雾霾影响下的直流输电线路离子流场分布及绝缘子污秽特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国雾霾多发地区同时也是输电走廊和用电负荷高密度地区,长期暴露在雾霾天气下的架空输电线路的安全运行会受到雾霾天气的影响。雾霾颗粒在直流输电线路周围离子流场的作用下会荷电,荷电后的雾霾颗粒将影响输电导线表面的电晕放电以及周围的空间电场分布,在电场作用下雾霾颗粒的运动轨迹会改变,将可能影响输电导线或绝缘子表面的污秽堆积程度。
     特高压直流输电线路将在全国范围内推广建设,因此对于空气污染指数超过300μg/m3(严重污染),甚至是500μg/m3(爆表污染)的地区,研究雾霾对特高压直流输电线路的离子流场影响规律以及在电场影响下雾霾颗粒对输电设备的污秽影响有着重要的工程价值。因此论文针对雾霾对直流输电线路离子流场以及污秽的影响开展了研究,首先提出了一种可以计算直流输电线路离子流场的改进无网格法,进而推导了雾霾颗粒的荷电模型以及考虑雾霾的离子流场计算模型,采用改进的无网格法对其进行了求解。在此基础上研究了温度对雾霾天气下离子流场的影响规律。最后研究了雾霾颗粒在离子流场作用下的运动特性,并通过试验研究了雾霾在离子流场作用下对绝缘子的污秽影响。论文的主要创新性工作包括:
     (1)提出了一种改进的MLPG (Meshless Local Petrov-Galerkin)无网格法,通过采用RPIMp (radial basis function with additional polynomial basis)形函数和自适应缩小局部子域s的方式,重点解决了MLPG无网格法计算不规则区域难的问题。采用改进的MLPG无网格法对直流输电线的离子流场进行了计算,并对其准确性进行了验证。
     (2)建立了雾霾颗粒的荷电模型以及考虑雾霾影响的离子流场控制方程,并采用改进的MLPG无网格法对其求解。研究了温度对雾霾天气下离子流场分布的影响规律。结果表明:雾霾会使直流线路下方的合成场强增大,且增大幅度随着雾霾污染程度的增加而增加;在温度较高情况下发生雾霾天气时的地面合成场强相对于温度较低时更大。
     (3)研究了雾霾颗粒在离子流场中的运动特性,通过试验研究了雾霾颗粒在离子流场中的荷电极性以及雾霾对直流输电线路绝缘子污秽的影响。根据雾霾颗粒在离子流场中的运动特性,得出了不同污染等级雾霾天气对绝缘子积污量的影响。
The areas where haze activities are higher are also with limited transmission linecorridors and large power load. The performance of overhead transmission lines isunder threat of the haze. The haze particulates around the HVDC transmission lines willbe charged due to the ionized field and the charged haze particulates will affect thecorona and electric field of in the vicinity of HVDC transmission lines. In addition, themovements of the haze particulates will change because of the electric field and theinsulators' pollution characteristics could be affected.
     The UHVDC transmission lines will be extended across China. The research of theinfluence of haze on the ionized field and the effect of charged haze particulates oncontamination of transmission equipment are very necessary, especially for those areawith air pollution index goes into300μg/m3(serious pollution) or500μg/m3(hazardous pollution). This paper focus on the influence of the haze on the ionized fieldand contamination of HVDC transmission lines. Firstly, an improved Meshless Methodwhich is more suitable for dealing with ionized field problems has been proposed.Secondly, the charging process of haze particulates and numerical model of ionizedfield in presence of haze has been studied. Based on the numerical model construct bythe improved MLPG method, the distributions of the ground level ionized field inpresence of haze with different temperature has been discussed. At last, the movementcharacteristics of the charged haze particulates in the ionized field has been studied, andthe influence of haze on the contamination of insulator has been studied by experiment.The main innovative points of this thesis are shown as follows:
     (1) An improved MLPG (Meshless Local Petrov-Galerkin) method is proposed inthis thesis. The improved method uses the RPIMp (radial basis function with additionalpolynomial basis) shape functions and self-adjusted local sub-domain sto overcomethe shortcoming of regular MLPG method. This makes the improved MLPG methodvery easy to deal with irregular or complex geometries. The improved MLPG methodhas been used to calculate the ionized of HVDC transmission lines, the results show thatthe improved MLPG can obtain accurate results in the ionized field problem.
     (2) Based on the charging process of haze particulates and influence mechanism ofhaze on ionized field, the governing equation of ionized in presence of haze are given inthis thesis. The improved MLPG method are used for the construction of the numerical model, the distribution of the ground level ionized field in presence of haze withdifferent temperature are discussed. The results show that, the haze will increase theground level total electric field, and the maximum value get higher with the pollutionlevel of haze increasing. The calculation results indicated that the ground level electricfield becomes stronger if the haze with higher temperature.
     (3) The movement characteristics of the charged haze particulates in the ionizedfield has been studied. The charge polarity of charged haze particulates and theinfluence of haze on the contamination of insulator has been studied by experiment.Based on the movement of the charged haze particulates in ionized field and thedynamic commination accumulating of the haze particulate on the HVDC insulator, theinfluence of haze weather on the insulator contamination are given in this thesis.
引文
[1]刘振亚.特高压直流输电工程电磁环境[M].中国电力出版社,2009.
    [2]魏广民,曹云东,富强.中国高压直流输电工程技术的展望[J].沈阳工程学院学报:自然科学版,2009,05(01):50-52.
    [3]罗兆楠.直流输电线路邻近建筑物时合成电场计算方法及其应用研究[D].华北电力大学(北京),2011.
    [4]郭焕,曹均正,汤广福,等.±1100kV特高压直流换流系统主电路优化设计[J].电网技术,2013,37(09):2383-2389.
    [5]胡守松,李健,马凌,等.±1100kV特高压直流输电线路对地及交叉跨越距离[J].电力建设,2012,33(10):25-28.
    [6]赵永生,张文亮.雾对高压直流输电线路离子流场的影响[J].中国电机工程学报,2013,33(13):194-199.
    [7]刘有为,李继红.空气密度和湿度对导线电晕特性的影响[J].电网技术,1990,14(04):46-50.
    [8]刘振亚.发展特高压电网破解雾霾困局[N].人民政协报,2014-03-03.
    [9] Bracken T. D., Capon A. S., Montgomery D. V. Ground level electric fields and ion currentson the Celilo-Sylmar±400kV DC intertie during fair weather [J]. IEEE Transactions onPower Apparatus and Systems,1978,1978(02):370-378.
    [10] Maruvada P. S., Dallaire R. D., Norris-Elye O. C., et al. Environmental effects of the nelsonriver HVDC Transmission Lines—RI, An, electric field, induced voltage and ion currentdistribution tests [J]. IEEE Transactions on Power Apparatus and Systems,1982, PAS-101(04):951-959.
    [11] Hara Masanori, Hayashi Noriyuki, Shiotsuki Keishi, et al. Influence of Wind and ConductorPotential on Distributions of Electric Field and Ion Current Density at Ground Level in DCHigh Voltage Line to Plane Geometry [J]. IEEE Transactions on Power Apparatus andSystems,1982, PAS-101(04):803-814.
    [12] Johnson Gary. Electric fields and ion currents of a±400kV HVDC test line [J]. IEEETransactions on Power Apparatus and Systems,1983, PAS-102(08):2559-2568.
    [13] Amano Yuji, Sunaga Yoshitaka. Study on reduction in electric field, charged voltage, ioncurrent and ion density under HVDC transmission lines by parallel shield wires [J]. IEEEPower Engineering Review,1989,04(02):1351-1359.
    [14] Johnson G. B. Degree of corona saturation for HVDC transmission lines [J]. IEEETransactions on Power Delivery,1990,05(02):695-707.
    [15]周恺.特高压直流输电线路电磁环境的计算研究[D].华中科技大学,2007.
    [16] Deutsch Walther. über die dichteverteilung unipolarer ionenstr me [J]. Annalen der Physik,1933,408(05):588-612.
    [17] Sarma Maruvada, Janischewskyj Wasyl. Analysis of Corona Losses on DC TransmissionLines: I-Unipolar Lines [J]. IEEE Transactions on Power Apparatus and Systems,1969,PAS-88(05):718-731.
    [18] Sarma Maruvada, Janischewskyj Wasyl. Analysis of Corona Losses on DC TransmissionLines Part II-Bipolar Lines [J]. IEEE Transactions on Power Apparatus and Systems,1969,PAS-88(10):1476-1491.
    [19] Sunaga Yoshitaka, Sawada Yoshitsugu. Method of Calculating Ionized Field of HVDCTransmission Lines and Analysis of Space Charge Effects on RI [J]. IEEE Transactions onPower Apparatus and Systems,1980, PAS-99(02):605-615.
    [20] Zhao T., Sebo S. A., Kasten D. G. Calculation of single phase AC and monopolar DC hybridcorona effects [J]. IEEE Transactions on Power Delivery,1996,11(03):1454-1463.
    [21] Lu Tiebing, Zhao Jie, Cui Xiang, et al. Analysis of ionized field under±800kV HVDCtransmission lines [C].17th International Zurich Symposium on ElectromagneticCompatibility.2006:416-419.
    [22] Yang Yong, Lu Jiayu, Lei Yinzhao. A calculation method for the electric field underDouble-Circuit HVDC transmission lines [J]. IEEE Transactions on Power Delivery,2008,23(04):1736-1742.
    [23] Whitney J. P., Wood R. J. Conceptual design of flapping-wing micro air vehicles [J].Bioinspiration&Biomimetics,2012,07(03):36001.
    [24] Li Wei, Zhang Bo, Zeng Rong, et al. Discussion on the Deutsch assumption in the calculationof ion-flow field under HVDC bipolar transmission lines [J]. IEEE Transactions on PowerDelivery,2010,25(04):2759-2767.
    [25] Luo Zhaonan, Cui Xiang, Lu Jiayu. Analysis of ionized field under HVDC transmission lineswith buildings nearby [C].2010Asia-Pacific Symposium on Electromagnetic Compatibility(APEMC).2010:277-280.
    [26] Luo Zhaonan, Cui Xiang, Zhang Weidong, et al. Calculation of the3-D ionized field underHVDC transmission lines [J]. IEEE Transactions on Magnetics,2011,47(01):1406.
    [27]罗兆楠,崔翔,甄永赞,等.直流输电线路三维离子流场的计算方法[J].中国电机工程学报,2010,30(27):102-107.
    [28] Maruvada P. Sarma. Electric field and ion current environment of HVDC transmission lines[J]. IEEE Transactions on Power Delivery,2012,27(01):401-410.
    [29]崔翔,周象贤,卢铁兵.高压直流输电线路离子流场计算方法研究进展[J].中国电机工程学报,2012,32(36):130-141.
    [30] Amoruso V., F Lattarulo. Investigation on the Deutsch assumption: experiment and theory [J].IEE Proceedings-Science, Measurement and Technology,1996,143(05):334.
    [31] Janischewskyj W., Cela G. Finite element solution for electric fields of coronating DCtransmission lines [J]. IEEE Transactions on Power Apparatus and Systems,1979, PAS-98(03):1000-1012.
    [32] Janischewskyj W., Gela G. Computation of ionized field of DC transmission lines [C].IEEE-Meeting at Montreal.1980:303.
    [33] Takuma Tadasu, Ikeda Tsutomu, Kawamoto Tadashi. Calculation of ion flow fields ofHVDC transmission lines by the finite element method [J]. IEEE Transactions on PowerApparatus and Systems,1981,1981(12):4802-4810.
    [34] Takuma Tadasu, Kawamoto Tadashi. A very stable calculation method for ion flow field ofHVDC transmission lines [J]. IEEE Transactions on Power Delivery,1987,02(01):189-198.
    [35] Lu Tiebing, Feng Han, Zhao Zhibin, et al. Analysis of the electric field and ion currentdensity under ultra high-voltage direct-current transmission lines based on finite elementmethod [J]. IEEE Transactions on Magnetics,2007,43(04):1221-1224.
    [36] Liu Jie, Zou Jun, Tian Jihuan, et al. Analysis of electric field, ion flow density, and coronaloss of same-tower double-circuit HVDC lines using improved FEM [J]. IEEE Transactionson Power Delivery,2009,23(01):482-483.
    [37] Lu Tiebing, Feng Han, Cui Xiang, et al. Analysis of the ionized field under HVDCtransmission lines in the presence of wind based on upstream finite element method [J]. IEEETransactions on Magnetics,2010,46(08):2939-2942.
    [38] Zhen Yongzan, Cui Xiang, Lu Tiebing, et al. High efficiency FEM calculation of the ionizedfield under HVDC transmission lines [J]. IEEE Transactions on Magnetics,2012,48(02):743-746.
    [39]甄永赞,崔翔,罗兆楠,等.直流输电线下存在建筑物时合成电场计算的有限元方法[J].中国电机工程学报,2011,31(09):120-125.
    [40] Li Wei, Li Wei, Zhang Bo, et al. Boundary condition improvements on ion flow fieldcalculation of HVDC bipolar transmission lines [C]. International Conference on HighVoltage Engineering and Application.2008:245-248.
    [41] Li Wei, Zhang Bo, He Jinliang, et al. Ion Flow Field Calculation of Multi-circuit DCTransmission Lines [C]. International Conference on High Voltage Engineering andApplication.2008:16-19.
    [42] Li Wei, Zhang Bo, He Jinliang, et al. Research on Calculation Method of Ion Flow Fieldunder Multi-circuit HVDC Transmission Lines [C].20th International Zurich Symposium onElectromagnetic Compatibility.2009:133-136.
    [43] Huang Guodong, Ruan Jiangjun, Du Zhiye, et al. Highly Stable Upwind FEM for SolvingIonized Field of HVDC Transmission Line [J]. IEEE Transactions on Magnetics,2012,48(02):719-722.
    [44] Qin B. L., Sheng J. N., Yan Z., et al. Accurate calculation of ion flow field under HVDCbipolar transmission lines [J]. IEEE Transactions on Power Delivery,1988,03(01):368-376.
    [45] Li Xin. Numerical analysis of ionized fields associated with HVDC transmission linesincluding effect of wind [D].University of Manitoba (Canada),1998.
    [46]周象贤,卢铁兵,崔翔,等.基于有限元与有限体积法的直流输电线路合成电场计算方法[J].中国电机工程学报,2011,31(15):127-133.
    [47] Yin H., Zhang B., He J., et al. Time-domain finite volume method for ion-flow field analysisof bipolar high-voltage direct current transmission lines [J]. IET generation, transmission&distribution,2012,06(08):785-791.
    [48]刘颖.无网格法在电磁场数值计算中的应用研究[D].南京航空航天大学,2012.
    [49] Liu G. R., Gu Y. T.无网格法理论及程序设计[M].济南:山东大学出版社,2007.
    [50]张淮清.电磁场计算中的径向基函数无网格法研究[D].重庆大学,2008.
    [51] Liu G. R. Mesh free methods: moving beyond the finite element method [M]. CRC Press,2003.
    [52] Qin C., Yang X., Feng J., et al. Adaptive improved element free Galerkin method for quasi-ormulti-spectral bioluminescence tomography [J]. Opt Express,2009,17(24):21925-21934.
    [53] Liu Wing Kam, Jun Sukky, Li Shaofan, et al. Reproducing kernel particle methods forstructural dynamics [J]. International Journal for Numerical Methods in Engineering,1995,38(10):1655-1679.
    [54] Liu G. R., Gu Y. T. A local radial point interpolation method (LRPIM) for free vibrationanalyses of2-D solids [J]. Journal of Sound and Vibration,2001,246(01):29-46.
    [55] Liu G. R., Zhang G. Y., Dai K. Y., et al. A linearly conforming point interpolation method(LC-PIM) for2D solid mechanics problems [J]. International Journal of ComputationalMethods,2005,02(04):645-665.
    [56] Atluri S. N., Zhu T. A new Meshless Local Petrov-Galerkin (MLPG) approach incomputational mechanics [J]. Computational Mechanics,1998,22(02):117-127.
    [57] Atluri S. N., Zhu T. L. The meshless local Petrov-Galerkin (MLPG) approach for solvingproblems in elasto-statics [J]. Computational Mechanics,2000,25(2-3):169-179.
    [58] Ouyang S., Maynard D. E. A dual coordinate system finite difference method for forward andinverse solutions of the volume conductor problem in neurology [J]. Med Eng Phys,1997,19(02):164-170.
    [59] Liu G. R., Gu Y. T. A meshfree method: meshfree weak-strong (MWS) form method, for2-Dsolids [J]. Computational Mechanics,2003,33(01):2-14.
    [60] Marechal Y., Coulomb J. L., Meunier G., et al. Use of the diffuse element method forelectromagnetic field computation [J]. IEEE Transactions on Magnetics,1993,29(02):1475-1478.
    [61] Franke C., Schaback R. Solving partial differential equations by collocation using radial basisfunctions [J]. Applied Mathematics and Computation,1998,93(01):73-82.
    [62] Franke Carsten, Schaback Robert. Convergence order estimates of meshless collocationmethods using radial basis functions [J]. Advances in Computational Mathematics,1998,08(04):381-399.
    [63] Kowalczyk P., Mrozowski M. Mesh-free approach to Hemholtz equation based on radialbasis functions [C].15th International Conference on Microwaves, Radar and WirelessCommunications.2004:702-705.
    [64] Ho S. L., Yang S., Wong H. C., et al. A meshless collocation method based on radial basisfunctions and wavelets [J]. IEEE Transactions on Magnetics,2004,40(02):1021-1024.
    [65]赖生建.计算电磁学中的径向基无网格法[D].电子科技大学,2010.
    [66] Cingoski V., Miyamoto N., Yamashita H. Element-free Galerkin method for electromagneticfield computations [J]. IEEE Transactions on Magnetics,1998,34(05):3236-3239.
    [67] Xuan L., Zeng Z., Shanker B., et al. Element-Free Galerkin method for static andQuasi-Static electromagnetic field computation [J]. IEEE Transactions on Magnetics,2004,40(01):12-20.
    [68] Parreira G. F., Silva E. J., Fonseca A. R., et al. The element-free Galerkin method inthree-dimensional electromagnetic problems [J]. IEEE Transactions on Magnetics,2006,42(04):711-714.
    [69] Liu X., Wang B. Z., Lai S. Element-free Galerkin method in electromagnetic scattering fieldcomputation [J]. Journal of Electromagnetic Waves and Applications,2007,21(14):1915-1923.
    [70]刘素贞,杨庆新.二维电场的无单元数值解法[J].河北工业大学学报,1999,28(02):10-15.
    [71]刘素贞,杨庆新,陈海燕,等.无单元法在电磁场数值计算中的应用研究[J].电工技术学报,2001,16(02):30-33.
    [72]姚立海,章锦腾.电磁场数值计算的无网格算法[J].大电机技术,2003,(06):9-12.
    [73]倪培宏,杨仕友.无网格伽辽金法及其在电磁场数值计算中的应用[J].电机与控制学报,2003,07(01):26-29.
    [74]尹华杰.无网格法及其在电磁场计算中的应用展望[J].电机与控制学报,2003,07(02):107-111,132.
    [75]林福明.分析电磁场计算中的无网格局部Petrov-Galerkin方法[J].信息通信,2013,(08):12.
    [76]赵美玲.无网格方法在电磁场计算中的研究与应用[D].西北工业大学,2005.
    [77]林龙凤,尹华杰.无网格伽辽金法在电磁场数值计算中的应用[J].电机电器技术,2002,(06):35-38.
    [78]张立峰,王化祥,辛秀.基于无网格法的电容层析成像正问题的仿真研究[J].电力科学与工程,2006,(02):47-50.
    [79]王化祥,张立峰.采用无网格伽辽金法求解电容层析成像正问题[J].天津大学学报,2006,39(11):1379-1383.
    [80] Viana S. A., Rodger D., Lai H. C. Meshless local Petrov–Galerkin method with radial basisfunctions applied to electromagnetics [J]. IEE Proceedings-Science, Measurement andTechnology,2004,151(06):449-451.
    [81] Ni Guangzheng, Ho S. L., Yang Shiyou, et al. Meshless local Petrov-Galerkin method and itsapplication to electromagnetic field computations [J]. International Journal of AppliedElectromagnetics and Mechanics,2004,19(01):111-117.
    [82] Fonseca A. R., Viana S. A., Silva E. J., et al. Imposing boundary conditions in the meshlesslocal Petrov-Galerkin method [J]. IET Science, Measurement&Technology,2008,02(06):387-394.
    [83] Fonseca Alexandre R., Correa Bruno C., Silva Elson J., et al. Improving the mixedformulation for meshless local Petrov-Galerkin method [J]. IEEE Transactions on Magnetics,2010,46(08):2907-2910.
    [84] Razmjoo H., Razmjoo H., Movahhedi M., et al. Improved meshless method using directshape function for computational electromagnetics [C]. Microwave Conference Proceedings(APMC),2010Asia-Pacific.2010:2157-2160.
    [85] Nicomedes Williams L., Mesquita Renato Cardoso, Moreira Fernando José Da Silva. Themeshless local Petrov-Galerkin method in two-dimensional electromagnetic wave analysis [J].IEEE Transactions on Antennas and Propagation,2012,60(04):1957-1968.
    [86]左传伟,赵美玲,聂玉峰.电磁场计算中的无网格局部Petrov—Galerkin方法[J].电机与控制学报,2005,09(04):397-400.
    [87] Liu Zehui, He Wei, Yang Fan, et al. A simple and efficient local Petrov-Galerkin meshlessmethod and its application [J]. International Journal of Applied Electromagnetics andMechanics,44(01):115-123.
    [88] He Wei, Liu Zehui, Hutchcraft W. Elliott, et al. Complex problem domain based localPetrov-Galerkin meshless method for electromagnetic problems [J]. International Journal ofApplied Electromagnetics and Mechanics,2013,42(01):73-83.
    [89] Comber Michael, Johnson Gary. HVDC Field and ion effects research at project UHV:results of electric field and ion current measurements [J]. IEEE Transactions on PowerApparatus and Systems,1982, PAS-101(07):1998-2006.
    [90]郑正圻,成萝兰,陈维克.海拔高度对直流输电线路电晕电流地面离子流密度及地面场强影响的研究[J].高电压技术,1991,2(02):26-31.
    [91] Lu Tiebing, Feng Han, Cui Xiang, et al. Analysis of the ionized field under HVDCTransmission lines in the presence of wind based on upstream finite element method [J].IEEE Transactions on Magnetics,2010,46(08):2939-2942.
    [92]鲁非,叶齐政,林福昌,等.雨滴对高压直流输电线路地面离子流场的影响[J].中国电机工程学报,2010,30(07):125-130.
    [93]龙吉泽.雾霾天气的形成、危害及治理[J].湖南农机,2013,(10):38-39.
    [94]宿志一,刘燕生.我国北方内陆地区线路与变电站用绝缘子的直、交流自然积污试验结果的比较[J].电网技术,2004,28(10):13-17.
    [95]李震宇,梁曦东,王彬,等.直流电压下复合绝缘子的自然积污试验[J].电网技术,2007,31(14):10-14.
    [96]陈锡磊.特高压直流换流站绝缘配合研究[D].浙江大学,2012.
    [97]赵华忠,徐莹,胡毅,等.±500kV直流线路不良绝缘子带电检测技术研究[J].电力设备,2007,8(03):32-34.
    [98]蔡炜,肖勇,吴光亚.±500kV直流线路绝缘子串自然积污规律初探[J].高电压技术,2003,29(06):4.
    [99]李晟.特高压交直流同塔架设下绝缘子积污特性研究[D].华北电力大学,2012.
    [100] Olsen R. G., Furumasu B. C., HARTMANN D. P. Contamination mechanisms for HVDCinsulators [C]. IEEE Power Apparatus and Systems Winter Conference.1977:1069.
    [101]蒋兴良,李海波.计算流体力学在绝缘子积污特性分析中的应用[J].高电压技术,2010,36(02):329-334.
    [102] Ravelomanantsoa N., Farzaneh M., Chisholm W. A. Insulator pollution processes underwinter conditions [C].2005Annual Report Conference on Electrical Insulation and DielectricPhenomena.2005:321-324.
    [103]谢从珍,张尧,郝艳捧,等.±800kV特高压直流悬式复合绝缘子伞形的风洞模拟[J].高电压技术,2010,36(01):212-217.
    [104] Horenstein Mark, Melcher James. Particle Contamination of High Voltage DC Insulatorsbelow Corona Threshold [J]. IEEE Transactions on Electrical Insulation,1979, EI-14(6):297-305.
    [105]王晶,陈林华,刘宇,等.电场对复合绝缘子积污特性影响的探究[J].高电压技术,2011,37(03):585-593.
    [106]张文亮.复合绝缘子在±800kV特高压直流工程中的应用研究[J].电网技术,2006,30(12):8-11.
    [107]李晟.特高压交直流同塔架设下绝缘子积污特性研究[D].华北电力大学,2012.
    [108] Lin H., Atluri S. N. The meshless local Petrov-Galerkin (MLPG) method for solvingincompressible Navier-Stokes equations [J]. CMES-Computer Modeling in Engineering andSciences,2001,02(02):117-142.
    [109] Dolbow John, Belytschko Ted. An introduction to programming the meshless Element FreeGalerkin method [J]. Archives of computational methods in engineering,1998,05(03):207-241.
    [110] Shen Satya N. Atluri Shengping. The meshless local Petrov-Galerkin (MLPG) method: asimple&less-costly alternative to the finite element and boundary element methods [J].CMES-Computer Modeling in Engineering&Sciences,2002,03(01):11-51.
    [111] Sarma Maruvada P., Janischewskyj W. DC corona on smooth conductors in air. Steady-stateanalysis of the ionisation layer [C]. Proceedings of the Institution of Electrical Engineers.1969:161-166.
    [112]余峰.高压直流输电线下合成场强及离子流密度的计算[D].北京:中国电力科学研究院,1998.
    [113] Peek F. W. Dielectric phenomena in high-voltage engineering [M]: Journal of the FranklinInstitute. McGraw-Hill Book Company, Incorporated,1930.
    [114]欧阳科文.直流导线电晕起晕电压的影响因素及计算方法研究[D].华北电力大学,2012.
    [115]安冰.温度、湿度对电晕笼中导线直流电晕特性的影响[D].华北电力大学(北京),2009.
    [116]黄新波,孙钦东,张冠军,等.输电线路实时增容技术的理论计算与应用研究[J].高电压技术,2008,34(06):1138-1144.
    [117] DL/T5106-1999跨越电力线路架线施工规程[S].1999.
    [118] DL/T436-2005高压直流架空送电线路技术导则[S].2005.
    [119]孙珂,赵彪,韩丰,等.直流输电导线经济电流密度问题研究[J].电网技术,2008,32(S2):279-282.
    [120]彭伟.按经济电流密度选择导线截面的探讨[J].华北电力技术,1999,(05):48-49.
    [121]邹岸新.特高压直流输电线路下离子流场的仿真计算研究[D].重庆大学,2012.
    [122] Ortéga P., Rühling F. Charge-voltage relation of first corona in inhomogeneous electric field:Influence of electrode curvature [C]. IEE conference publication, Institution of ElectricalEngineers.1999:3-159.
    [123] A. J. Davies J. Dutton R. Turri. Predictive modelling of impulse corona in air at variouspressures and humidities [C]. Proceedings on6th Int. Symp. on High Voltage Engineering.1989:9-16.
    [124]姜一涛.电晕笼中直流导线电晕现象及影响因素的研究[D].华北电力大学(北京),2008.
    [125]惠建峰,关志成,王黎明,等.正直流电晕特性随气压和湿度变化的研究[J].中国电机工程学报,2007,27(33):53-58.
    [126]林锐.直流正极性下导线电晕放电特性及影响因素的研究[D].重庆大学,2009.
    [127]方仍存,周建中.大气参数对导线交流起晕电压的影响及校正[J].电网技术,2010,34(11):65-69.
    [128]杨津基.气体放电[M].北京:科学出版社,1983.
    [129]孙玉荣.电除尘器中颗粒物运动状态研究[D].河北大学,2008.
    [130]李娟.典型结构下电除尘器中的粒子动力学特性[D].东华大学,2007.
    [131]齐立强.燃煤锅炉微细颗粒电除尘特性及电场逃逸机理的研究[D].华北电力大学(河北),2006.
    [132]朱易,胡衡生,张新英,等.南宁市大气颗粒物TSP, PM10, PM2,5污染水平研究[J][J].环境污染与防治,2004,26(03):176-178.
    [133]孙玉荣.电除尘器中颗粒物运动状态研究[D].河北大学,2008.
    [134]郦建国,吴炳炎,陈宇渊.用电除尘器净化高炉炉前烟气[C].第十一届全国电除尘学术会议.2005:601-605.
    [135]程祥之.园林机械[M].中国林业出版社,1995:1.
    [136]宿志一.雾霾天气对输变电设备外绝缘的影响[J].电网技术,2013,37(08):2284-2290.
    [137]姚文俊,何正浩,邓鹤鸣,等.直流电压下两相体放电的粒径效应[J].中国电机工程学报,2012,32(13):144-151.
    [138]周浩.一种计算不同气象条件下双极HVDC线路离子流场的方法[J].高电压技术,1991,02(02):19-23.
    [139]李子华,刘端阳,杨军,等.南京市冬季雾的物理化学特征[J].气象学报,2011,69(04):706-718.
    [140]刘红丽.室内悬浮颗粒物浓度与粒径分布测量方法研究[D].华中科技大学,2009.
    [141]张乔根,王清亮,张璐,等.污秽条件下±800kV直流输电线路电晕特性[J].高电压技术,2010,36(01):31-36.
    [142]李恒真,赖江宇,雷乾,等.污秽颗粒在绝缘表面的碰撞和吸附[J].高电压技术,2012,38(10):2596-2603.
    [143]李恒真.高压输电线路外绝缘动态积污机理及在线监测研究[D].华南理工大学,2012.
    [144]余世峰,孙中明,张志军.空间电荷条件下超、特高压直流复合绝缘子电压分布[J].高电压技术,2010,36(01):180-184.
    [145]吴光亚,王钢,蔡炜,等.±500kV直流复合绝缘子的电位分布特性[J].高电压技术,2006,32(09):132-135.
    [146]蒋兴良,苑吉河,孙才新,等.我国±800kV特高压直流输电线路外绝缘问题[J].电网技术,2006,30(09):1-9.
    [147]顾洪连.国产玻璃绝缘子的发展现状及技术水平[J].电瓷避雷器,2007,(05):4-6.
    [148]卿涛,邵天敏,温诗铸.相对湿度对材料表面粘附力影响的研究[J].摩擦学学报,2006,26(04):295-299.
    [149]魏远航,武利会,王成华.大气环境对合成绝缘子的憎水性影响分析[J].高电压技术,2006,32(05):31-34.
    [150]关志成,牛康,王黎明,等.环境湿度对硅橡胶材料憎水迁移性的影响[J].高电压技术,2012,38(08):2030-2036.
    [151]白欢.复合绝缘子憎水性评估方法及憎水性对闪络特性影响研究[D].重庆大学,2011.
    [152]李贵谋,聂楚南.用真实接触面积计算静摩擦系数[J].润滑与密封,1981,05(05):5-11.
    [153] Xiao Xudong, Qian Linmao. Investigation of Humidity-Dependent Capillary Force [J].Langmuir,2000,16(21):8153-8158.
    [154]葛藤,贾智宏,周克栋.钢球和刚性平面弹塑性正碰撞恢复系数研究[J].工程力学,2008,25(06):209-213.