基于非结构网格的气冷涡轮气热弹耦合数值计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空工业的发展趋势要求发动机具备更高的涡轮入口温度,提高涡轮入口温度对叶片的热防护提出了更高的要求,因此需要设计复杂的冷却结构来降低叶片的温度,而冷却结构的改型设计需要准确地预测叶片的温度,同时叶片的强度校核也需要计算高温及冷却不均形成的热应力,单纯的气动计算已经无法满足高性能设计的要求,因此全三维的气热弹多场耦合计算方法成为现代高性能发动机设计的必备工具。本文的工作主要是开发了全三维的基于非结构化网格的气热弹耦合计算程序,对其进行了实验、解析解验证,并将其应用在气冷涡轮的传热和强度分析中,并且对高精度的离散方法及多场耦合方法进行了研究。
     首先推导了三维N-S方程的有限体积离散格式,介绍了MUSUL方法,及其线性重构求解梯度所采用的最小二乘法,为了保持稳定性采用了Venkatakrishnan限制器。给出了预处理方法的具体过程,及求解对流项的预处理AUSM+格式,详细推导了基于预处理方法的LU-SGS隐式时间推进方法。通过方腔流、无粘Bump流动及平板流动验证了三维程序计算的准确性及预处理方法的有效性,采用T3A、T3A-和S&K三个算例对转捩模型进行了验证。针对二维非结构化网格上高精度WENO格式线性权的负值问题,提出了一种求最优线性权的方法,建立了求解的具体数学模型,通过前台阶绕流和双马赫反射问题验证了程序在处理间断问题时的敏感性和稳定性。
     然后研究了固体场的求解方法,采用有限体积法求解了导热方程,采用全隐式的求解方法,具有较高的计算效率。采用加权最小二乘法构造了高精度的梯度计算方法,通过与解析解的对比验证了该方法有效地提高了导热计算的精度。采用高精度的有限元方法求解了热弹耦合问题,介绍了有限元离散方程建立的具体过程及求解方法。通过有限长圆筒的解析解对程序的精度进行了验证,结果表明,本文的有限元程序整体精度很高,在给定精确温度解的条件下,计算的位移和解析解吻合很好,误差在1%的范围。计算的轴向、周向和径向应力与解析解基本吻合。并以某燃气轮机涡轮叶片为例,将程序计算的温度、热变形和热应力与商业软件ACE的计算结果进行对比,验证了程序的精度及对复杂模型的适用性。
     最后将多物理场的求解方法按照不同的耦合方式耦合开发了气热弹耦合计算程序,气热部分采用双向耦合,热弹采用单向耦合。将面积加权类的插值方法应用在交界面的数据传递上,通过与精确解的对比验证了插值程序的精度。对C3X的4521工况进行了气热耦合计算,并与其传热实验进行对比,验证了气热耦合计算的精度,计算得温度和换热系数与实验值吻合较好。通过MARKIⅡ的4311和5411号实验工况,研究了转捩对传热计算的影响,可以看出,采用转捩模型后能够提高层流区和转捩区传热计算的精度。转捩模型对压力的影响很小,对于存在激波和边界层干扰的区域,传热计算仍存在较大误差。在已有程序HIT-3D的基础上验证了气热耦合及湍流模型对温度计算的影响,结果表明,耦合壁面的温度要比绝热壁面的温度低大约30%,BL模型计算的转捩区温度与实验值相差10%,q-ω模型、BL加AGS转捩模型、SST-Gama模型计算的温度与实验结果的差值在5%以内,计算的精度相对较高。应用热弹计算程序对MARKⅡ叶片和某低压涡轮导叶传热分析的结果进行了热弹分析,证明了采用转捩模型有助于更加准确地验证涡轮叶片的安全可靠性。最后应用气热弹耦合平台对某低压涡轮导叶进行了气热弹多场耦合计算,研究了其转捩流动特性以及传热特性,分析了局部高温区的分部及最大应力集中位置,为冷却结构的改型提供了依据,同商业软件对比验证了程序计算的准确性,虽然存在由过约束导致的应力超常现象,但是可以利用应力的分布趋势来辅助进行叶片的改型和优化。
The development of aviation industry requires better performance of turbine engines, mainly including two important parameters: efficiency and thrust-weight ratio. Since the inlet temperature plays a critical role in turbine efficiency, the temperature needs to be increased in order to elevate turbine efficiency. However, the increase of inlet temperature requires effective thermal protection method. Also, the accurate prediction of temperature of air-cooled turbine blade becomes more important to the optimization of cooling structure and prediction of safety and stability of blade. Along with the progress of computer science, the conjugate heat transfer simulation (CHT) has become an important tool to predict blade temperature. Due to the contact between high temperature gas and coolant, great temperature gradient would exist in blade. The uneven temperature distribution and thermal expansion under constraint will produce large thermal stress and deformation, which will lower the life span of blade, even damage blade. Thus, to ensure safety and stability of blade, it is necessary to take into account of thermal-elastic coupling simulation. The main task of this paper includes the development of a full three-dimension (3D) thermal-flow-elastic coupling self-programming code based on unstructured mesh, the application of this code in heat transfer and strength analysis in air-cooled turbine, and the investigation on high order accuracy discrete method and multiphysical fields coupling method.
     First, the finite volume method (FVM) discrete format of3D Navier-Stokes (NS) equations is derived. The MUSUL method is introduced. The least-squares method is used to compute gradients. Venkatakrishnan limiter is used to guarantee stability. For the negative value of linear weight of high order WENO on unstructured meshes, a technique of solving optimal linear weight is presented; and detailed mathematical model is established. Through front step flow and double Mach reflection cases, the code’s stability and sensibility of processing discontinuities was verified. The detailed progress of preconditioning and AUSM+format for solving convective terms were presented. The detailed implicit LU-SGS method based on preconditioning was derived. Through cavity flow, inviscid bump flow and plate flow, the code’s accuracy of calculating convective flux and viscid flux was verified. T3A、T3A-and S&K cases were used to verify transition model. For negative value of high-order WENO linear weight on two-dimension (2D) unstructured mesh, a solving method of optimal linear weight was proposed; and detailed solving mathematical model was established. Through front-ward step flow and double Mach reflection cases, the sensitiveness and stability of the code to solve discontinuity problem were verified.
     Second, solving method of solid field was investigated; and FVM was used to solve heat conduction equation. The full implicit solving method was used, which has relatively high calculation efficiency. The weighted least-squares method was used to construct a high order accuracy solving method of gradient. Analytic solutions were used to verify that the effective improvement of the heat transfer calculation. High order accuracy FEM was used to solve thermal-elastic problems. The detailed process and solving method of establishing FEM discrete equation were introduced. The code was verified by analytic solutions of thermal stress produced by thermal expansion of a finite length cylinder. The result shows that the general accuracy of the FEM code is very high. Under given accurate temperature solution, the calculated displacement agrees well with the analytic solution; and the error is around1%. The calculated axial, circumferential, and radial stress are in good agreement with analytic solutions. And a low-pressure turbine guide vane was used as a case to compare the calculated temperature, thermal deformation and thermal stress with the result of a commercial program ACE. The accuracy and adaptation of complex model of this code was verified.
     Finally, a thermal-flow-elastic coupling simulation code, which is used to solve multiphysical fields, was developed by different coupling methods. The CHT part is bidirectional coupling. The thermal-elastic part is undirectional coupling. The area-weighted interpolation method was used on the data transfer at interface. Through comparison with given accurate solutions, the accuracy of the interpolation code was verified. CHT simulation was conducted on C3X4521case; and the result was compared with heat transfer experimental data. The CHT simulation accuracy was verified; and the calculated heat transfer coefficient agrees well with experimental data. From MARKⅡ4311and5411operating cases, the effect of transition on heat transfer was investigated. From the comparison, it can be noted that the transition model can improve the heat transfer simulation accuracy in laminar region and transition region. The effect of transition on pressure is slight. For the region where shock interacts with boundary layer, the heat transfer simulation is still not accurate. Under the basis of an existing code HIT-3D, the effect of CHT and transition model on temperature calculation was verified. The result shows the wall temperature of CHT is30%lower than that of adiabatic wall. The error of temperature in transition region between BL and experimental data is10%. The error between calculated temperature of q-ω model、BL+AGS transition model and SST-Gama model and experimental data is5%. The calculation accuracy is relatively high. The thermal-elastic analysis of heat transfer results of MARKⅡ vane and a low-pressure turbine vane was conducted. It proves that transition model can help verify the safety and stability of turbine blade more accurately. Last, thermal-flow-elastic multiphysical coupling simulation of a low-pressure turbine vane was conducted by using the thermal-flow-elastic coupling platform. The transition flow and heat transfer characteristics were studied; and the high temperature partial zone and largest stress concentration position were analyzed. These give help of remodeling cooling structure. The accuracy of the result of the code was verified by comparing with commercial code. Although the supernormal stress phenomenon induced by over constraints exists, the stress distribution trend can still be used to help remodel and optimize blade profile.
引文
[1] Hennecke D K. Turbine Cooling in Aeroengines[M]. Von Karman Inst. LS,1982:40-41.
    [2]韩介秦等.燃气轮机传热和冷却技术[M].西安:西安交通大学出版社,2005:1-15.
    [3]葛绍岩,刘登瀛.气膜冷却[M].北京:科学出版社,1985:20-27.
    [4]方昌德.2020年前航空发动机的技术发展水平对比和对策研究[C]//综合高性能涡轮发动机技术(IHPTET)计划文集.航空航天部航空科学技术情报研究所,1992.
    [5]陈光.航空发动机发展综述[J].航空制造技术,2000,(6):24-27.
    [6]刘大响,程荣辉.世界航空动力技术的现状及发展动向[J].北京航空航天大学学报,2002,28(5):490-496.
    [7]谭艳青,姜东坡.燃气轮机叶片冷却技术的发展[J].装备制造技术,2014,7(7):208-210.
    [8] Kanani H,Shams M,Ebrahimi R. Numerical Modelling of Film Cooling With andWithout Mist Injection[J]. Heat Mass Transfer,2009,45:727-741.
    [9]刘钊,杨星,丰镇平.燃气轮机透平叶片传热和冷却研究:气膜冷却[J].热力透平,2014,43(1):1-7.
    [10] Yamane T,Yoshida T,Enomoto S,et al. Conjugate Simulation of Flow and HeatConduction with a New Method for Faster Calculation[C]//Proceedings of ASMETurbo Expo2004. Vienna:ASME,2004:1-10.
    [11]卢元丽,王鸣,吉洪湖等.扰流柱对层板冷却叶片前缘传热影响的数值研究[J].航空发动机,2013,39(2):57-61.
    [12]袁焕源. M701F型燃气轮机透平叶片冷却技术浅析[J].西北水力发电,2007,32(4):13-15.
    [13] Gladden H J,Simoneau R J. Review and Assessment of the Database andNumerical Modeling for Turbine Heat TransferIn Toward Improved Durability inAdvanced Aircraft Engine Hot Sections[R]. Washington D C:NASA,1998,2:39-55.
    [14]刘大响,金捷.21世纪世界航空动力技术发展趋势与展望[J].中国工程科学,2004,6(9):1-8.
    [15]曾军,程信华.涡轮叶栅尾缘冷气喷射的数值模拟[J].燃气涡轮试验与研究,2000,13(1):40-44.
    [16] Yang W J. Heat Transfer and Fluid Flow in Rotating Machinery[M]. Califonia:Hemlsphere Publishing Corp,1987:1~5.
    [17]姜贵庆,杨希霓.气动防热理论的某些发展与应用[C]//空气动力学发展论文集.北京:国防工业出版社,1997:267~287.
    [18] Perelman T L. On Conjugated Problems of Heat Transfer[J]. Internatioanl Journalof Heat Mass Transfer,1961,3:293~303.
    [19] Bohn D,Heuer T. Conjugate Flow and Heat Transfer Calculation of a HighPressure Turbine Nozzle Guide Vane[C]//37th AIAA/ASME/SAE/ASEEJointPropulsion Conference&Exhibit. Salt Lake City:AIAA,2001:1-10.
    [20]王强,苏铁熊.考虑组分扩散的气冷涡轮气热耦合计算[J].科学技术与工程,2013,13(26):7703-7710.
    [21] Yamae T,Yoshida T,Enomoto S,et al. Conjugate Simulation of Flow and HeatConduction with a New Method for Faster Calculation[C]//Proceedings of ASMETurbo Expo2004. Vienna:ASME,2004:1-10.
    [22]王振峰,黄洪雁,唐洪飞等.边界元法在气冷涡轮叶栅气热耦合计算中的应用[J].热能动力工程,2010,25(2):141-144.
    [23] Heselhaus A,Vogel D T. Numerical Simulation of Turbine Blade Cooling withRespect to Blade Heat Conduction and Inlet Temperature Profiles[C]//31stAIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. San Diego:AIAA,1995:1-34.
    [24] Kumar T P,Alagumurthi N,Palaniradja K. Conjugated Heat Transfer Analysis ofGas Turbine Vanes Using Maccormack’s Technique[J]. Thermal Science,2008,12(3):65-73.
    [25] Starke C,Janke E. Comparison of a Conventional Thermal Analysis of a TurbineCascade to a Full Conjugate Heat Transfer Computation[C]//Proceedings ofASME Turbo Expo2008. Berlin:ASME,2004:1-12.
    [26] Mahmood S,AlainJ K,EduardoD. Film Cooling Effectiveness: Comparison ofAdiabatic and Conjugate Heat Transfer CFD Models[J]. International Journal ofThermal Sciences,2009,48(7):2237-2248.
    [27] Kyung M K,Namgeon Y,Yun H J,et al. Conjugated Heat Transfer andTemperature Distributions in a Gas Turbine Combustion Liner Under Base LoadOperation[J]. Journal of Mechanical Science and Technology,2010,24(9):1939-1946.
    [28] Eifel M,Caspary V,Honen H, et al. Experimental and numerical analysis of GasTurbine Blades with Different Internal Cooling Geometries[J]. Journal ofTurbomachinery,2011,133:011018-1.
    [29] Kulasekharan N,Prasad B. Conjugate heat transfer analysis in the Trailing Regionof a Gas Turbine Vane[J]. Heat Transfer Engineering,2010,31(6):468-484.
    [30] Yusop N M,Ali A H,AbdullahM Z. Conjugate film cooling of a New Multi-LayerConvex Surface of Turbine Blades[J]. International Communications in Heat andMass Transfer.2013,45:86-94.
    [31] Benson M,Yapa S D,Elkins C,et al. Experimental-Based Redesigns For TrailingEdge Film Cooling of Gas Turbine Blades [J]. Journal of Turbomachinery,2013,135:041018-1.
    [32] Alizadeh M,Lzadi A,Fathi A. Sensitivity analysis on turbine blade tempetaturedistribution using conjugate heat transfer simulation[J]. Journal ofTurbomachinery,2014,136:011001-1.
    [33] Johnson J J,King P I,Clark J P,et al. Genetic Algorithm Optimization Of AHigh-Pressure Turbine Vane Pressure Side Film Cooling Array[J]. Journal ofTurbomachinery,2014,136:011011-1.
    [34] Yoshiara T,Sasaki D,Nakahashi K. Conjugate heat transfer simulation of CooledTurbine Blades Using Unstructured-Mesh CFD Solver[C]//49th AIAA AerospaceSciences Meeting. Florida:AIAA,2013:1-10.
    [35]冯国泰,黄家骅,李海滨等.涡轮发动机三维多流场耦合数值仿真的数学模型[J].上海理工大学学报.2001,23(3):189-192.
    [36]李海滨,冯国泰.叶轮机械中的多场耦合分析技术[J].航空发动机,2002,2:51-56.
    [37]周驰,冯国泰,王松涛等.涡轮叶栅气热耦合数值模拟[J].工程热物理学报.2003,24(2):224-227.
    [38]王强.提高气冷涡轮气热耦合计算精度的计算方法研究[D].哈尔滨:哈尔滨工业大学,2009.
    [39]卢少鹏,迟重然,罗磊等.气热耦合条件下涡轮静叶三维优化[J].推进技术,2014,35(3):356-364.
    [40]罗磊,卢少鹏,迟重然等.气热耦合条件下涡轮动叶叶型与冷却结构优化[J].推进技术,2014,35(5):603-609.
    [41] Mazur Z,Rossette A H,Illescas R G,et al. Analysis of Conjugate Heat Transferof a Gas Turbine First Stage Nozzle[C]//Proceedings of ASME Turbo Expo2005.Nevada:ASME,2005:1-10.
    [42] Amezcua A C,Czerwiec Z M,Mu oz A G,et al. Thermomechanical TransientAnalysis and Conceptual Optimization of A First Stage Bucket[J]. ASME Journalof Turbomachine,2011,133:011031.
    [43] Bolaina C,Teloxa J,Varela C,et al. Thermomechanical Stress Distributions in aGas Turbine Blade Under the Effect Of Cooling Flow Variations[J]. ASME Journalof Turbomachine,2013,135:064501.
    [44] Yapici H,Basturk G. Numerical Solutions of Transient Conjugate Heat Transferand Thermally Induced Stress Distribution in a Heated And Rotating HollowDisk[J]. Energy Conversion and Management,2005,46:61-84.
    [45] Choi W,Fujiyama K,Kim B,et al. Development of Thermal Stress ConcentrationFactors for Life Assessment of Turbine Casings[J]. International Journal ofPressure Vessels and Piping,2012,98:1-7.
    [46] Mustafa A H,Hashmi M S J,Yilbas B S,et al. Thermal Stress Analysis in AnnularDuct Resembling Gas Turbine Transition Piece[J]. Journal of Materials ProcessingTechnology,2006,171:285-294.
    [47] Kim K M,Park J S,Lee D H,et al. Analysis of Conjugated Heat Transfer,Stressand Failure in A Gas Turbine Blade with Circular Cooling Passages[J].Engineering Failure Analysis,2011,18:1212-1222.
    [48]刘钧朴.核电汽轮机高压缸三维有限元热应力分析[J].动力工程,1995,15(2):35-41.
    [49]郭兆元,王强,冯国泰.涡轮气热弹耦合计算模型与算例[J].航空学报,2009,30(2):213-219.
    [50]彭茂林,杨自春,曹跃云.应变场强法在涡轮盘-片结构寿命预测中的应用[J].中国电机工程学报,2011,31(26):97-102.
    [51]张红梅,张琪,陈勇.超超临界汽轮机叶片热应力分析[J].热力透平,2011,40(4):262-267.
    [52]孙杨,鲁建,郑严等.某涡喷发动机涡轮导向器的热应力分析[J].推进技术,2004,25(4):357-359.
    [53]陈凯,黄洪雁,韩万金.应用单向法的气冷涡轮气热弹耦合数值研究[J].科学技术与工程,2010,10(3):726-732.
    [54] Von Leer B,Lee W T,Roe P. Characteristic Time-stepping or LocalPreconditioning of the Euler Equations[C]//AIAA Computational Fluid DynamicsConference,A91-40726,1991:260-282.
    [55] Choi Y H,Merkle C L. Time-derivative Preconditioning for ViscousFlow[C]//AIAA,1991:1-10.
    [56] Edwards J R,Liou M S. Low-Diffusion Flux-Splitting Methods for Flowsat AllSpeeds[J]. AIAA Journal,1998,36(9):1910-1917.
    [57] Edwards J R,Franklin R K,Liou M S. Low-Diffusion Flux-Splitting Methods forReal Fluid Flows with Phase Transitions[J]. AIAA Journal,2000,38(9):1624-1633.
    [58] Li W,Kakimoto K. A New Matrix-free,High Efficient Preconditioned LU-SGSMethod forLow Mach Axisymmetric Flows on Unstructured Mesh[C]//The4thAsian Symposium on Computational Heat Transfer and Fluid Flow. Hong Kong,2013.
    [59] Xiao T,Ang H,Yu S. A Preconditioned Dual Time-stepping Procedure Coupledwith Matrix-free LU-SGS Scheme for UnsteadyLow Speed Viscous Flows withMoving Objects[J]. International Journal of Computational Fluid Dynamics,2007,21(3):165-173.
    [60] Zong N,Yang V. An Efficient Preconditioning Scheme for Real-fluidMixturesUsing Primitive Pressure-Temperature Variables[J]. International Journal ofComputational Fluid Dynamics,2007,21(5):217-230.
    [61]廖守亿,王正华,王承尧.预处理方法在低速粘性流动中的应用[J].国防科技大学学报,2000,22(1):89-93.
    [62]黄典贵.基于Roe格式的可压与不可压流的统一计算方法[J].应用数学和力学,2006,7(6):669-674.
    [63]李雪松,顾春伟,徐建中.新型高低速流统一算法及其叶轮机应用[J].航空学报,2007,28(6):1334-1338.
    [64]刘晨,王江峰,伍贻兆.预处理AUSM+格式在全速域反应流模拟中的应用[J].航空动力学报,2009,24(8):1831-1836.
    [65]夏树宁,吴宗成,朱自强.预处理方法在全速度流场中的应用研究[J].计算力学学报,2011,28(1):79-83.
    [66] Emmons H W. The Laminar-Turbulent Transition in a Boundary Layer-Part1[J],Journal of Aerospace Science,1951,18(7):490-498.
    [67] Durbin P A,Jacobs R G,Wu X. ClosureStrategies for Turbulent and TransitionalFlows[M]. Cambridge:Cambridge University Press,2002:464-492.
    [68] Mayle R E. The Role of Laminar-Turbulent Transition in Gas Turbine Engines[J].Journal of Turbomachinery,1991,113:509-537.
    [69] Mayle R E,Schulz A. The Path to Predicting Bypass Transition[J]. ASME Journalof Turbomachinery,1997,119:405-411.
    [70] Stock H W,Haase W.Navier-Stokes Airfoil Computations with eNTransitionPrediction Including Transitional Flow Regions[J]. AIAA Journal,2000,38(11):2059-2066.
    [71] Drela M,Giles M B. Viscous-Inviscid Analysis of Transonic and LowReynoldsNumber Airfoils[J]. AIAA Journal,1987,25:1347-1355.
    [72] Smith A M O,Gamberoni N. Transition, Pressure Gradient and StabilityTheory[R]. California:Douglas Aircraft Co,1956:ES26388.
    [73] VanIngen J L. A Suggested Semi-Empirical Method for the Calculation of theBoundary Layer Transition Region[R]. Delft: University of Delft,Department ofAerospace Engineering,1956.
    [74] Abu-Gharmam B J,Shaw R. Natural Transition of Boundary Layers-TheEffecT-Sof Turbulence,Pressure Gradient,and Flow History[J]. Journal ofMechanicalEngineering Science.1980,22(5):213-228.
    [75] Jones W P,Launder B E. The Calculation of Low Reynolds Number Phenomenawith a Two-Equation Model of Turbulence[J]. International Journal of Heat MassTransfer,1973,15:301-314.
    [76] Schmidt R C,Patankar S V. Simulating Boundary Layer Transition withLow-Reynolds-Number k-ε Turbulence Models:Part1-An Evaluation ofPrediction Characteristics[J]. ASME Journal of Turbomachinery,1991,113:10-17.
    [77] Zheng X,Liu C,Liu F,et al. Turbulent Transition Simulation Using the k-ωModel[J]. International Journal for Numerical Methods in Engineering,1998,42:907-926.
    [78] Biswas D,Fukuyama Y. Calculation of Transitional Boundary Layers With anImproved Low-Reynolds-Number Version of the k-ε Turbulence Model[J]. ASMEJournal of Turbomachinery,1994,116:765-773.
    [79] Langtry R B. Prediction of Transition for Attached and Separated Shear Layers inTurbomachinery[D]. Orrawa:Carleton University,2002.
    [80] Dhawan S, Narasimha R. Some Properties of Boundary Layer During theTransition from Laminar to Turbulent Flow Motion[J]. Journal of Fluid Mechanics,1958,3:418-436.
    [81] Gostelow J P,Blunden A R,Walker G J. Effects of Free-Stream TurbulenceandAdverse Pressure Gradients on Boundary Layer Transition[J]. ASME Journal ofTurbomachinery,1994,116:392-404.
    [82] Steelant J,Dick E. Modeling of Bypass Transition with ConditionedNavier-Stokes Equations Coupled to an Intermittency Transport Equation[J].International Journal for Numerical Methods in Fluids,1996,23:193-220.
    [83] SuzenY B,Huang P G. Modeling of Flow Transition Using an IntermittencyTransport Equation[R]. NASA,1999.
    [84] Suzen Y B,Huang P G,Hultgren L S,et al. Predictions of Separated andTransitional Boundary Layers under Low-Pressure Turbine Airfoil ConditionsUsing an Intermittency Transport Equation[J]. Journal of Turbomachinery,2003,125(3):455-464.
    [85] Cho J R,Chung M K. A k-e-w Equation Turbulence Model[J]. Journal of FluidMechanics,1992,237:301-322.
    [86] Menter F R,Langtry R B,Likki S R,et al. A correlation based transition modelusing local variables-part: model formulation[J]. ASME Journal ofTurbomachinery,2006,128:413-422.
    [87] Langtry R B,Menter F R,Likki S R,et al. A correlationbased transition modelusing Local variables-PartⅡ:test cases and industrial applications[J]. ASMEJournal of Turbomachinery,2006,128:423-434.
    [88] J M Weiss, W ASmith.Preconditioning Applied toVariable and Constant Densitytime-Accurate Flows on Unstructured Meshes[C]//25th Fluid DynamicsConference. Colorado Springs:AIAA,1994:1-6.
    [89] Menter F R. Two-Equation Eddy-Viscosity Turbulence Models for EngineeringApplications[J]. AIAA Journal,1994,32(8):1598~1605.
    [90] Langtry R B,Menter F R. Correlation-Based Transition Modeling forUnstructured Parallelized Computational Fluid Dynamics Codes[J]. AIAA Journal,2009,47(12):2894-2906.
    [91] Langtry R B,Menter F R. Transition modeling forgeneral CFD applications inaeronautics[C]//AIAA,2005-0522,2005.
    [92]陈奕,高正红. Gamma-Theta转捩模型在绕翼型流动问题中的应用[J].空气动力学学报,2009,24(4):411-418.
    [93]张辉,宋文萍,张坤.基于γ-Reθ转捩模型的翼型气动特性计算精度改进研究[J].航空计算技术,2010,40(4):11-18.
    [94]孟德虹,张玉伦,王光学等. γ-Reθ转捩模型在二维低速问题中的应用[J].航空学报,2011,32(5):792-801.
    [95]王刚,刘毅,王光秋等.采用γ-Reθt模型的转捩流动计算分析[J].航空学报,2013,33(x):13-17237.
    [96] Misaka T,Obayashi S. Application of Local correlation-based transition model toflows around wings[R]. AIAA2006-918.
    [97] Wladyslaw P,Witold E, Stanis aw D. Transition prediction on turbine bladeprofile with intermittency transport equation[J]. Journal of Turbomachinery,2010,132:011020.
    [98]张玉伦,王光学,孟德虹等. γ-Reθ转捩模型的标定研究[J].空气动力学学报,2011,29(3):295-301.
    [99]乔磊,白俊强,华俊等.扩散作用对γ-Reθt模型转捩预测的影响[J].航空计算技术,2013,43(5):78-81.
    [100] Van leer B. Towards the ultimate conservation difference scheme: A second-ordersequal to Godunovs method[J]. Journal of computational Physics,1979,32:101-136.
    [101] Barth T J. A3-D Upwind Euler Solver for Unstructured Meshes[C]//AIAA,1991:240-244.
    [102] Haselbacher A,Blazek J. Accurate and Efficient Discretisation of the Navier-Stokes Equations on Mixed Grids[J]. AIAA Journal,1999,38(11):2094-2102.
    [103] Barth T J,Jespersen D C. The Design and Application of Upwind schemesonUnstructured Meshes[C]//27th Aerospace Sciences Meeting. Reno:AIAA,1989:1-7.
    [104] Venkatakrishnan V. On The Accuracy of Limiters and Convergence to Steady StateSolutions[C]//27th Aerospace Sciences Meeting and Exhibit. Reno:AIAA,1993:1-12.
    [105] Liu X D,Osher S,Chan T.Weighted EssentiallyNon-Oscillatory Schemes [J].Journal of Computtational Physics,1994,115:200-212.
    [106] Jiang G,Shu C-W,Efficient Implementation of Weighted ENO Schemes[J].Journal of Computtational Physics,1996,126(202):1-7.
    [107] Friedrichs O. Weighted Essentially Non-oscillatory Schemes for the Interpolationof Mean Values on Unstructured Grids[J]. Journal of Computational Physics,1998,144(194):1-7.
    [108] Hu C,Shu C W. Weighted Essentially Non-oscillatory Schemes on TriangularMeshes[J]. Journal of Computtational Physics,1999,150(97):1-8.
    [109] Shi J,Hu C Q. A Technique of Treating Negative Weights in WENO Schemes[J].Journal of Computational Physics,2002,175:108-127.
    [110] Jameson A,Yoon S. Lower-upper implicit schemes with multiple grids for theeuler equation[J]. AIAA Journal,1987,25(7):929-935.
    [111]郝海兵,张强,杨永等.基于LU-SGS迭代的DGM隐式方法研究[J].西北工业大学学报,2014,32(3):346-350.
    [112]龚春叶,包为民,汤国建等.二维结构化网格CFD LU-SGS时间推进并行算法[J].计算机科学与探索,2013,7(10):916-923.
    [113]曹文斌,李桦,丁国昊.高超声速流动计算中LU-SGS隐式算法的应用[J].国防科技大学学报,2013,35(3):18-23.
    [114]杨小权,杨爱明,孙刚.一种强耦合Spalart-Allmaras湍流模型的RANS方程的高效数值计算方法[J].航空学报,2013,34(9):2007-2018.
    [115] Sharov D,Nakahashi K. Reordering of3-D Hybrid Unstructured Grids forVectorized Lu-sgs Navier-Stokes Computations[C]//AIAA Computational FluidDynamics Conference. Snowmass Village:AIAA,1997:131-138.
    [116] CFL3D user’s manual, Appendix H:Turbulence model equations,2012.
    [117]李新亮. OpenCFD-EC理论手册.2012:37-38.
    [118] Ghia U,Ghia K N,Shin C T. High-Re Solutions for Incompressible Flow Usingthe Navier-Stokes Equations and a Multigrid Method[J]. Journal of ComputationalPhysics,1982,48(3):387-411.
    [119] ShmuelE,Phillip C,RaymondP S. Application of the Godunov Methodand ItsSecond-Order Extension to Cascade Flow Modeling[J]. AIAA Journal,1984,22(11):1609-1615.
    [120] Sanders R,Weiser A.High Resolution Staggered Mesh Approach for NonlinearHyperbolic Systems of Conservation Laws[J]. Journal of Computational Physics,1992,101:314-329.
    [121] Ferziger J H,Peric M. Computational methods for fluid dynamics[M]. VerlagBerlin Heidelberg New York,2002:234-235.
    [122]商立英.非结构化网格上非稳态导热问题的求解[D].南京:南京理工大学,2006.
    [123] Carl OG,Michael VA. A high-order-accurate unstructured mesh finite-volumescheme for the advection-diffusion equation[J]. Journal of Computational Physics,2002,181:729-752.
    [124] Ding H,Shu C,Yeo K S. Development of least-square-based two-dimensionalfinite difference schemes and their application to simulate natural convection in acavity[J]. Computers&Fluids,2004,33:137-154.
    [125] Mandal J C,Rao S,Subramanian J. High-resolution finite volume computationsusing a novelweighted least-squares formulation[J]. Int. J. Numer. Meth. Fluids,2008,56:1425-1431.
    [126] Jehanzeb HC,Stephen D B,Luke N O. A weighted adaptive least-squares finiteelement methodfor the Poisson–Boltzmann equation[J]. Applied Mathematics andComputation,2012,218:4892-4902.
    [127] Mandal JC,Rao S P. High resolution finite volume computations on unstructuredgrids using solution dependent weighted least squares gradients[J]. Computers&Fluids,2011,44:23-31.
    [128]宁方飞,徐力平. GMRES算法在二维定常无粘流计算中的应用[J].计算物理,2000,17(5):537-547.
    [129]王勖成.有限元方法[M].北京:清华大学出版社,2003:150-152.
    [130]柳建新,蒋鹏飞,童孝忠等.不完全LU分解预处理的BICGSTAB算法在大地电磁二维正演模拟中的应用[J].中南大学学报,2009,40(2):484-491.
    [131]李维特,黄保海,毕仲波.热应力理论分析及应用[M].北京:中国电力出版社,2004:316-319.
    [132]刘鑫,陆林生.拼接网格通量守恒插值算法研究[J].计算机应用与软件,2012,29(2):275-278.
    [133] Hylton L D,Milhec M S,Turner E R,et al. Analytical and ExperimentalEvaluation of the Heat Transfer Distribution Over the Surface Of Turbine vanes[R].Washington D C:NASA,1983..