五种野生兜兰植物菌根真菌多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
兜兰属(Paphiopedilum)植物,又称为“拖鞋兰”,在园艺界负有盛名。兜兰作为兰科植物中最诱人的花卉之一,在世界各国拥有为数众多的爱好者。目前,因为自然生境的破坏和人为过度采集,野生兜兰种群受到巨大威胁。所有的野生兜兰植物都被列为《野生动植物濒危物种国际贸易公约》(CITES)附录1中的濒危物种。兰花是真菌异养的植物。在自然条件下,只有合适的共生真菌侵染种子,为其提供碳素和无机营养,粉尘状的兰花种子才能成功萌发。而且,兰花幼苗的发育,成年兰花的生长和繁殖都需要菌根真菌的共生。根据生境、分布、生态型和分类地位的不同,本研究选取了5种野生兜兰植物作为研究对象,包括紫纹兜兰(P. purpuratum)、长瓣兜兰(P. dianthum)、带叶兜兰(P. hirsutissimum)、硬叶兜兰(P. micranthum)和麻栗坡兜兰(P. malipoense)。通过野外采样,利用光学显微镜和扫描电镜观察5种野生成年兜兰植物菌根的形体与结构,改进了兜兰植物菌根真菌的分离方法,并对5种兜兰植物菌根真菌进行分离和鉴定,分析了5种兜兰植物菌根真菌的多样性。通过原地萌发和室内共生萌发试验,探讨了兜兰分布与菌根真菌的关系,并筛选出可用于兜兰植物保育的有效共生真菌。主要结果如下:
     1.通过野外原地观察,发现紫纹兜兰、硬叶兜兰和麻栗坡兜兰3种地生型兜兰的根部浅生于腐殖质层,半附生型的带叶兜兰和石上附生型的长瓣兜兰的根部生于岩石表面积土中,5种兜兰的根部外形都明显区别于真正的地生兰和石上附生兰。通过光学显微镜和扫描电镜观察,5种兜兰均具有典型的单子叶植物根的基本结构,3种地生型兜兰的皮层数目多于2种石上附生型兜兰,维管束数目则少于石上附生型兜兰;长瓣兜兰的外皮层具有通道细胞,而其它4种兜兰的外皮层没有通道细胞。5种野生兜兰植物根部皮层细胞中都分布着其菌根真菌形成的“菌丝团”结构,菌丝团在皮层细胞中呈现不同的形态,相邻皮层细胞中的菌丝团通过联通菌丝相连,当菌丝团消解时,皮层细胞内出现大量淀粉粒。
     2.改进了菌丝团分离法及分离培养基,具体分为以下步骤:(1)POA分离培养基的制备;(2)根段的处理和筛选;(3)菌丝团悬浮液的制备;(4)共生真菌的分离和纯化。选择质量和长度相同,并有菌根真菌侵染的野生带叶兜兰根段,与其它3种分离方法和2种分离培养基进行了分离比较试验,使用本研究建立的菌丝团分离法和培养基能获得菌株数较多的类丝核菌(Rhizoctonia-like fungi)纯培养。
     3.利用菌丝团分离法,从5种野生成年兜兰植物根部分离得到16株类丝核菌(Rhizoctonia-like fungi),ITS序列的系统发育分析显示,它们都属于胶膜菌属Tulasnella (瘤菌根菌属Epulorhiza的有性态),分属于8个类群(Type);每一种兜兰都能两种类群或两种类群以上的真菌共生。花岗岩地区的紫纹兜兰的菌根真菌属于Type3,4,8,与石灰岩地区的兜兰的共生真菌是不同的类群;石灰岩地区的带叶兜兰、长瓣兜兰、麻栗坡兜兰都能与Type2勺真菌共生,同时又能与Type1或Type7的真菌共生;而同样生长于石灰岩地区的硬叶兜兰却有自己独特的菌根真菌Type5,6。
     4.野外原地萌发试验结果显示,兜兰种子在野外萌发困难,萌发率极低,在广东野外有紫纹兜兰分布的区域,紫纹兜兰种子原地共生萌发12个月后,其萌发率约为1.06×10-4。在广西雅长自然保护区带叶兜兰分布的区域,带叶兜兰种子的萌发率约为3.8×10-5。在深圳的野生兰科植物迁地保护园和广西雅长自然保护区无兰区种子没有一粒萌发,这表明有成年兰科植物分布的地区,其生长环境更利于兰花种子萌发。室内共生萌发试验结果显示,分布范围广,种群数量较大的带叶兜兰种子对共生真菌的选择范围广,不仅能与宿主兰花的菌根真菌共生,还能能与来自其它兜兰的成年植株根部菌根真菌共生萌发,这表明带叶兜兰在种子萌发成苗阶段对共生真菌的兼容性较强,这可能是其分布较广的原因之一。
     5.通过室内共生萌发试验,多株菌根真菌对带叶兜兰种子萌发有促进作用,最高萌发率为21.0%,其中一株共生真菌己获得专利保护。分别以燕麦培养基和原生境腐殖质作为共生培养基质,首次利用共生萌发技术获得可用于移栽的带叶兜兰共生苗。
The genus Paphiopedilum is very well known as lady's slipper orchid in horticultural science. Paphiopedilum orchids, as one of the most attractive flowers in the Orchidaceae, have numerous fans in the world. At present, wild populations of Paphiopedilum orchids are under great threat as a result of habitat destruction and over-collection for their beautiful and unique flowers. All species of this genus have been classified as endangered species in Appendix I of the CITES. Orchids are myco-heterotrophic plants. In nature, dust-seeds of orchid can germinate only when they are infected with appropriate symbiotic fungi which supply carbon and inorganic nutrients. Furthermore, orchid seedling development, adult growth and reproduction also need mycorrhizal fungi. Based on the different habitat, distribution, ecotype and classification status, P. purpuratum, P. dianthum, P. hirsutissimum, P. micranthum and P. malipoense were selected as samples. This study was tried to investigate the mycorrhizal structure, the mycorrhizal fungi diversity and the relationship between orchid distribution and symbiotic fungi. Meanwhile this study was also tried to establish more effective isolation method and symbiotic cultivation technology. The main results were as follows:
     1. The roots of P. purpuratum, P. micranthum and P. malipoense grew in the litter on the face of soil. The root external morphology of these three species was significantly different from the real terrestrial orchid. The roots of semi-epiphytic P. hirsutissimum and epiphytic P. dianthum grew in the litter on the surface of rocks and also different from the real epiphytic orchid. The basic structure of monocotyledonous plant roots was observed in these five species by optical microscopy and scanning electron microscopy. The exodermis structure, the number of cortical and vascular bundles of P. purpuratum, P. micranthum and P. malipoense was different from two lithophytic species. The exodermis structure of semi-epiphytic P. hirsutissimum was similar to three terrestrial species. The cortical and vascular bundles of this species, however, were similar to epiphytic P. dianthum. There were many pelotons that presented different forms in the cortical cells of these five species. The pelotons in the adjacent cortical cells linked through communication hyphae. A large number of starch grains were observed in cortical cells when the pelotons were digested.
     2. The technique of pelotons isolation from orchid mycorrhiza was improved. The four steps were as:(1) preparation of isolating medium disks,(2) treatment and selection of roots,(3) preparation of the suspension of pelotons,(4) isolation and purification of mycorrhizal fungi. The other three kinds of separation method and two kinds of the separation medium were compared in this study. More Rhizoctonia-like fungi were obtained using our technique of pelotons isolation and separation medium.
     3. Sixteen strains of Rhizoctonia-like fungi were isolated from the root pelotons of these five species and identified by morphological and molecular characteristics. All these strains belonged to Epulorhiza (anamorph of Tulasnella). Based on the phylogenetic analysis of the ITS-5.8S rDNA, sixteen isolates of Epulorhiza were separated into eight types. The fungi isolated from the roots of P. hirsutissimum and P. malipoense belonged to Type1and Type2. The fungi isolated from the roots of P. dianthum belonged to Type2and Type7. The strains associated with P. purpuratum were divided into Type3, Type4and Type8. The fungi isolated from the roots of P. micranthum belonged to Type5and Type6. These results showed the species in common habitats, like P. hirsutissimum, P. dianthum and P. malipoense, shared the same fungal taxa and P. purpuratum from distinctive habitat was associated with special fungal species of Epulorhiza. The molecular phylogenetic analyses of Cypripedioideae orchids and their mycorrhizal fungi indicated that specific relationship between them was complex. Cypripedium and Paphiopedilum species had its own unique mycorrhizal fungi. They also shared mycorrhizal fungi in the same clade.
     4. In situ and in vitro symbiotic seed germination of P. purpuratum, P. dianthum, P. hirsutissimum and P. malipoense were carried out. The results showed that seed germination of Paphiopedilum were difficult in nature. The germination rate of P. purpuratum in its habitat was1.06×10-4after buried12months. The germination rate of P. hirsutissimum in its habitat was3.8×10-5. The seeds placed in the site which grown Paphiopedilum adult plants were easier to germinate. The widespread P. hirsutissimum was generalist in its association with fungal symbionts compared to other three restricted species in vitro symbiotic seed germination test. This may be one of the reasons for its wide distribution.
     5. Several strains can promote seed germination of P. hirsutissimum in vitro symbiotic seed germination test, one of which has patent protection. It is the first report of obtaining Paphiopedilum symbiotic seedlings which can be used for transplanting by two kind of symbiotic seed germination techniques.
引文
1. 陈金花,胡美姣,宋希强,等.野生五唇兰菌根显微结构观察[J].菌物学报,2010,(1):26-30.
    2. 陈之林,叶秀粦,梁承邺,等.杏黄兜兰和硬叶兜兰的种子试管培养[J].园艺学报,2004,31(4):540-542.
    3. 丁长春,虞泓,刘方媛.影响杏黄兜兰种了萌发的因素[J].云南植物研究,2004,26(6):673-677.
    4. 丁长春,虞泓,刘方媛,等.杏黄兜兰胚培养与快速繁殖[J].植物生理学通讯,2005,41(1):55.
    5. 丁长春,夏念和.麻栗坡兜兰的无菌播种与快速繁殖[J].植物生理学通讯,2009,45(12):1201-1202.
    6. 丁长春.胼胝兜兰的无菌播种和快速繁殖[J].文山师范高等专科学校学报,2009,22(4):108-109.
    7. 段春芳,李枝林,方飞,等.云南几种兰花菌根真菌的分离鉴定[J].西南农业学报,2010,23(3):756-759.
    8. 范黎,郭顺星,曹文芩,等.墨兰共生真菌一新种的分离、培养、鉴定及其生物活性[J].真菌学报,1996,(4):251-255.
    9. 范黎,郭顺星,徐锦堂.天麻种子萌发过程中与其共生真菌石斛小菇问的相互作用[J].菌物系统,1999,18(2):219-225.
    10.范黎,郭顺星,肖培根.密花石斛等六种兰科植物菌根的显微结构研究[J].植物学通报,2000,17(1):73-79.
    11.高川,郭顺星,张靖,等.福建金线莲与菌根真菌互作过程中的蛋白质组研究[J].中国中药杂志,2012,37(24):3717-3722.
    12.高川,郭顺星,陈娟,等.台湾金线莲和菌根真菌互作过程中抗相关蛋白质组差异[J].中国药学杂志,2013,48(6):414-418.
    13.高倩,李树云,胡虹.四种杓兰的菌根结构及其周年动态[J].广西植物,2009,29(2):187-191.
    14.郭良栋.内生真菌研究进展[J].菌物系统,2001,20(1):148-152.
    15.郭仕坛,伍建榕,胡隽,等.大雪兰种子的共生培养研究[J].云南大学学报(自然科学版),2012,34(3):348-355.
    16.郭顺星,徐锦堂.天麻消化紫萁小菇及蜜环菌过程中细胞超微结构变化的研究[J].真菌学报,1990a,9(3):218-225.
    17.郭顺星,徐锦堂.真菌及其培养物提取液在细叶石斛种了萌发中的作用[J].中国中药杂志,1990b,15(7):13-15.
    18.郭顺星,范黎,曹文芩,等.菌根真菌—新种——石斛小菇(英文)[J].菌物系统,1999,18(2):141-144.
    19.侯不勇,郭顺星.真菌对植物的诱导作用及其在天然药物研究上的应用[J].中草药,2002,33(9):90-92.
    20.侯天文,金辉,刘红霞,等.四川黄龙沟优势兰科植物菌根真菌多样性及其季节变化[J].,生态学报,2010,30(13):3424-3432.
    21.胡陶,李潞滨,杨凯,等.中国兰属植物菌根真菌的分离与鉴定[J].北京林业大学学报,2008,30(3):132-135.
    22.黄玮婷,曾宋君.文山兜兰白变种的无菌播种和试管成苗[J].植物生理学通讯,2010,46(10):1069-1070.
    23.黄永会,朱国胜,刘作易,等.杜鹃兰菌根结构显微观察初报[J].贵州农业科学,2007,35(1): 16-17.
    24.姜鹏,范黎.兰科植物与真菌共生关系研究方法及其应用[J].菌物学报,2009,28(6):895-901.
    25.柯海丽,宋希强,谭志琼,等.兰科植物种子原地共生萌发技术及其应用前景[J].林业科学,2007,43(5):125-129.
    26.李柏年,高金城.大花杓兰根结构的扫描电镜研究[J].甘肃科学学报,1993,5(2):64-67.
    27.李标,唐坤,张岗,等.菌根真菌诱导的铁皮石斛根差减cDNA文库构建[J].中国药学杂志,2012a,47(22):1790-1796.
    28.李标,唐明娟,唐坤,等.与菌根真菌共生的兰科福建金线莲差异表达基因的筛选[J].中国科学:生命科学,2012b,42(3):218-225.
    29.李明,张灼.杏黄兜兰菌根研究与应用[J].生物学杂志,2001,18(6):17-18.
    30.李明.莲瓣兰菌根研究[J].云南师范大学学报(自然科学版),2004,24(1):55-57.
    31.李鹏,郑桂灵,周峰.兰花的传粉与保护研究[J].北方园艺,2009,(5):133-136.
    32.林福旱,刘小红,王洪凯,等.紫杉醇及其产生菌的研究现状与展望[J].微生物学报,2003,43(4):534-538.
    33.刘可为,刘仲健,雷嗣鹏,等.杏黄兜兰传粉生物学的研究[J].深圳特区科技,2005:171-183.
    34.刘润进,陈应龙.菌根学[M].北京:科学出版社,2007.
    35.刘晓燕.不同栽培基质对兜兰(Paphiopedilum callosum)生长及叶片净光合速率的影响(英文)[J].两南农业学报,2006,19(1):4449.
    36.刘仲健,陈心启.窄瓣兜兰,中国云南兰科一新种[J].植物分类学报,2000,38(5):464.
    37.刘仲健,张建勇,徐向明,等.同色兜兰及其亲缘群的研究[J].云南植物研究,2000,22(4):390-394.
    38.刘仲健,陈心启.玲珑兜兰,中国云南兰科一新种[J].植物分类学报,2001,39(2):156-159.
    39.刘仲健,张建勇.多叶兜兰,云南兜兰属一新种[J].云南植物研究,2002,23(2):191-192.
    40.刘仲健,陈心启.密毛兜兰,中国云南兰科一新种[J].植物分类学报,2002,40(3):283-285.
    41.刘仲健,陈心启,张建勇,等.麻栗坡兜兰及其近缘植物的分类研究[J].云南植物研究,2002,24(2):193-198.
    42.刘仲健,陈心启.翡翠兜兰,中国云南兰科一新种[J].武汉植物学研究,2003,21(6):489-491.
    43.刘仲健,张建勇,茹正忠,等.兰科紫纹兜兰的保育生物学研究[J].生物多样性,2004,12(5):509-516.
    44.刘仲健,刘可为,陈利君,等.濒危物种杏黄兜兰的保育生态学[J].生态学报,2006,26(9):2791-2800.
    45.刘仲健,陈心启,陈利君,等.中国兜兰属植物[M].北京:科学出版社,2009.
    46.龙波,龙春林.兜兰属植物及其研究现状[J].自然杂志,2006,28(6):341-344.
    47.罗毅波,贾建生,王春玲.中国兰科植物保育的现状和展望[J].生物多样性,2003a,11(1):70-77.
    48.罗毅波,贾建生,王春玲.初论中国兜兰属植物的保护策略及其潜在资源优势[J].生物多样性,2003b,11(6):491498.
    49.皮秋,霞严宁,胡虹,等.杏黄兜兰的花发育过程及引种栽培[J].云南植物研究,2009,31(4):296-302.
    50.盛春玲,李勇毅,高江云.硬叶兰种了的迁地共生萌发及有效共生真菌的分离和鉴定[J].植物生态学报,2012,36(8):859-869.
    51.施继惠,李明.莲瓣兰菌根真菌的初步研究[J].大理学院学报,2006,5(10):15-18.
    52.史军,程瑾,罗敦,等.利用传粉综合征预测:长瓣兜兰模拟繁殖地欺骗雌性食蚜蝇传粉[J]. 植物分类学报,2007,45(4):551-560.
    53.孙安慈.兰属、兜兰属、石斛属植物叶片的扫描电镜观察[J].武汉植物学研究,1995,13(4):289-294.
    54.孙彩云,张明永,叶秀粦,等.利用RAPD和同工酶研究中国兜兰属种问亲缘关系[J].园艺学报,2005,32(2):268-272.
    55.田凡,朱国胜,桂阳,等.硬叶兜兰菌根真菌的分离及培养特性研究[J].北方园艺,2012,(7):61-64.
    56.于莲辉,姜运力,余金勇,等.同色兜兰的组织培养与快速繁殖[J].植物生理学通讯,2008,44(6):1171-1172.
    57.王莲辉,姜运力,余金勇,等.长瓣兜兰的组织培养与快速繁殖[J].植物生理学通讯,2009,45(9):887.
    58.王莲辉,魏鲁明,姜运力,等.白花兜兰的组织培养与快速繁殖[J].植物生理学通讯,2010,46(10):1071-1072.
    59.王瑞苓,胡虹,李树云.黄花杓兰与菌根真菌共生关系研究[J].云南植物研究,2004,26(4):445-450.
    60.王亚妮.兰科石斛属植物根部内生真菌多样性研究及应用[D].北京:北京林业大学,2013.
    61.吴慧凤,宋希强,刘红霞.铁皮石斛种子的室内共生萌发[J].生态学报,2012,32(8):2491-2497.
    62.吴剑丙,朱江敏,白坚,等.野生兰科植物菌根内生真菌分离及鉴定[J].杭州师范大学学报(自然科学版),2011,10(3):228-232.
    63.伍建榕,韩素芬,朱有勇,等.春兰与丝核菌共生菌根及结构研究[J].南京林业大学学报(自然科学版),2005,29(4):105-108.
    64.伍建榕,吕梅,刘婷婷,等.6种兰科植物菌根的显微及超微结构研究[J].西北农林科技大学学报(自然科学版),2009,37(7):199-207.
    65.徐锦堂,郭顺星.供给天麻种子萌发营养的真菌——紫萁小菇[J].真菌学报,1989,8(3):221-226.
    66.徐锦堂,冉砚珠,郭顺星.天麻生活史的研究[J].中国医学科学院学报,1989,11(4):237-241.
    67.徐锦堂,郭顺星,范黎,等.天麻种子与小菇属真菌共生萌发的研究[J].菌物系统,2001,20(1):137-141.
    68.杨光穗,刘金婷,任羽.海南卷萼兜兰的染色体核型研究[J].热带农业科学,2008,28(5):39-41.
    69.杨友联,刘作易,朱国胜.独蒜兰种了共生萌发研究[J].微生物学通报,2008,35(6):909-912.
    70.杨志娟,张显,张孟锦,等.紫毛兜兰的核型研究[J].西北农林科技大学学报(自然科学版),2006a,34(11):163-165.
    71.杨志娟,朱根发,吕复兵,等.兜兰宽瓣亚属8种植物的核型比较[J].园艺学报,2006b,33(5):1015-1020.
    72.余知和,曾昭清,张明涛.春兰菌根的显微结构及菌根真菌的分离[J].武汉植物学研究,2009,27(3):332-335.
    73.虞佩珍.兰花世界[M].北京:中国农业出版社,2007.
    74.袁莉杭,陈金丹,陈敏,等.春兰菌根菌的分离及共生培养体系的研究[J].微生物学杂志,2008,28(1):72-75.
    75.曾宋君,陈之林,段俊.带叶兜兰的无菌播种和离体快速繁殖[J].植物生理学通讯,2006,42(2):247.
    76.曾宋君,陈之林,吴坤林,等.兜兰无菌播种和组织培养研究进展[J].园艺学报,2007,34(3):793-796.
    77.张岗,赵明明,李标,等.一个受菌根真菌诱导的铁皮石斛钙依赖蛋白激酶基因的克隆及表达分析[J].药学学报,2012a,47(11):1548-1554.
    78.张岗,赵明明,宋超,等.铁皮石斛促分裂原活化蛋白激酶基因IDoMPKI的克隆及特征分析[J].药学学报,2012b,47(12):1703-1709.
    79.张岗,赵明明,张大为,等.铁皮石斛钙依赖蛋白激酶基因的分子克隆及特征分析[J].中国药学杂志,2013a,48(12):958-964.
    80.张岗,张大为,赵明明,等.铁皮石斛促分裂原活化蛋白激酶基因DoMPK2的分子特征[J].中国药学杂志,2013b,48(19):1654-1659.
    81.张建勇,刘仲健,雷嗣鹏,等.彩云兜兰及其近缘种的研究[J].植物分类学报,2001,36(6):562-567.
    82.张娟娟,严宁,胡虹.三种兜兰属植物种子发育过程及其与无菌萌发的关系[J].植物分类与资源学报,2013,35(1):33-40.
    83.赵明明,张岗,张大为,等.铁皮石斛S-腺苷酸脱羧酶基因DoSAMDCl的克隆及特征分析[J].药学学报,2013,48(6):946-952.
    84.周斌,魏勤,李绍兰,等.云南西双版纳几种热带兰菌根真菌的研究[J].云南大学学报(自然科学版),2003,25(2):161-163.
    85.周丽,李松克,邓克云,等.格力兜兰的无菌播种与组培快繁研究[J].安徽农业科学,2012,40(18):9590-9592.
    86.朱国胜.贵州特色药用兰科植物杜鹃兰和独蒜兰共生真菌研究与应用[D].武汉:华中农业大学,2010.
    87.朱鑫敏,胡虹,李树西,等.内生真菌与两种兜兰共培养过程中的相互作用[J].植物分类与资源学报,2012,34(2):171-178.
    88. Alexander C, Alexander I J, Hadley G. Phosphate uptake by Goodyera repens in relation to mycorrhizal infection[J]. New Phytologist,1984,97(3):401-411.
    89. Alexander C, Hadley G. Carbon movement between host and mycorrhizal endophyte during the endophyte during the development of the orchid Goodyera repens Br[J]. New Phytologist,1985, 101(4):657-665.
    90. Arditti J, Ghani A K A. Tansley Review No.110. Numerical and physical properties of orchid seeds and their biological implications[J]. New Phytologist,2000,145:367-421.
    91. Athipunyakom P, Manoch L, Piluek C. Isolation and identification of mycorrhizal fungi from eleven terrestrial orchids[J]. Kasetsart J (Nat Sci),2004,38(2):216-228.
    92. Batty A L, Dixon K W, Brundrett M, et al. Constraints to symbiotic germination of terrestrial orchid seed in a mediterranean bushland[J]. New Phytologist,2001,152(3):511-520.
    93. Bidartondo M I, Burghardt B, Gebauer G, et al. Changing partners in the dark:isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees[J]. Proceedings of the Royal Society of London Series B-Biological Sciences,2004,271(1550):1799-1806.
    94. Bonnardeaux Y, Brundrett M, Batty A, et al. Diversity of mycorrhizal fungi of terrestrial orchids: compatibility webs, brief encounters, lasting relationships and alien invasions[J]. Mycological Research,2007,111(1):51-61.
    95. Bougoure J, Ludwig M, Brundrett M, et al. Identity and specificity of the fungi forming mycorrhizas with the rare mycoheterotrophic orchid Rhizanthella gardneri[J]. Mycological Research,2009,113(10):1097-1106.
    96. Brundrett M, Sivasithamparam K, Ramsay M, et al. Orchid Conservation Techniques Manual, First International Orchid Conservation Congress-Training Course[M]. Perth:Plant Science, King Park & Botanic Garden,2001.
    97. Brundrett M C, Scade A, Batty A L, et al. Development of in situ and ex situ seed baiting techniques to detect mycorrhizal fungi from terrestrial orchid habitats[J]. Mycological Research, 2003,107(10):1210-1220.
    98. Cameron D D, Leake J R, Read D J. Mutualistic mycorrhiza in orchids:evidence from plant-fungus carbon and nitrogen transfers in the green-leaved terrestrial orchid Goodyera repens[J]. New Phytologist,2006,171(2):405-416.
    99. Cameron D D, Johnson I, Leake J R, et al. Mycorrhizal acquisition of inorganic phosphorus by the green-leaved terrestrial orchid Goodyera repens[J]. Annals of Botany,2007,99(5):831-834.
    100. Chen J, Wang H, Guo S X. Isolation and identification of endophytic and mycorrhizal fungi from seeds and roots of Dendrobium (Orchidaceae)[J]. Mycorrhiza,2012,22(4):297-307.
    101. Chung S Y, Choi S H, Kim M J, et al. Genetic relationship and differentiation of Paphiopedilum and Phragmepedium based on RAPD analysis[J]. Scientia Horticulturae,2006,109(2):153-159.
    102. Chutima R, Dell B, Vessabutr S, et al. Endophytic fungi from Pecteilis susannae (L.) Rafin (Orchidaceae), a threatened terrestrial orchid in Thailand[J]. Mycorrhiza,2011a,21(3):221-229.
    103. Chutima R, Dell B, Lumyong S. Effects of mycorrhizal fungi on symbiotic seed germination of Pecteilis susannae (L.) Rafin (Orchidaceae), a terrestrial orchid in Thailand[J]. Symbiosis,2011b, 53(3):149-156.
    104. Chutima R, Lumyong S. Production of indole-3-acetic acid by Thai native orchid-associated fungi[J]. Symbiosis,2012,56(1):35-44.
    105. Clements M A, Muir H, Cribb P J. A preliminary report on the symbiotic germination of European terrestrial orchids[J]. Kew Bulletin,1986,41(2):437-445.
    106. Cribb P. The Genus Paphiopedilum (2nd edn.)[M]. UK:Natural History Publications,1998.
    107. Currah R S, Sherburne R. Septal ultrastructure of some fungal endophytes from boreal orchid mycorrhizas[J]. Mycological Research,1992,96(7):583-587.
    108. Dearnaley J, Le Brocque A F. Molecular identifcation of the primary root fungal endophytes of Dipodium hamiltonianum (Orchidaceae)[J]. Australian Journal of Botany,2006,54(5):487-491.
    109. Dearnaley J. Further advances in orchid mycorrhizal research[J]. Mycorrhiza,2007,17(6): 475-486.
    110. Dearnaley J, Martos F, Selosse M.12 Orchid Mycorrhizas:Molecular Ecology, Physiology, Evolution and Conservation Aspects. Fungal associations[M]:Springer,2012:207-230.
    111. Girlanda M, Selosse M A, Cafasso D, et al. Inefficient photosynthesis in the Mediterranean orchid Limodorum abortivum is mirrored by specific association to ectomycorrhizal Russulaceae[J]. Molecular Ecology,2006,15(2):491-504.
    112. Graham R R, Dearnaley J D W. The rare Australian epiphytic orchid Sarcochilus weinthalii associates with a single species of Ceratobasidium[J].Fungal Diversity,2012,54(1):31-37.
    113.Hadley G, Williamson B. Features of mycorrhizal infection in some Malayan orchids[J]. New Phytologist,1972,71(6):1111-1118.
    114. Hadley G, Purves S. Movement of 14 Carbon from host to fungus in orchid mycorrhiza[J]. New Phytologist,1974,73(3):475-482.
    115. Hall T. Bioedit:a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT[J]. Nucleic Acids Symposium Series,1999,41:95-98.
    116. Huynh T T, Thomson R, Mclean C B, et al. Functional and genetic diversity of mycorrhizal fungi from single plants of Caladenia formosa (Orchidaceae)[J]. Annals of Botany,2009,104(4): 757-765.
    117. Julou T, Burghardt B, Gebauer G, et al. Mixotrophy in orchids:insights from a comparative study of green individuals and nonphotosynthetic individuals of Cephalanthera damasonium[J]. New Phytologist,2005,166(2):639-653.
    118. Kennedy A H, Taylor D L, Watson L E. Mycorrhizal specificity in the fully mycoheterotrophic Hexalectris Raf. (Orchidaceae:Epidendroideae)[J]. Molecular Ecology,2011,20(6):1303-1316.
    119. Kristiansen K A, Taylor D L, Kjoller R, et al. Identification of mycorrhizal fungi from single pelotons of Dactylorhiza majalis (Orchidaceae) using single-strand conformation polymorphism and mitochondrial ribosomal large subunit DNA sequences[J]. Molecular Ecology,2001,10(8): 2089-2093.
    120. Kuga Y, Sakamoto N, Yurimoto H. Stable isotope cellular imaging reveals that both live and degenerating fungal pelotons transfer carbon and nitrogen to orchid protocorms[J]. New Phytologist,2014,202(2):594-605.
    121. Leake J R. The biology of myco-heterotrophic ('saprophytic') plants[J]. New Phytologist,1994, 127(2):171-216.
    122. Lee Y I, Yeung E C, Lee N, et al. Embryo development in the lady's slipper orchid, Paphiopedihum delenatii, with emphasis on the ultrastructure of the suspensor[J]. Annals of Botany,2006,98(6): 1311-1319.
    123. Liu H, Luo Y, Liu H. Studies of Mycorrhizal Fungi of Chinese Orchids and Their Role in Orchid Conservation in China-A Review[J]. Botanical Review,2010,76(2):241-262.
    124. Long B, Niemiera A X, Cheng Z Y, et al. In vitro propagation of four threatened Paphiopedilum species (Orchidaceae)[J]. Plant Cell Tiss Organ Cult,2010,101(2):151-162.
    125. Masuhara G, Katsuya K. In situ and in vitro specificity between Rhizoctonia spp. and Spiranthes sinensis (Persoon) Ames, var. amoena (M. Bieberstein) Hara (Orchidaceae)[J]. New Phytologist, 1994,127(4):711-718.
    126. Mckendrick S L, Leake J R, Taylor D L, et al. Symbiotic germination and development of myco-heterotrophic plants in nature:ontogeny of Corallorhiza trifida and characterization of its mycorrhizal fungi[J]. New Phytologist,2000,145(3):523-537.
    127. Merckx V. Mycoheterotrophy:The Biology of Plants Living on Fungi[M]:Springer,2012.
    128. Nontachaiyapoom S, Sasirat S, Manoch L. Isolation and identification of Rhizoctonia-like fungi from roots of three orchid genera, Paphiopedilum, Dendrobium, and Cvmbidium, collected in Chiang Rai and Chiang Mai provinces of Thailand[J]. Mycorrhiza,2010,20(7):459-471.
    129. Nontachaiyapoom S, Sasirat S, Manoch L. Symbiotic seed germination of Grammatophyllum speciosum Blume and Dendrobium draconis Rchb. f, native orchids of Thailand[J]. Scientia Horticulturae,2011,130(1):303-308.
    130. Otero J T, Thrall P H, Clements M, et al. Codiversification of orchids (Pterostylidinae) and their associated mycorrhizal fungi[J]. Australian Journal of Botany,2011,59(5):480-497.
    131. Peterson R L, Massicotte H B, Melville L H. Mycorrhizas:Anatomy and Cell Biology[M]. UK: CABI Publishing, Wallingford,2004.
    132. Phillips R D, Barrett M D, Dixon K W, et al. Do mycorrhizal symbioses cause rarity in orchids?[J]. Journal of Ecology,2011,99(3):858-869.
    133. Porras-Alfaro A, Bayman P. Mycorrhizal fungi of Vanilla:diversity, specificity and effects on seed germination and plant growth[J]. Mycologia,2007,99(4):510-525.
    134. Rasmussen F N. Recent developments in the study of orchid mycorrhiza[J]. Plant and Soil,2002, 244:149-163.
    135. Rasmussen H. Terrestrial Orchids from Seed to Mycotrophic Plant[M]. New York,USA: Cambridge University Press,1995.
    136. Rasmussen H N, Whigham D F. Seed ecology of dust seeds in situ:a new study technique and its application in terrestrial orchids[J]. American Journal of Botany,1993,80(12):1374-1378.
    137. Rasmussen H N, Whigham D F. The underground phase:a special challenge in studies of terrestrial orchid populations[J]. Botanical Journal of the Linnean Society,1998,126:49-64.
    138. Roche S A, Carter R J, Peakall R, et al. A narrow group of monophyletic Tulasnella (Tulasnellaceae) symbiont lineages are associated with multiple species of Chiloglottis (Orchidaceae) implications for orchid diversity[J]. American Journal of Botany,2010,97(8): 1313-1327.
    139. Rodrigues K F, Kumar S V. Isolation and characterization of 24 microsatellite loci in Paphiopedilum rothschildianum, an endangered slipper orchid[J]. Conservation genetics,2009, 10(1):127-130.
    140. Sathiyadash K, Muthukumar T, Murugan S B, et al. In vitro symbiotic seed germination of South Indian endemic orchid Coelogyne nervosa[J]. Mycoscience,2013,55(3):183-189.
    141. Sebastian F, Vanesa S, Eduardo F, et al. Symbiotic seed germination and protocorm development of Aa achalensis Schltr., a terrestrial orchid endemic from Argentina[J]. Mycorrhiza,2014,24(1): 35-43.
    142. Shefferson R P, Weiss M, Kull T, et al. High specificity generally characterizes mycorrhizal association in rare lady's slipper orchids, genus Cypripedium[J]. Molecular Ecology,2005,14(2): 613-626.
    143. Shefferson R P, Taylor D L, Weiss M, et al. The evolutionary history of mycorrhizal specificity among lady's slipper orchids[J]. Evolution,2007,61(6):1380-1390.
    144. Shefferson R P, Cowden C C, Mccormick M K, et al. Evolution of host breadth in broad interactions:mycorrhizal specificity in East Asian and North American rattlesnake plantains (Goodyera spp.) and their fungal hosts[J]. Molecular Ecology,2010,19(14):3008-3017.
    145. Shi J, Luo Y B, Bernhardt P, et al. Pollination by deceit in Paphiopedilum barbigerum (Orchidaceae):a staminode exploits the innate colour preferences of hoverflies (Syrphidae)[J]. Plant Biology,2009,11(1):17-28.
    146. Shimura H, Sadamoto M, Matsuura M, et al. Characterization of mycorrhizal fungi isolated from the threatened Cypripedium macranthos in a northern island of Japan:two phylogenetically distinct fungi associated with the orchid[J]. Mycorrhiza,2009,19(8):525-534.
    147. Smith S E, Read D J. Mycorrhizal symbiosis[M]. London:Academic press,2008.
    148. Smith Z F, James E A, Mclean C B. Mycorrhizal specificity of Diuris fragrantissima (Orchidaceae) and persistence in a reintroduced population[J]. Australian Journal of Botany,2010,58(2):97-106.
    149. Stockel M, Tesitelova T, Jersakova J, et al. Carbon and nitrogen gain during the growth of orchid seedlings in nature[J]. New Phytologist,2014,202:606-615.
    150. Swarts N D, Dixon K W. Perspectives on orchid conservation in botanic gardens[J]. Trends in Plant Science,2009,14(11):590-598.
    151. Swarts N D, Sinclair E A, Francis A, et al. Ecological specialization in mycorrhizal symbiosis leads to rarity in an endangered orchid[J]. Molecular Ecology,2010,19(15):3226-3242.
    152. Swofford D. PAUP:Phylogenetic analysis using parsimony,Version 4.0b10[M]. Sunderland: Sinauer Associates,2002.
    153. Tan X M, Wang C L, Chen X M, et al. In vitro seed germination and seedling growth of an endangered epiphytic orchid, Dendrobium officinale, endemic to China using mycorrhizal fungi (Tulasnella sp.)[J]. Scientia Horticulturae,2014,165:62-68.
    154. Taylor D L, Bruns T D. Independent, specialized invasions of ectomycorrhizal mutualism by two nonphotosynthetic orchids[J]. Proceedings of the National Academy of Sciences of the United States of America,1997,94(9):4510-4515.
    155. Taylor D L, Bruns T D. Population, habitat and genetic correlates of mycorrhizal specialization in the 'cheating' orchids Corallorhiza maculata and C. mertensiana[J].Molecular Ecology,1999, 8(10):1719-1732.
    156. Taylor D L, Mccormick M K. Internal transcribed spacer primers and sequences for improved characterization of basidiomycetous orchid mycorrhizas[J]. New Phytologist,2008,177: 1020-1033.
    157. Thomson J, Gibson T, Plewniak F, et al. The Clustal-X windows interface:Flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic Acids Research,1997,25: 4876-4882.
    158. Tsavkelova E A, Cherdyntseva T A, Klimova S Y, et al. Orchid-associated bacteria produce indole-3-acetic acid, promote seed germination, and increase their microbial yield in response to exogenous auxin[J]. Archives of Microbiology,2007,188(6):655-664.
    159. Umata H. Formation of endomycorrhizas by an achlorophyllous orchid, Erythrorchis ochobiensis, and Auricularia polytricha[J]. Mycoscience,1997a,38(3):335-339.
    160. Umata H. In vitro germination of Erythrorchis ochobiensis (Orchidaceae) in the presence of Lyophyllum shimeji, an ectomycorrhizal fungus[J]. Mycoscience,1997b,38(3):355-357.
    161. Umata H. A new biological function of shiitake mushroom, Lentimula edodes, in a myco-heterotrophic orchid, Erythrorchis ochobiensis[J]. Mycoscience,1998,39(1):85-88.
    162. Umata H, Ota Y, Yamada M, et al. Germination of the fully myco-heterotrophic orchid Cyrtosia septentrionalis is characterized by low fungal specificity and does not require direct seed-mycobiont contact[J]. Mycoscience,2013,54(5):343-352.
    163. Valadares R B, Pereira M C, Otero J T, et al. Narrow Fungal Mycorrhizal Diversity in a Population of the Orchid Coppensia doniana[J]. Biotropica,2012,44(1):114-122.
    164. Van der Heijden M G A, Klironomos J N U, Ursic M, et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity [J]. Nature,1998,396(6706): 69-72.
    165. Veldre V, Abarenkov K, Bahram M, et al. Evolution of nutritional modes of Ceratobasidiaceae (Cantharellales, Basidiomycota) as revealed from publicly available ITS sequences[J]. Fungal Ecology,2013,6(4):256-268.
    166. Wang H, Fang H, Wang Y, et al. In situ seed baiting techniques in Dendrobium officinale Kimuraet Migo and Dendrobium nobile Lindl.:the endangered Chinese endemic Dendrobium (Orchidaceae)[J]. World Journal of Microbiology and Biotechnology,2011,27(9):2051-2059.
    167. Warcup H J, Talbot P H B. Perfect states of Rhizoctonia associated with orchids[J]. New Phytologist,1967,66(4):631-641.
    168. Warcup H J. The mycorrhizal relationships of Australian orchids[J]. New Phytologist,1981,87(2): 371-381.
    169. Wilkinson K G, Dixon K W, Sivasithamparam K. Interaction of soil bacteria, mycorrhizal fungi and orchid seed in relation to germination of Australian orchids[J]. New Phytologist,1989,112(3): 429-435.
    170. Wilkinson K G, Dixon K W, Sivasithamparam K, et al. Effect of IAA on symbiotic germination of an Australian orchid and its production by orchid-associated bacteria[J]. Plant and Soil,1994, 159(2):291-295.
    171. Xing X, Ma X, Deng Z, et al. Specificity and preference of mycorrhizal associations in two species of the genus Dendrobium (Orchidaceae)[J]. Mycorrhiza,2013,23(4):317-324.
    172. Yamato M, Yagame T, Suzuki A, et al. Isolation and identification of mycorrhizal fungi associating with an achlorophyllous plant, Epipogium roseum (Orchidaceae)[J]. Mycoscience, 2005,46(2):73-77.
    173. Yoder J A, Zettler L W, Stewart S L. Water requirements of terrestrial and epiphytic orchid seeds and seedlings, and evidence for water uptake by means of mycotrophy[J]. Plant Science,2000, 156(2):145-150.
    174. Yuan L, Yang Z L, Li S, et al. Mycorrhizal specificity, preference, and plasticity of six slipper orchids from South Western China[J]. Mycorrhiza,2010,20(8):559-568.
    175. Zelmer C D, Cuthbertson L, Currah R S. Fungi associated with terresttial orchid mycorrhizas, seeds and protocorms[J]. Mycoscience,1996,37(4):439-448.
    176. Zeng S J, Wu K L, Silva J A T, et al. Asymbiotic seed germination, seedling development and reintroduction of Paphiopedilum wardii Sumerh., an endangered terrestrial orchid[J]. Scientia Horticulturae,2012,138:198-209.
    177. Zeng S J, Wu K L, Silva J A T, et al. In vitro propagation of Paphiopedilum hangianum Perner & Gruss[J]. Scientia Horticulturae,2013,151:147-156.
    178. Zettler L W, Piskin K A, Stewart S L, et al. Protocorm mycobionts of the Federally threatened eastern prairie fringed orchid, Platanthera leucophaea (Nutt.) Lindley, and a technique to prompt leaf elongation in seedlings[J]. Studies in Mycology,2005,(53):163-171.
    179. Zettler L W, Piskin K A. Mycorrhizal fungi from protocorms, seedlings and mature plants of the Eastern Prairie Fringed Orchid, Platanthera leucophaea (Nutt.) Lindley:A comprehensive list to augment conservation[J]. The American Midland Naturalist,2011,166(1):29-39.
    180. Zhu G S, Yu Z N, Gui Y, et al. A novel technique for isolating orchid mycorrhizal fungi[J]. Fungal Diverstiy,2008,33:123-137.
    181. Zi X, Sheng C, Goodale U M, et al. In situ seed baiting to isolate germination-enhancing fungi for an epiphytic orchid, Dendrobium aphyllum (Orchidaceae)[J]. Mycorrhiza,2014:1-13.