,验证了采矿对土壤侵蚀影响的双向性和空间外延性。
     (4)煤炭开采对植被-土壤扰动的碳汇变化计量。以植被、土壤侵蚀扰动为基础,以地球碳循环原理为依据,探讨了煤矿区碳源/汇机制,分析了气候因子和煤炭开采扰动因子对植被影响的贡献率,进而讨论了煤炭开采扰动下植被对气候变化响应改变而造成的碳吸收量减少机制。在此基础上绘制了植被NDVI对气候变化的响应曲线,改进了CASA模型,测算了煤炭开采扰动导致的生物量和NPP损失量。通过实地取样,定量分析测算沉陷区土壤的有机碳汇变化,构建了植被-土壤系统受开采影响的有机碳变化模型,并据此测算了生态系统的碳汇变化量。
     (5)煤炭开采对植被-土壤扰动的价值量计量与生态补偿。基于环境经济学,通过实际价值评估、替代价值评估等方法将植被、土壤物质量及碳汇变化量统一到了经济(价值量)指标;结合煤炭企业开采营收,辅以问卷调查,通过条件价值法计量相应的生态补偿额度,并讨论了生态补偿的方式。
     通过以上研究,明晰了有关煤矿区环境扰动的理论机制,构建了植被受扰动的时空格局,剖析了开采沉陷对主要土壤侵蚀因子的影响机理,测算了植被和土壤受扰动的物质量和碳汇变化,计量了环境价值量和生态补偿额度,初步建立了煤炭开采扰动下的植被-土壤碳汇变化计量方法。
With the deeply continuous mining activities, main surface carbon sink elementssuch as vegetation and soil are affected by mining. The accurate measure ofvegetation and soil disturbance is essential for evaluating environmental cost of coalmining.
     In this paper, based on summarizing existing research results of coal mineenvironment problems, theory, mechanism, spatial-temporal characters, materialdamage, carbon budget changes, cost and ecological compensation of vegetation andsoil erosion disturbance were studied, theories and methods were used to reveal andevaluate the disturbance rules of environment in mining area. The main researchcontents and results are as follows:
     (1) Theory exploration. Based on development regulation of coal mining areaand relevant examples, such as life circulation theory、cumulative effect theory andecological mining area theory, the main characters of environmental disturbance andmechanism such as spatial-temporal cumulative effect, time lag effect, spatialextensionality effect, double-edged effect and other main characteristics weresummarized. Theories and methodologies of measure of disturbance were put forward.The dialectical relations between disturbance research and measure research wereanalyzed.
     (2) Spatio-temporal effect of disturbance of soil and vegetation affected by coalmining, which including spatio-temporal variation character of vegetation underinteraction of kinds of factors and spatial mechanism of soil erosion affected bymining subsidence. On the basis of land utilization evolution analysis of the researcharea, spatial data analysis tools that spatial variogram, fractal dimension, GlobalMoran's I, Getis-Ord General G, Getis-Ord Gi*and Anselin Local Moran I were usedto study the vegetation evolution pattern, its detailed driving force were analyzed.Changes of flow accumulation, slope length in watershed caused by miningsubsidence were calculated. Slope length changing characteristic aroused by miningsubsidence and its location were summarized and simulated to provide basis and thepractice exploration for erosion prevention in coal mining area.
     (3) Measure of matter quantity changing of soil and vegetation affected by coalmining. This section was including construction of time series of vegetation NDVIaffected by coal mining and measure of soil erosion quantity changing affected bymining subsidence. Based on the fusion of multi-source and multi-temporal data, through comparison of environment condition between protection area, subsidencearea and non subsidence area, long period of vegetation changing quantity affected bymining under work surface scale were constructed to deduce the relationship betweenvegetation change and coal mining. Based on disciplines and technologies such asmining subsidence, digital terrain analysis and soil erosion equation, changes of thethree major factors slope, slope length, vegetation coverage as well as the soil erosionchanging amount were calculated. The positive and negative relations between miningsubsidence and changing of soil erosion were discussed, the results verified the spatialextensionality effect and double-edged effect of coal mining on soil erosion proposedin the theoretical exploration chapter.
     (4) Measure of carbon sink changing of soil and vegetation affected by coalmining. Based on the carbon cycle and carbon source/sink theory,carbon source/sink mechanism in coal mining area was put forward, vegetation biomass and NPPloss in mining area were deeply studied and estimated. Calculation method of FPARin CASA model was improved, on this basis, single impact series on vegetation NDVIof coal mining was taken as data source to calculate the damaged vegetation biomassand NPP loss in the process. Organic carbon changing in soil was quantitativelyanalyzed and evaluated by soil sampleing. The measure methods of carbon sinkchange of vegetation-soil system caused by coal mining were discussed.
     (5) Measure of environmental value and ecological compensation of soil andvegetation affected by coal mining. With the tools of environmental economics,quantity and quality of environment factor were transferred to economic price tomeasure the corresponding ecological compensation, the ecological compensationtypes were discussed.
     Through the above researches, the theoretical mechanisms of environmentaldisturbance in coal mining area was clarified, mechanism on soil erosion factors ofmining subsidence was analyzed, carbon budget of the related environmental factorswas calculated, the environmental value and ecological compensation quota werecalculated, measure system and method of environmental externality caused by coalmining was initially established.
引文
[1]范英宏,陆兆华,程建龙,等.中国煤矿区主要生态环境问题及生态重建技术[J].生态学报,2003,23(10):2144-2152.
    [2]国家发展改革委关于印发煤炭工业发展―十二五‖规划的通知[OL].http://www.sdpc.gov.cn/zcfb/zcfbtz/2012tz/t20120322_468769.htm(中华人民共和国国家发展和改革委员会).
    [3]张辉.―煤都‖开刀治―顽疾‖——山西加大治理沉陷力度[J].山西煤炭,2012,32(12):1-4.
    [4]IPCC WGI. Fifth Assessment Report[R].2013.
    [5]汪云甲,张大超,连达军,等.煤炭开采的资源环境累积效应[J].科技导报,2010,28(10):61-67.
    [6]张大超.矿区资源环境累积效应与资源环境安全问题研究[D].中国矿业大学,2005.
    [7]连达军.矿区资源环境的采动累积效应研究[D].中国矿业大学,2008.
    [8]王行风.煤矿区生态环境累积效应研究[D].中国矿业大学,2010.
    [9]连达军,汪云甲.基于场论的矿区生态环境采动累积效应研究[J].中国矿业,2011,20(5):49-53.
    [10]王行风,汪云甲.煤炭资源开发的生态环境累积效应[J].中国矿业,2010,19(11):70-72.
    [11]王行风,汪云甲,马晓黎,等.煤矿区景观演变的生态累积效应——以山西省潞安矿区为例[J].地理研究,2011,30(5):879-891.
    [12]魏秀菊,胡振琪,付梅臣.矿粮复合区采矿对水资源及粮食安全的影响[J].金属矿山,2008,53(5):129-134.
    [13]Glaesser C, Herrmann B. Airborne and space borne remote sensing of environmental impactsof lignite mining activities in Central Germany[J].International Geoscience and RemoteSensing Symposium (IGARSS),1999,28(2):18-24.
    [14]张杰林,曹代勇.高光谱遥感技术在煤矿区环境监测中的应用[J].自然灾害学报,2005,14(4):158-162.
    [15]金庆花,朱丽丽,张立新,等.矿产资源评价与矿山环境监测中高光谱遥感技术方法应用的实例[J].地质通报,2009,28(2):278-284.
    [16]魏长婧,汪云甲,王坚,等.无人机影像提取矿区地裂缝信息技术研究[J].金属矿山,2012,57(10):90-92.
    [17]陈云浩,李京,杨波,等.基于遥感和GIS的煤田火灾监测研究——以宁夏汝箕沟煤田为例[J].中国矿业大学学报2005,34(2):226-230.
    [18]陈兵,胡振琪,赵艳玲.自燃煤矸石山内部温度拟合研究[J].能源环境保护,2011,25(2):17-24.
    [19]王振平,程卫民,辛嵩,等.煤巷近距离自燃火源位置的红外探测与反演[J].煤炭学报,2003,28(6):603-607.
    [20]彭苏萍,王磊,孟召平,等.遥感技术在煤矿区积水塌陷动态监测中的应用——以淮南矿区为例[J].煤炭学报,2002,27(4):374-378.
    [21] ebnem Düzgün, Claudia Künzer C, zgen Karacan. Applications of remote sensing and GISfor monitoring of coal fires, mine subsidence, environmental impacts of coal-mine closure andreclamation Perface[J]. International Journal of Coal Geology,2011,86(1):17-24.
    [22]Wang Xingfeng, Wang Yunjia, Huang Tai. Extracting mining subsidence land from remotesensing images based on domain knowledge[J]. Mining Science and Technology.2008(18):168-171.
    [23]Fischer C, Spreckels V.Environmental monitoring of coal mining subsidence by airborne highresolution scanner[J].International Geoscience and Remote SensingSymposium,1999,28(2):9-15.
    [24]Garisto NC, Himbeault K, Rosaasen A. Environmental monitoring at mine sites-futuredirections[J].CIM Bulletin,2000,93(1038):62-66.
    [25]Bian Zhengfu, Miao Xiexing, Lei Shaogang. The Challenges of Reusing Mining andMineral-Processing Wasters[J]. SCIENCE,2012,337(6095):702-703.
    [26]Valente, Teresa Maria. Application of Fuzzy Logic to Qualify the Environmental Impact inAbandoned Mining Sites[J].Water, Air and Soil Pollution,2011,217(15):303-315.
    [27]Sracek Ondra, Gzyl Grzegorz, Frolik Adam. Evaluation of the impacts of mine drainage froma coal waste pile on the surrounding environment at Smolnica[J].Environmental Monitoringand Assessment,2010,165(1):233-254.
    [28]乔玉良,连胤卓,邬明权.基于遥感与GIS数据融合的煤矿资源开发动态分析[J].煤炭学报,2008,33(9):1020-1024.
    [29]Li S, Dowd P A, Birch W J. Application of a knowledge and geographical information basedsystem to the environmental impact assessment of an opencast coal miningproject[J].International Journal of Surface Mining, Reclamation and Environment,2000,14(4):38-46.
    [30]Younos T M. Modeling mined land reclamation strategies in a GIS environment[J].AppliedEngineering in Agriculture,1993,9(1):90-99.
    [31]Ren T X, Reddish D J.Computer modeling of geotechnical and environmental problemsassociated with mining and mine closure[J].International Journal of Surface Mining,Reclamation and Environment,1999,13(4):66-78.
    [32]Amponsah-Dacosta F, Annegarn H J. Assessment of fugitive dust emissions from an opencastcoal mine[J].Journal of the Mine Ventilation Society of South Africa,1998,51(1):232-240.
    [33]Baruah B P, Khare Puja. Mobility of trace and potentially harmful elements in theenvironment from high sulfur Indian coal mines[J].Applied Geochemistry,2010,25(11):1621-1631.
    [34]Cao Wei, Sheng Yu, Qin Yinghong. Grey relation projection model for evaluating permafrostenvironment in the mulicoal mining area, China[J].International Journal of Mining,Reclamation and Environment,2010,24(4):363-374.
    [35]Wang Qiliang,Wang Lei. Environmental impact analysis of water environment in coal miningareas based on matter-element model[C].Advanced Materials Research,2010, Progress inMeasurement and Testing.
    [36]方创琳,毛汉英.兖滕两淮地区采煤塌陷地的动态演变规律与综合[J].地理学报,1998,53(1):24-31.
    [37]毛汉英,方创琳.兖滕两淮地区采煤塌陷地的类型与综合开发生态模式[J].生态学报,1998,18(5):449-454.
    [38]许长辉,高井祥,王坚,等.多源多时相遥感数据融合在煤矿塌陷地中应用研究[J].水土保持研究,2008,15(1):92-95.
    [39]李永峰.煤炭资源开发对矿区资源环境影响的测度研究[M].中国矿业大学出版社,2008.
    [40]Pal BK. System dynamics model for environment. Human systems interaction in the miningindustry, Impact Mining Environment Problems Solution[M].1994.
    [41]Wang Yunjia.Evaluation And Spatial Decision Support Systems of Mining Area’s NaturalResources and Environment Security[J].Mining Science and Technology, A.A.BalkemaPublishers,2004:70-77.
    [42]孙佳,蒋仲安,等.基于专家地理信息系统(EGIS)的露天采矿烟尘污染环境效应评价模型[J].中国安全科学学报,2003,13(7):63-67.
    [43]Andrea G F. Deposit and Geo-environmental Models for Resource Exploitation andEnvironmental Security[J]. Proceedings of the NATO Advanced Study Institute,1998,19(6):34-45.
    [44]吴立新,马保东,刘善军,等.基于SPOT卫星NDVI数据的神东矿区植被覆盖动态变化分析[J].煤炭学报,2009,34(9):1217-1222.
    [45]胡振琪,杨玲,王广军,等.草原露天矿区草地沙化的遥感分析——以霍林河矿区为例[J].中国矿业大学学报,2005,34(1):6-10.
    [46]郭逍宇,张金屯,宫辉力,等.安太堡矿区复垦地植被恢复过程多样性变化[J].生态学报,2005,25(4):763-770.
    [47]王力,卫三平,张青峰,等.榆神府矿区土壤-植被-大气系统中水分的稳定性同位素特征[J].煤炭学报,2010,35(8):1347-1353.
    [48]毕如田,白中科.基于遥感影像的露天煤矿区土地特征信息及分类研究[J].农业工程学报,2007,23(2):77-82.
    [49]Rooney Rebecca C, Bayley Suzanne E. Setting reclamation targets and evaluating progress:Submersed aquatic vegetation in natural and post-oil sands mining wetlands in Alberta,Canada[J].Ecological Engineering,2011,37(4):569-579.
    [50]PecharováE, Broumová-Du áková H, NovotnáK. Function of vegetation in new landscapeunits after brown coal mining[J].International Journal of Mining, Reclamation andEnvironment,2011,25(4):367-376.
    [51] MarguíE, Iglesias M, Queralt I. Lead isotope ratio measurements by ICP-QMS to identifymetal accumulation in vegetation specimens growing in mining environments [J].Science ofthe Total Environment,2006,367(2):988-998.
    [52] Zhang Xicheng, Li Xinzhi, Wang Ping. Monitoring and analysis on vegetation information ofmining area based on the multi-source remote sensing data [J].Journal of Information andComputational Science,2009,6(5):2097-2104.
    [53]Bao Nisha, Ye Baoying, Bai Zhongke. Rehabilitation of vegetation mapping of ATB opencastcoal-mine based on GIS and RS [J].Sensor Letters,2012,10(1):387-393.
    [54]Hong Sun, Minzan Li, Daoliang Li. The vegetation classification in coal mine overburdendump using canopy spectral reflectance[J].Computers and Electronics in Agriculture,2011,75(1):176-180.
    [55]胡振琪,谢宏全.基于遥感图像的煤矿区土地利用覆盖变化[J].煤炭学报,2005,30(1):44-48.
    [56]侯湖平,张绍良,丁忠义,等.基于植被净初级生产力的煤矿区生态损失测度研究[J].煤炭学报,2012,37(10):445-451.
    [57]郝成元,杨志茹.基于MODIS数据的潞安矿区NPP时空格局[J].煤炭学报,2011,36(11):1840-1844.
    [58]王力,卫三平,王全九,等.榆神府煤田开采对地下水和植被的影响[J].煤炭学报,2008,33(12):1408-1414.
    [59]卢霞.矿区植被物化参数高光谱遥感估算研究[J].地理与地理信息科学,2010,26(5):37-40.
    [60]卞正富.矿区土地复垦界面要素的演替规律及其调控研究[D].中国矿业大学,1997.
    [61]徐嘉兴,李钢,陈国良,等.土地复垦矿区的景观生态质量变化[J].农业工程学报,2013,29(1):232-239.
    [62]孙海运,李新举,胡振琪.马家塔露天矿区复垦土壤质量变化[J].农业工程学报,2008,24(12):205-209.
    [63]王煜琴,李新举,胡振琪.煤矿区复垦土壤压实时空变异特征[J].农业工程学报,2009,25(5):223-227.
    [64]徐嘉兴,李钢,陈国良.基于logistic回归模型的矿区土地利用演变驱动力分析[J].农业工程学报,2012,28(20):247-255.
    [65]张召,白中科,贺振伟,等.基于RS与GIS的平朔露天矿区土地利用类型与碳汇量的动态变化[J].农业工程学报,2012,28(3):230-236.
    [66]张前进,白中科,郝晋珉,等.黄土区大型露天矿农业用地格局演变的分析[J].农业工程学报,2006,22(11):98-103.
    [67]卞正富,张燕平.徐州煤矿区土地利用格局演变分析[J].地理学报,2006,61(4):349-358.
    [68]孟磊.采煤驱动下平原小流域生态演变规律及评价[D].中国矿业大学,2010.
    [69]卞正富.矿区开采沉陷农用土地质量空间变化研究[J].中国矿业大学学报,2004,33(2):213-218.
    [70]Bian Zhengfu, Lei Shaogang, Inyang Hilary I, et al. Integrated method of RS and GPR formonitoring the changes in the soil moisture and groundwater environment due to undergroundcoal mining[J].Environmental Geology,2009,57(1):131-142.
    [71]于英娜,草原生态脆弱区煤矿土地复垦适宜性评价研究[D].中国地质大学(北京),2008.
    [72]卞正富,雷少刚,常鲁群.基于遥感影像的荒漠化矿区土壤含水率的影响因素分析[J].煤炭学报,2009,34(4):520-525.
    [73]雷少刚,荒漠矿区关键环境要素的监测与采动影响规律研究[D].中国矿业大学,2009.
    [74]董霁红,于敏,赵银娣.矿区复垦土壤重金属含量分布与光谱特征研究[J].中国矿业大学学报,2012,41(5):827-832.
    [75]刘英,吴立新,马保东,等.神东矿区土壤湿度遥感监测与双抛物线型NDVI-Ts特征空间[J].科技导报,2011,29(35):39-44.
    [76]张彩霞,许丽,周心澄,等.阜新矿区煤矸石山植被恢复土地适宜性评价[J].水土保持研究,2007,14(3):246-248.
    [77]Rasim Latifovic, Kostas Fytas, Jing Chen, et al. Assessing land cover change resulting fromlarge surface mining development[J]. International Journal of Applied Earth Observation andGeoinformation,2005,7(1):29-48.
    [78]汪炜,汪云甲,张业,等.基于GIS和RS的矿区土壤侵蚀动态研究[J].煤炭工程,2011,11:120-122.
    [79]白中科,段永红,杨红云,等.采煤沉陷对土壤侵蚀与土地利用的影响预测[J].农业工程学报,2006(6):67-70.
    [80]周伟,白中科,袁春,等.东露天煤矿区采矿对土地利用和土壤侵蚀的影响预测[J].农业工程学报,2007,23(3):55-60.
    [81]王旭,张志,陈昆仑,等.基于RS和GIS的保康县矿区土壤侵蚀定量评价[J].人民长江,2008,39(5):58-60.
    [82]陈三雄,谢莉,廖建文,等.广东大宝山矿区土壤侵蚀强度判别方法研究[J].中国水土保持,2007,11:40-42.
    [83]Piao Shilong, Fang Jingyun, Ciais P, et al. The carbon balance of terrestrial ecosystems inChina[J]. Nature,2009,458(23):1009-1014.
    [84]方精云,刘国华,徐高龄.中国陆地生态系统碳库[M].北京:中国科技出版社,1996.
    [85]杨海军,邵全琴,陈卓奇,等.森林碳蓄积量估算方法及其应用分析[J].地球信息科学2007,9(4):5-12.
    [86]Ni J. Carbon storage in grasslands of China. Journal of Arid Environments[J].2002,50(2):205-218.
    [87]杨洪晓,吴波,张金屯,等.森林生态系统的固碳功能和碳储量研究进展[J].北京师范大学学报(自然科学版),2005,41(2):172-177.
    [88]Li ZQ, Yu GR, Xiao XM, et al. Modeling gross primary production of alpine ecosystems inthe Tibetan Plateau using MODIS images and climate data[J].Remote Sensing ofEnvironment,2007,107:510-519.
    [89]Qilong Mina, Bing Linb. Remote sensing of evapotranspiration and carbon uptake at HarvardForest[J].Remote Sensing of Environment,2006,100(3):379-387.
    [90]K.F Huemmricha, J.A. Gamona, B.Tweediec. Remote sensing of tundra gross ecosystemproductivity and light use efficiency under varying temperature and moistureconditions[J].Remote Sensing of Environment,2010,114(3),481-489.
    [91]张佳华,张国平,王培娟,等.植被与生态遥感[M].科学出版社,北京,2011.
    [92]JingYun Fang, ZhaoDi Guo, ShiLong Piao, et al. Terrestrial vegetation carbon sinks in China,1981-2000[J].Science in China Series D: Earth Sciences,2007,50(9):1341-1350.
    [93]Fang J Y, Chen A P, Peng C H, et al. Changes in forest biomass carbon storage in Chinabetween1949and1998[J].Science,2001,292(5525):2320-2322.
    [94]Brown S L, Schroeder P, Kern J S. Spatial distribution of biomass in forests of the easternUSA[J].Forest Ecology and Management,1999,123:81-90.
    [95]Baozhang Chen, Nicholas C. Coops, Dongjie Fu, et al. Characterizing spatialrepresentativeness of flux tower eddy-covariance measurements across the Canadian CarbonProgram Network using remote sensing and footprint analysis.[J].Remote Sensing ofEnvironment,2012,124:742-755.
    [96]Baozhang Chen, Nicholas C. Coops, T.,et al. Modeling to discern nitrogen fertilizationimpacts on carbon sequestration in a Pacific Northwest Douglas-fir forest in the first-postfertilization year.[J]. Global Change Biology,2011,17:1442–1460.
    [97]Zádorová T, Pení ek V, efrna L, et al. Spatial delineation of organic carbon-rich Colluvialsoils in Chernozem regions by Terrain analysis and fuzzy classification[J].CATENA,2011,85(1):22-33.
    [98]Schwanghart W, Jarmer T. Linking spatial patterns of soil organic carbon to topography-Acase study from south-eastern Spain[J].Geomorphology,2011,126(1-2):252-263.
    [99]邵月红,潘剑君,许信旺,等.浅谈土壤有机碳密度及储量的估算方法[J].土壤通报,2006,37(5):1007-1011.
    [100]Hirmas D R, Amrhein C, Graham R C. Spatial and process-based modeling of soil inorganiccarbon storage in an arid piedmont.[J].Geoderma,2010,154(3-4):486-494.
    [101]刘纪远,王绍强,陈镜明,等.1990-2000年中国土壤碳氮蓄积量与土地利用变化[J].地理学报,2004,59(4):483-496.
    [102]Zhang H B, Luo Y M, Wong M H, et al. Soil organic carbon storage and changes withreduction in agricultural activities in Hong Kong Original[J].Geoderma,2007(3-4),139:412-419.
    [103]Peter A. Raymond, Neung-Hwan Oh. Long term changes of chemical weathering products inrivers heavily impacted from acid mine drainage: Insights on the impact of coal mining onregional and global carbon and sulfur budgets[J]. Earth and Planetary Science Letters,2009,(284):50-56.
    [104]van Dijk Pau, Zhang Jianzhong, Jun Wang, et al. Assessment of the contribution of in-situcombustion of coal to greenhouse gas emission; based on a comparison ofChinese mininginformation to previous remote sensing estimates[J].International Journal ofCoal Geology,2011,86(1):108-119.
    [105]Fangtian Wang, Ting Ren, Shihao Tu, et al. Implementation of underground longholedirectional drilling technology for greenhouse gas mitigation in Chinese coal mines[J].International Journal of Greenhouse Gas Control,2012(11):290-303.
    [106]徐占军.高潜水位矿区煤炭开采对土壤和植被碳库扰动的碳效应[D].中国矿业大学,2011.
    [107]徐占军,张绍良,侯湖平.煤炭开采对矿区土地扰动的碳效应[J].产业经济,2011,9:56-57.
    [108]徐占军,侯湖平,张绍良.采矿活动和气候变化对煤矿区生态环境损失的影响[J].农业工程学报,2012,28(5):232-240.
    [109]侯湖平,张绍良,丁忠义,等.煤矿区土地利用变化对生态系统植被碳储量的影响[J].煤炭学报,2013,38(10):1850-1855.
    [110]侯湖平,徐占军,张绍良,等.煤炭开采对区域农田植被碳库储量的影响评价[J].农业工程学报,2014,30(5):1-9.
    [111]苏桂荣,刘晓国.煤矿塌陷区植物修复对碳减排的贡献研究[J].资源与人居环境,2011(1):54-57.
    [112]邱文玮,侯湖平.矿区生态破坏碳扰动研究——以徐州九里矿为例[J].中国矿业,2013,22(2):49-52.
    [113]J Elliott Campbell, James F Fox, Peter M Acton. Terrestrial carbon losses from mountaintopcoal mining offset regional forest carbon sequestration in the21st century[J].ENVIRONMENTAL RESEARCH LETTERS,2012,7(4):1-6.
    [114]侯湖平.基于遥感的煤矿区植被净初级生产力变化的监测与评价[D].中国矿业大学,2010.
    [115]汪应宏,汪云甲,王晓.资源经济导论[M].中国矿业大学出版社,徐州,2005.
    [116]林万祥,肖旭.企业环境成本研究的国际比较[J].四川会计,2002,(8):44-45.
    [117]Pavlos S, Georgilakis. Environmental costs of distribution transformer looser[J].AppliedEnergy,2011(9):3146-3155.
    [118]Deborah Vaughn Nestor, Carl A, Pasurka Jr. CGE model of pollution abatement processes forassessing economic effects of environmental policy[J].Economic Modelling,2005(1):53-59.
    [119]Romeo Danielis, Aline Chiabai. Estimating the cost of air pollution from road transport inItaly[J].Transpn Res.D,1998(4):249-258.
    [120]Christine Jasch, How to perform an environmental management cost assessment in oneday[J].Journal of Cleaner Production.2006(14):1194-1213.
    [121]Takanobu Kosugi. Internalizaiton of the external costs of global environmental damage in anintergarted assessment model[J].Energy Policy Journal,2009(37):2664-2678.
    [122]Anjia Brulla, Hein van Bohemenb. Ecological engineering: from concepts to applicationsbenefits of ecological engineering practices[J].Procedia Environmental Science,2011(9):16-20.
    [123]J Ferguson. Environmental Benefit Transfers of Comprehensive utilization of flyash[J].Econogical Economics,2004(12):71-78.
    [124]欧阳志云,朱春全,杨广斌,等.生态系统生产总值核算:概念、核算方法与案例研究[J].生态学报,2013,33(21):6747-6761.
    [125]汪云甲.矿井煤炭资源评价与管理的理论与方法研究[D].中国矿业大学,2000.
    [126]Li Yongfeng, Liu Yuanhua, Du Zhuanping. Extracting mining subsidence land from remotesensing images based on domain knowledge[J]. Mining Science andTechnology.2009(19):620-625.
    [127]朱学义.论煤炭矿区环境成本会计[J].生态经济(学术版),2007(2):220-223.
    [128]刘金平.矿区直接环境成本评估[J].能源环境保护,2003(1):21-22.
    [129]万林葳.生态矿区建设期环境成本与效益研究[D].中国矿业大学,2012.
    [130]吴强.矿产资源开发环境代价及实证研究[D].中国地质大学(北京),2008.
    [131]付薇.矿区生态环境综合治理协同机制与对策研究[D].中国地质大学(北京),2010.
    [132]乔丽.矿区生态文明理论、方法与实证研究-以平朔矿区为例[D].中国地质大学(北京),2010.
    [133]崔艳.生态脆弱矿区土地利用调控和机制与对策[D].中国地质大学(北京),2009.
    [134]SmaalA C, PrinsTC, BankersN, et al. Minimum requirements for modeling bivalve carryingcapacity[J]. Aquatic Ecology,1998,31:423-428.
    [135]Wackenagel M, Wiliam E R. Our Ecological Footprint: Reducing Hu-man Impact on theEarth[M]. Philadelphia: New Society Publishers,1996.
    [136]Sleeser M. Enhancement of Carrying Capacity Option ECCO[M].London: The Resource UseInstitute,1990.
    [137]闫旭骞,张顺堂.矿区生态承载力评价方法[J].有色金属,2006,58(2):103-106.
    [138]程水英,柴瑜,冯华伟,等.生态脆弱矿区生态承载力定量评价研究[J].能源环境保护,2008,22(4):54-48.
    [139]张大超,汪云甲.基于土地资源承载力的矿区土地资源安全评价模型[J].有色金属,2006,361(7):69-71.
    [140]黄秋香.矿区资源环境承载力评价指标体系及评价方法[J].矿业研究与开发,2009,(2):62-64.
    [141]贾媛,曹玲娴.煤炭矿区生态风险评价方法研究[J].环境科学与管理,2011,36(4):177-182.
    [142]刘洪丽,吴军年,徐兴东.基于集对分析的矿区生态承载力定量评价[J].干旱区研究,2008,25(4):568-573.
    [143]孙顺利,周科平,胡小龙.基于投影评价方法的矿区资源环境承载力分析[J].中国安全科学学报,2007,17(5):139-143.
    [144]金丹.矿山生态系统物能流核算[D].中国矿业大学,2010.
    [145]汤万金,高林,吴刚,等.矿区可持续发展系统动力学模拟与调控[J].生态学报,2000,20(1):20-27.
    [146]盛福杰,刘金平.煤炭开采中的生态价值核算[J].中国煤炭,2011,37(2):104-111.
    [147]Tripathy D P. Environmental and safety issues associated with orphaned/abandonedmines[J].Journal of Mines, Metals and Fuels,2010,58(5):47-55.
    [148]刘平,汤万金.矿区可持续生态环境管理规划方法研究[J].应用生态学报,2003(2):301-304.
    [149]夏玉成.煤矿区地质环境承载能力及其评价指标体系研究[J].煤田地质与勘探,2003,31(1):5-8.
    [150]王广成,闫旭骞.矿区生态健康评价理论及其实证研究[M].北京:经济科学出版社,2006.
    [151]Mudd, Gavin M. The Environmental sustainability of mining in Australia: key mega-trendsand looming constraints[J].Resources Policy,2010,35(2):23-28.
    [152]R.Boadway,F.Flatters. The Taxation of Natural Resources principles and PolicyIssues[M].Word Bank Publications,1993.
    [153]Glenn Marie Lange. The Contribution of Minerals to Sustainable Economy Development:Mineral Resource Accounts in Namibia [M].Mining of Environment and Tourism, Namibia,2003.
    [154]J.p.Deason, W.R.Tlor. Natural Resource Damage Assessment and Restoration: The outlookfor Federal Facilities[J].Federal Facilities Environmental Journal,1998,8(4):14-22.
    [155]R.K.Tumer, G.C.Daily. The Eeosystem Services Framework and Natural CapitalConservation[J].Envionmental and Resource Economies,2008,39(l):40-49.
    [156李保杰,顾和和,纪亚洲.矿区土地复垦景观格局变化和生态效应[J].农业工程学报,2012,28(3):251-256.
    [157]卞正富,许家林,雷少刚.论矿山生态建设[J].煤炭学报,2007,23(1):13-19.
    [158]王艳,王力.基于生态足迹模型的矿区可持续发展评估[J].煤炭学报,2011,36(9):1593-1598.
    [159]李春晖.煤炭企业环境成本及其核算研究[D].山东科技大学,2009.
    [160]马丹,高丹.矿产资源开发中的生态补偿机制研究[J].现代农业科学,2009,16:(2):59-61.
    [161]李勇.矿产资源开发生态补偿收费政策研究[D].中国环境科学研究院,2006.
    [162]陈源泉,高旺盛.基于生态经济学理论与方法的生态补偿量化研究[J].系统工程理论与实践,207(4):165-170.
    [163]孙倩.矿产资源生态补偿法律制度研究[D].辽宁大学,2008.
    [164]崔艳,张继栋,白中科.我国煤矿区生态补偿现状与对策[J].资源开发与市场,208,24:(4):331-333.
    [165]王远飞,何洪林,空间数据分析方法[M].科学出版社,北京,2007.
    [166]王晓琳,姬长生,张振芳,等.基于碳足迹的煤炭矿区碳排放源构成分析[J].煤矿安全,2012,4:169-172.
    [167]山西大同矿区采煤沉陷区地面受损情况报告[R].大同:大同煤矿集团,2003.
    [168]张利芳.大同市矿区植被恢复主要途径探讨[J].山西林业,2009,(3):29-30.
    [169]申宝宏,杨丽.煤矿区低碳发展途径探讨[J].中国能源,2010,32(2):5-7.
    [170]于天仁,陈志诚.土壤发生中的化学过程[M].北京:科学出版社,1990.
    [171]张发旺,侯新伟,韩占涛,等.采煤塌陷对土壤质量的影响效应及保护技术[J].地理与地理信息科学,2003,19(3):67-70.
    [172]WIMBERLY M C, OHMANN J L. A multi-scale assessment of human and environmentalconstraints on forest land cover change on the Oregon (USA) coast range[J].LandscapeEcology,2004,19:631-646.
    [173]郝仕龙,李春静,李壁成,等.黄土丘陵沟壑区农业生态系统服务的物质量及价值量评价[J].水土保持研究,2010,17(5):163-166.
    [174]周自翔,任志远,李晶,等.秦巴山区植被土壤保持生态价值研究[J].干旱区研究,2006,23(1):144-148.
    [175]李永峰.煤炭资源开发对矿区资源环境影响的测度研究[D].中国矿业大学,2007.
    [176]钱鸣高,许家林,缪协兴,等.煤矿绿色开采技术[J].中国矿业大学学报,2003,32(4):343-348.
    [177]朱青山,蔡美峰,叶鸿,等.生态矿区建设的系统分析及实践研究[J].金属矿山,2010,12:128-134.
    [178]韩宝平.矿区环境污染与防治[M].中国矿业大学出版社,徐州,2008.
    [179]姚远,李效顺,曲福田.中国经济增长与耕地资源变化计量分析[J].农业工程学报,2010,28(14):209-215.
    [180]张书建,汪云甲,范忻.基于Knothe时间函数和InSAR的煤矿区动态沉陷预计研究[J].煤炭工程,2012,4:91-94.
    [181]连达军,汪云甲.开采沉陷对矿区土地资源的采动效应研究[J].矿业研究与开发,2011,31(5):103-108.
    [182]何国清,杨伦,凌赓娣.矿山开采沉陷学[M].徐州:中国矿业大学出版社,1991.
    [183]龚惠红.城市公园遗留地重金属污染及园林植物耐受性研究[D].华东师范大学,2007.
    [184]Manuel C Molles.Ecology: Concepts and Applications [M]. McGraw-Hill,2006.
    [185]Liu J, Chen J M, Cihlar J, et al.Net primary productivity distribution in the BOREAS regionfrom a process model using satellite and surface data[J]. Journal of GeophysicalResearch,1999,104(D22):27735-27754.
    [186]方精云,刘国华,徐篙龄.中国森林植被生物量和净生产力.生态学报.1996,16(4):497-508.
    [187]Renard K G, Foster G R, Yoder D C, et al. RUSLE revisited: status, questions, answers, andthe future[J].Journal of Soil and Water Conservation,1994,49(3):213-220.
    [188]张宏鸣,杨勤科,李锐,等.基于GIS和多流向算法的流域坡度与坡长估算[J].农业工程学报,2012,28(10):159-164.
    [189]何万龙.山区地表移动与变形规律的研究[J].煤炭学报,1992,17(4):1-15.
    [190]王贵荣,袁志明,韩飞.黄土山区矿井地表移动变形数值模拟[J].西安科技大学学报.2007,27(2):236-239.
    [191] Mitchell Andy.ESRI GIS分析手册,第2卷.[M]. RedLands:ESRI Press,2005.
    [192]GARCIA S, SAURA S. Estimating Landscape Fragmentation Indices from Satellite Images:the Effect of Sensor Spatial Resolution [J]. Proc of SPIE,2004,52(3):668-675.
    [193]Duncan J,Stow D,Franklin J,et al.Assessing the Relation-ship between Spectral VegetationIndices and Shrub Cover in the Jornada Basin,New Mexico[J].International Journal of RemoteSensing,1993,14(18):3395-3416.
    [194]Carlson T N,Ripley D A.On the Relation between NDVI, Fractional Vegetation Cover,andLeaf Area Index[J].Remote Sensing of Environment,1997,62:241-252.
    [195]Martz L W, Garbrecht J. Numerical definition for drainage network and subcatchment areasfrom digital elevation models[J].Computer&Geoscience,1992,18(6):747-761.
    [196]Greenlee D D. Raster and Vector Processing for Scanned Linework[J].PhotogrammetricEngineering and Remote Sensing,1987,53(10):1383-1387.
    [197]Gao F., Masek J., Schwaller M., et al. On the blending of the Landsat and MODIS surfacereflectance: Predicting daily Landsat surface reflectance [J]. IEEE Transactions on Geoscienceand Remote Sensing,2006,44(8):2207-2218.
    [198]Hilker T., Wulder M.A., Coops N.C., et al. Generation of dense time series synthetic Landsatdata through data blending with MODIS using a spatial and temporal adaptive reflectancefusion model[J]. Remote Sensing of Environment,2009,(3),1988-2000.
    [199]Walker J J, de Beurs K M, Wynne R H, et al. Evaluation of Landsat and MODIS data fusionproducts for analysis of dryland forest phenology[J].REMOTE SENSING OFENVIRONMENT.2012,2(117):381-393.
    [200]Feng Tian, Yunjia Wang, Rasmus Fensholt, et al. Mapping and Evaluation of NDVI Trendsfrom Synthetic Time Series obtained by Blending Landsat and MODIS Data around aCoalfield on the Loess Plateau [J].Remote Sensing,2013,5:4255-4279.
    [201]连达军,汪云甲,张华.矿区DEM的时空模拟与反演方法及其应用研究[J].矿业研究与开发,2010,30(1):25-32.
    [202]何万龙.山区开采沉陷与采动损害[M].北京:中国科学技术出版社,2003.
    [203]戴华阳,李树志,侯敬宗.大同矿区岩层与地表移动规律分析[J].矿山测量,1995,16(2):16-22.
    [204]黄庆国,赵军.大同矿区地表沉陷类型及成因初探[J].煤炭科学技术,2008,36(9):92-94.
    [205]侯志鹰,张英华.大同矿区采煤沉陷地表移动特征[J].煤炭科学技术,2004,32(2):50-53.
    [206]杨琴,孙金水,李天宏.不同比例尺流域土壤侵蚀评估及其尺度效应研究[J].应用基础与工程科学学报,2011,19(S1):201-209.
    [207]谢云,刘宝元,章文波.侵蚀性降雨标准研究[J].水土保持学报,2000,14(4):6-11.
    [208]刘宝元,张科利,焦菊英.土壤可蚀性及其在侵蚀预报中的应用[J].自然资源学报,1999,14(4):345-350.
    [209]秦伟,朱清科,张岩.基于GIS和RUSLE的黄土高原小流域土壤侵蚀评估[J].农业工程学报,2009,25(8):157-163.
    [210]江忠善,王志强,刘志.黄土丘陵区小流域土壤侵蚀空间变化定量研究[J].土壤侵蚀与水土保持学报,1996,2(1):1-9.
    [211]唐克丽.中国水土保持[M].北京:科学出版社,2004.
    [212]汤国安,杨昕.ArcGIS地理信息系统空间分析实验教程(第二版)[M].北京:科学出版社,2012.
    [213] Potter C S, Wang S, Nikolov N T, et al.Comparison of boreal ecosystem model sensitivity tovariability in climate and forest parameters[J]. Journal of GeophysicalResearch,2001,106(D24):33671-33687.
    [214]Parton W J, Schimel D S, et al. Analysis of factors controlling soil organic matter levels inGreat Plains grasslands[J]. Soil Science Society of America Journal,1987,(51):1173-1179.
    [215]王长耀,牛铮.碳循环遥感基础与应用[M].科学出版社,北京,2008.
    [216] Randerson J T, Field C B.Terrestrial ecosystem production:a process model based on globalsatellite and surface data[J].Global Biogeochemical Cycles,2003,7:811-841.
    [217] Cao Mingku, Woodward F I. Dynamic responses of terrestrial ecosystem carbon cycling toglobal climate change[J]. Nature,1998,393:249-252.
    [218]Potter CS, Randerson JT, Field CB, et al. Terrestrial ecosystem production: A process modelbased on global satellite and surface data[J].Global BiogeochemicalCycles,1993,7(4):811-841.
    [219]朱文泉,潘耀忠,张锦水.中国陆地植被经初级生产力遥感估算[J].植物生态学报,2007,31(3):413-424.
    [220]Nakaji T, Ide R, Oguma H, et al. Utility of spectral vegetation index for estimation of grossCO2flux under varied sky conditions[J].Remote Sensing of Environment,2007,109(3):274-284.
    [221]董泰锋,蒙继华,吴炳方.基于遥感的光合有效辐射吸收比率(FPAR)估算方法综述[J].生态学报,2012,32(22):7190-7201.
    [222]Pinty B, Lavergne T, Widlowski J L, et al. On the need to observe vegetation canopies in thenear-infrared to estimate visible light absorption[J].Remote Sensing of Environment,2009,113(1):10-23.
    [223]唐健,汤剑平.基于植被光合有效辐射资料研究中国地区植被大气反馈作用[J].地球物理学报,2012,55(6):1804-1816.
    [224]潘根兴.中国干旱性地区土壤发生性碳酸盐及其在陆地系统碳转移上的意义[J].南京农业大学学报,1999,22(1):52-57.
    [225]杨黎芳,李贵桐.土壤无机碳研究进展[J].土壤通报,2011,42(4):986-990.
    [226]Pathak H, Li C, Wassmann R. Greenhouse gas emissions from India rice fields: Calibrationand upscaling using the DNDC model[J]. Biogeosciences,2005,2(2):113-123.
    [227]董恒宇,云锦凤,王国钟.碳汇概要[M].北京:科学出版社,2012.
    [228]王玉庆.环境经济学[M].北京:中国环境科学出版社,2002.
    [229]刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报,2000,20(5):733-740.
    [230]黄从德,张健,杨万勤.四川省及重庆地区森林植被碳储量动态[J].生态学报,2008,28(3):966-975.
    [231]司今,韩鹏,赵春龙.森林水源涵养价值核算方法评述与实例研究[J].自然资源学报,2011,26(12):2100-2109.
    [232]闫慧敏,刘纪远,曹明奎.中国农田生产力变化的空间格局及地形控制作用[J].地理学报,2007,62(2):171-180.
    [233]李士美,谢高地,张彩霞.森林生态系统土壤保持价值的年内动态[J].生态学报2010,30(13):3482-3490.
    [234]中国林业科学研究院森林生态环境与保护研究所.中国人民共和国林业行业标准——森林生态系统服务功能评估规范(LY/T1721-2008)[S].国家林业局,2008.
    [235]中国21世纪议程管理中心.生态补偿原理与应用[M].北京:社会科学文献出版社,2009.
    [236]谭秋成.关于生态补偿标准和机制[J].中国人口·资源与环境,2009,19(6):1-6.
    [237]李金华.模糊数学方法与统计赋权[J].数量经济技术经济研究,2000,10:34-38.
    [238]徐州市国土资源局.徐州采煤塌陷区地质环境评价及补偿机制研究[R].2013.
    [239]王铮,延晓冬,侯美亭.植被对气候的反馈效应研究进展[C].第27届中国气象学会年会应对气候变化分会场——人类发展的永恒主题论文集,2010.
    [240]于立忠,王利,刘利芳.浑河上游典型河岸植被缓冲带对水体污染物的消减作用[C].2013中国环境科学学会学术年会论文集(第五卷),2013.
    [241]财政部.国家重点生态功能区转移支付(试点)办法[R].2009.
    [242]欧阳志云,郑华,岳平.建立我国生态补偿机制的思路与措施[J].生态学报,2013,33(3):686-692.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700