六味补气胶囊对慢性阻塞性肺病肺气虚证大鼠的防治及作用机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1目的
     本研究观察大鼠呼吸系统症状体征及肺功能,检测COPD肺气虚证大鼠辅助T细胞(Th)、调节性T细胞(Treg)、树突状细胞(DC)、热休克蛋白(HSP70)、基质金属蛋白酶系统(MMPs/TIMPs)、细胞信号转导转录激活因子(STAT)、JAKs/STATs信号通路、T-bet、RORγt、GATA变化,同时观察六味补气胶囊对上述指标的干预,探讨六味补气胶囊防治COPD肺气虚证大鼠的作用机制。
     2方法
     2.1动物分组
     将大鼠随机分为正常组、模型组、模型空白组(以下简称模空组)、模型安慰剂组(以下简称模安组)、六味补气胶囊预防组(以下简称六预组)、六味补气胶囊治疗组(以下简称六味补气组)、金水宝组、脾氨肽组,每组10只。
     2.2模型复制
     除正常组大鼠外,其余大鼠于实验第1天、14天采用10%水合氯醛麻醉,手术暴露气管,注入1mg.mL-1脂多糖200μL至气管内。脂多糖滴入的次日,将大鼠置于动物气雾吸入仪中,用50g锯末加7.11g香烟烟丝混和点燃烟熏,每日烟熏1次,每次30min。造模周期28d。COPD模型成功标准依据肺组织影像学、肺功能及肺组织病理形态学变化。于第22天改烟熏次数为3次/天。二次复制肺气虚证模型成功依据肺功能及大鼠生物学症状、体征变化,大鼠生物学症状、体征变化包括反映肺气虚有无的一般情况、活动量、毛发、体质量、饮食量、咳嗽、呼吸频率等,其中呼吸频率为大鼠平静呼吸时每分钟呼吸次数。
     2.3药物干预
     于模型复制第1天开始,模空组、模安组、六预组大鼠预防给药剂量如下:模空组大鼠未予任何药物或安慰剂;模安组大鼠予生理盐水,按照10mL·kg-1·d-1剂量灌服,一天一次,连续灌服28d;六预组大鼠予六味补气胶囊混悬液,按照0.4g·kg-1·d-1(相当于临床成人常规用量的10倍)剂量灌服,一天一次,连续灌服28d。模型复制周期28d后治疗组给药,给药剂量按照体表面积计算得出。正常组、模型组灌服生理盐水10mL·kg-1·d-1,六味补气组灌服六味补气胶囊混悬液0.4g·kg-1·d-1,金水宝组灌服金水宝胶囊混悬液0.495g·kg-1·d-1,脾氨肽组灌服脾氨肽水溶液0.33mg·kg-1·d-1,各药物组剂量均相当于成人常规临床用量的10倍,1次/天,共给药30d。
     2.4指标检测
     分别于预防给药28d及治疗给药30d后观察和检测以下指标:呼吸系统症状体征、肺功能、肺组织病理形态学变化,血清细胞因子、Th1、Th2、Th17细胞变化,外周血Treg表达、肺组织DC、HSP70表达,肺组织MMPs/TIMPs、JAKs/STATs信号通路、T-bet、RORγt、GATA变化。
     3结果
     3.1COPD肺气虚证大鼠指标表达及相关性分析
     3.1.1COPD肺气虚证大鼠呼吸系统改变
     COPD肺气虚证大鼠出现蜷伏少动,拱背蜷卧,撮毛,食量减少,毛失光泽、发黄、易脱落,体质量较正常组减轻;模型组呼吸急促,呼吸频率明显高于正常组,呼吸道有分泌物从口鼻流出,偶可闻及咳嗽及气道痰鸣音,随着造模时间的延长。与正常组比较,模型组大鼠肺功能参数FEV0.3、FVC、FEV0.3/FVC降低;肺系数、肺泡炎积分及病理学总积分升高。3.1.2COPD肺气虚证大鼠细胞因子变化及相关性分析
     COPD肺气虚证大鼠血清中IL-1β、IL-6、IL-12升高,IL-10、IL-13、IL-35表达降低。肺功能参数FEV0.3与IL-10呈正相关,FEV0.3/FVC与IL-13呈正相关,PEF与IL-35呈正相关,肺泡炎积分与IL-6呈正相关,肺病理学积分与IL-1β、IL-12呈正相关。肺功能参数FVC与IL-6呈负相关,FEV0.3/FVC与IL-1β呈负相关,呼吸频率与IL-13呈负相关。3.1.3COPD肺气虚证大鼠Th细胞变化及相关性分析
     COPD肺气虚证大鼠血清IFN-γ、IL-17、Th1/Th2升高,血清IL-4和肺组织IL-4蛋白降低,肺组织IFN-γ、IL-17蛋白表达升高。肺功能参数FEV0.3/FVC与血清IL-4呈正相关,肺泡炎积分与Th1/Th2呈正相关。肺功能参数FEV0.3与血清IFN-γ、肺组织IFN-γmRNA呈负相关,FVC与IFN-γ蛋白呈负相关,FEV0.3/FVC与Th1/Th2呈负相关,PEF与IL-17蛋白呈负相关;肺泡炎积分与IL-4蛋白呈负相关,肺病理学积分与IL-17、IFN-γ蛋白呈正相关。
     3.1.4COPD肺气虚证大鼠Treg变化及相关性分析
     COPD肺气虚证大鼠外周血CD4+CD25+Treg、CD4+CD25+FoxP3+Treg降低,肺组织FoxP3蛋白表达降低。肺功能参数FEV0.3与FoxP3蛋白呈正相关,FVC与CD4+CD25+Treg呈正相关,FEV0.3/FVC与CD4+CD25+FoxP3+Treg呈正相关。肺泡炎积分与CD4+CD25+FoxP3+Treg呈负相关,肺病理学积分与FoxP3蛋白呈负相关。
     3.1.5COPD肺气虚证大鼠DC、HSP70变化及相关性分析
     COPD肺气虚证大鼠肺组织DC、HSP70阳性表达面积增加、平均光密度增强。肺泡炎积分、肺病理学积分分别与DC、HSP70光密度值呈正相关。肺功能参数FEV0.3与DC光密度呈负相关,PEF、FEV0.3/FVC与HSP70光密度呈负相关。
     3.1.6COPD肺气虚证大鼠MMPs/TIMPs变化及相关性分析
     COPD肺气虚证大鼠肺组织MMP-9、MMP-12呈强阳性表达,表达强度明显增强。且肺组织MMP-9基因和蛋白表达升高,TIMP1基因和蛋白表达降低。肺功能参数FEV0.3/FVC与TIMP1蛋白呈正相关,肺泡炎积分与MMP-9光密度呈正相关,肺病理学积分与MMP-12光密度呈正相关。FEV0.3与MMP-9蛋白呈负相关,FVC与MMP-9光密度呈负相关,FEV0.3/FVC与MMP-12光密度呈负相关;呼吸频率与TIMP1mRNA呈负相关。说明基质金属蛋白酶系统的表达紊乱,导致细胞外基质生成增加,进而影响COPD肺气虚证大鼠肺组织重塑,影响肺的通气功能,导致肺功能降低和肺组织损伤。
     3.1.7COPD肺气虚证大鼠JAKs/STATs变化及相关性分析
     COPD肺气虚证大鼠肺组织JAK1、STAT3mRNA表达,STAT4阳性面积率、平均光密度升高,JAK1、p-JAK1、STAT3、p-STAT3蛋白表达升高;STAT6阳性面积率、平均光密度较模型组降低。肺功能参数FEV0.3/FVC与STAT6呈正相关,呼吸频率与p-STAT3蛋白呈正相关,肺泡炎积分、肺病理学积分与STAT4呈正相关。FEV0.3与p-JAK1呈负相关,FVC与STAT3mRNA呈负相关,FEV0.3/FVC与STAT3呈负相关,肺泡炎积分与STAT6、p-JAK1呈负相关。
     3.1.8COPD肺气虚证大鼠T-bet、RORγt、GATA变化及相关性分析
     COPD肺气虚证大鼠肺组织GATA-3mRNA、蛋白表达降低,T-bet、RORγtmRNA和蛋白表达升高。肺组织T-bet、RORγt蛋白和T-bet/GATA-3比值较正常组升高,GATA-3蛋白降低。肺功能参数FEV0.3与肺组织GATA-3mRNA呈正相关,呼吸频率与RORγt蛋白呈正相关,肺泡炎积分与T-bet蛋白呈正相关,肺病理学积分与T-bet mRNA呈正相关(P<0.05,P <0.01)。FEV0.3与RORγt蛋白呈负相关,FEV0.3/FVC与T-bet mRNA呈负相关,PEF与RORγtmRNA呈负相关,肺病理学积分与GATA-3蛋白呈负相关(P<0.05)。
     3.2六味补气胶囊对COPD大鼠的防治作用
     3.2.1六味补气胶囊对COPD肺气虚证大鼠呼吸系统的防治
     与模型组比较,六味补气预防和治疗组大鼠蜷伏少动,拱背蜷卧,撮毛,食量减少,毛失光泽、发黄、易脱落症状、体征改善,体质量升高,呼吸频率降低。六味补气预防和治疗组大鼠肺功能参数FEV0.3、FVC、FEV0.3/FVC升高。六味补气预防和治疗组大鼠气管、支气管有炎性细胞浸润,但数量较模型组减少;上皮坏死、脱落;肺泡间隔破坏较少,部分肺泡扩张成大小不等的囊泡;纤毛排列较规整。六味补气预防和治疗组肺系数、肺泡炎积分及病理学总积分降低。与六味补气组比较,脾氨肽组FEV0.3、FEV0.3/FVC、PEF降低;病理学总积分比较,六味补气组较脾氨肽组降低。
     3.2.2六味补气胶囊对COPD肺气虚证大鼠细胞因子的防治
     与模型组比较,六味补气预防和治疗组IL-1β、IL-6、IL-12降低;IL-10、IL-13、IL-35表达升高。与六味补气组比较,脾氨肽组IL-1β、IL-6表达升高,IL-10、IL-35表达降低;金水宝组IL-12表达升高。
     3.2.3六味补气胶囊对COPD肺气虚证大鼠Th细胞的防治
     与模型组比较,六味补气预防和治疗组血清IFN-γ、IL-17、Th1/Th2表达降低,IL-4升高;肺组织IL-4mRNA、IL-4蛋白升高、IFN-γmRNA、IL-17蛋白降低。与六味补气组比较,金水宝组血清IL-4降低、血清IL-17、Th1/Th2升高,脾氨肽组IFN-γ、IL-17升高。与六味补气组比较,金水宝组肺组织IL-17升高;脾氨肽组肺组织IL-4蛋白降低,IFN-γ升高。
     3.2.4六味补气胶囊对COPD肺气虚证大鼠Treg的防治
     与模型组比较,六味补气预防和治疗组外周血CD4+CD25+Treg、CD4+CD25+FoxP3+Treg升高,肺组织FoxP3蛋白表达升高。与六味补气组比较,脾氨肽组、金水宝组CD4+CD25+Treg、CD4+CD25+FoxP3+Treg表达降低;脾氨肽组FoxP3蛋白升高。
     3.2.5六味补气胶囊对COPD肺气虚证大鼠DC、HSP70的防治
     与模型组比较,六味补气预防和治疗组肺组织DC、HSP70光密度下降、阳性面积率减小。各治疗组之间统计分析显示,未见统计学差异(P>0.05)。
     3.2.6六味补气胶囊对COPD肺气虚证大鼠MMPs/TIMPs的防治
     与模型组比较,六味补气预防和治疗组肺组织MMP-9、MMP-12表达强度明显降低;TIMP1阳性表达增强。肺组织MMP-9基因和蛋白表达降低,TIMP1基因和蛋白表达升高。与六味补气组比较,脾氨肽组MMP-9光密度值升高,TIMP1降低;金水宝组、脾氨肽组MMP-9蛋白升高,TIMP1蛋白表达降低。
     3.2.7六味补气胶囊对COPD肺气虚证大鼠JAKs/STATs的防治
     与模型组比较,六味补气预防和治疗组肺组织STAT4阳性面积率、平均光密度降低,STAT6阳性面积率、平均光密度较模型组增大。JAK1mRNA表达及JAK1、p-JAK1、p-STAT3、STAT4蛋白蛋白表达下降;STAT6蛋白升高。与六味补气组比较,金水宝组JAK1、p-JAK1蛋白升高;脾氨肽组JAK1mRNA及JAK1、p-STAT3蛋白升高;脾氨肽组STAT6蛋白升高降低。
     3.2.8六味补气胶囊对COPD肺气虚证大鼠T-bet、RORγt、GATA的防治
     与模型组比较,六味补气预防和治疗组GATA-3mRNA、蛋白表达升高,T-bet、RORγt mRNA和蛋白表达降低。与六味补气组比较,金水宝组T-betmRNA和蛋白、T-bet/GATA-3、RORγt基因升高,GATA3蛋白降低;脾氨肽组T-bet蛋白、RORγt基因表达升高。
     4结论
     六味补气胶囊防治COPD肺气虚证大鼠的作用机制如下:
     4.1改善COPD肺气虚证大鼠呼吸系统症状体征
     中药六味补气胶囊通过改善COPD肺气虚证大鼠呼吸系统症状体征,升高肺功能参数。降低肺系数、肺泡炎积分、病理学总积分。降低肺组织炎性细胞浸润,改善COPD肺气虚证大鼠呼吸系统的症状体征,进一步提高肺功能水平和改善肺组织损伤。
     4.2降低COPD肺气虚证大鼠炎症反应
     中药六味补气胶囊能够上调COPD肺气虚证大鼠血清IL-10、IL-13、IL-35表达,下调IL-1β、IL-6、IL-12表达水平,降低机体炎性反应,纠正血清细胞因子表达失衡状态,减少炎症介质渗出及对肺组织器官的刺激,改善COPD肺气虚证大鼠呼吸系统症状体征。
     4.3调节COPD肺气虚证大鼠Th细胞平衡
     中药六味补气胶囊通过上调IL-4表达,下调IFN-γ、IL-17,降低Th17细胞分泌,纠正Th1/Th2细胞平衡,降低炎性细胞分泌,调整肺组织细胞及体液免疫,减轻胞膜通透性,从而改善COPD肺气虚证大鼠呼吸系统症状体征。
     4.4上调COPD肺气虚证大鼠Treg表达
     中药六味补气胶囊通过上调CD4+Treg、CD4+CD25+Treg、FoxP3mRNA及FoxP3蛋白表达,抑制CD4+CD25+Treg向CD4+CD25-T细胞进一步分化,减少炎症介质的释放,减少炎症反应对组织的损伤,从而改善COPD肺气虚证大鼠呼吸系统症状体征。
     4.5降低COPD肺气虚证大鼠DC、HSP70表达
     中药六味补气胶囊通过下调DC、HSP70表达,降低炎性细胞对肺组织刺激,从而改善COPD肺气虚证大鼠呼吸系统症状体征。
     4.6调节COPD肺气虚证大鼠MMPs/TIMPs系统
     中药六味补气胶囊通过上调TIMP1表达,下调MMP-9、MMP-12,纠正MMP-9/TIMP1平衡状态,抑制机体炎症反应,从而改善COPD肺气虚证大鼠呼吸系统症状体征。
     4.7调节COPD肺气虚证大鼠JAKs/STATs通路表达
     中药六味补气胶囊可能是通过上调STAT6表达,下调JAK1、p-JAK1、p-STAT3表达,调控JAK/STAT信号转导,抑制AKs/STATs信号通路过激活状态,改善气道炎症和气流受限症状,从而改善COPD肺气虚证大鼠呼吸系统症状体征。
     4.8调节COPD肺气虚证大鼠T-bet、RORγt、GATA表达
     中药六味补气胶囊可能是通过下调T-bet、RORγt表达,上调GATA-3表达,从而改善COPD肺气虚证大鼠呼吸系统症状体征。
1Objective
     To observe respiratory symptoms,signs and pulmonary function in COPDrats, and to detect changes of helper T cells (Th), regulatory T cells (Treg), dendritic cells (DC), heat shock protein (HSP70), matrix metalloproteinase system(MMPs/TIMPs),intracellular signal transduction activator of transcription(STAT),JAKs/STATs signaling pathway,T-bet,RORγt,GATA.Observe these indicators intervention,and explore the mechanism of Liuwei Buqi capsules in COPDrats with lung deficiency.2Methods
     2.1Animal grouping
     The rats were randomly divided into normal group,model group,the controlgroup (hereinafter referred to as blank group),the model in the placebo group(hereinafter referred to as analog security group),Liuwei Buqi capsules prevention group,Liuwei Buqi capsule treatment group,Jinshuibao group,spleen aminopeptidase groups.
     2.2model copied
     In addition to the normal group,the remaining rats were smoked plus lipopolysaccharide (LPS) tracheal instillation method to esta blish COPD lung deficiency rat model.28days after the model copied, success criteria of COPDmodel based on radiological, pathological changes in lung function and lung tissue.Smoking for3times/day in the first22days.Copy lung deficiencysecondary lung function and symptoms based on the successful model of ratbiology,signs, symptoms of rat biology,signs of change,including whether thelung qi reflect the general situation,activity,hair,body weight,food intake,cough,respiratory frequency,wherein the frequency of the respiratory frequency andrespiratory quiet breathing rats per minute.
     2.3Drug Intervention
     The rats were randomly divided into normal group,model group,LiuweiBuqi group,Jinshuibao group,spleen aminopeptidase groups of10.In additionto the normal group,the remaining rats were used smoke plus lipopolysaccharide tracheal instillation method to establish the rat model of COPD accompanied lung deficiency.At twenty-eight days after the model successfully copied,administration,dose of the groups:normal group, model group were given normalsaline(0.09g·kg-1),Liuwei Buqi group:Liuwei Buqi capsule(0.4g·kg-1),Jin shuibao group:Jinshuibao capsules (0.495g·kg-1),Spleen group:spleen aminopeptidase(0.33mg·kg-1).Once a day for consecutive30days.
     2.4index detection
     Observation and testing of the following indicators:Respiratory symptomsand signs,lung function,pathological changes in the lung tissue,serum cytokines,Th1,Th2,Th17cells in peripheral blood Treg expression in lung tissue,DC and HSP70expression in lung tissue,MMPs/TIMPs,JAKs/STATs signaling pathway,T-bet,RORγt,GATA change.
     3results
     3.1Expression of index and correlation analysis in COPD rat with lungdeficiency
     3.1.1Change of respiratory system in COPD rat with lung deficiency
     There were appears crouched less dynamic,Arch lying curled summarizedhair,decreased appetite,hair loss of luster,yellow, easy to fall off in COPD rat with lung deficiency.Compared with the control group,body weight was reduced in model group,and respiratory frequency was significantly higher thannormal group, respiratory secretions from the nose and mouth out,be heardand even airway cough and sputum,with the extension of modeling time.Compared with the normal group,the lung function parameters such as FEV0.3,FVC,FEV0.3/FVC was lower;lung coefficient,integral and pathological alveolitis total score were higer in the model group.
     3.1.2Changes of factor lung deficiency and correlation analysis in COPD ratExpression of IL-1β, IL-6, IL-12increased,IL-10,IL-13,IL-35of serum wasreduced in COPD lung deficiency rat.lung Function parameters FEV0.3waspositively correlated with IL-10,FEV0.3/FVC was positively correlated withIL-13,PEF was positively correlated with IL-35,alveolitis integral waspositively correlated with IL-6,IL-1β, IL-12were positively correlated withlung pathology integral.Lung function parameters FVC and IL-6werenegatively correlated,FEV0.3/FVC was negatively correlated withIL-1β.Respiratory rate was negatively correlated with IL-13.
     3.1.3Changes of cytokines and correlation analysis in COPD ratsIFN-γ,IL-17,Th1/Th2of serum were elevated,IL-4and IL-4protein in lungtissue were decreased,expression of IFN-γ,IL-17protein lung tissue were increased.Lung function parameters such as FEV0.3/FVC were positively correlatedwith IL-4,Th1/Th2were positively correlatedalveolitis integral.FEV0.3andIFN-γ,IFN-γmRNA of lung tissue were negatively correlated,FVC and IFN-γprotein was negatively cor related,FEV0.3./FVC was negatively correlated withTh1/Th2,PEF and IL-17protein was negatively correlated;alveolitis integraland IL-4protein was negatively correlated.IFN-γ,IL-17protein werepositively correlated with lung pathology integral.
     3.1.4Changes of Treg and correlation analysis in COPD rats
     CD4+CD25+Treg,CD4+CD25+FoxP3+Treg were reduced, and expression of FoxP3protein in lung tissue was reduced.Lung function parameters such asFEV0.3was positively correlated with FoxP3protein,FVC was positively correlated with CD4+CD25+Treg,FEV0.3/FVC and CD4+CD25+FoxP3+Treg was positively correlated.Alveolitis integral and CD4+CD25+FoxP3+Treg was negatively correlated.Pulmonary pathology integral and FoxP3protein was negatively correlated.
     3.1.5Changes of DC,HSP70and correlation analysis in COPD rat
     Expression of DC,HSP70were increased,the average optical density was increased.Alveolitis integral was positive correlation with lung pathology,DC,HSP70optical density values,respectively.Lung function parameters suah asFEV0.3was negatively correlated with DC optical density.PEF,FEV0.3/FVC were negatively correlated with HSP70optical density.
     3.1.6Changes of MMPs/TIMPs and correlation analysis
     Expression of MMP-9,MMP-12in lung tissue were significantly enhanced,and MMP-9gene and protein expression in lung tissue were increased,TIMP1mRNA and protein expression were decreased.Lung function parameters FEV0.3/FVC and TIMP1protein was positively correlated,alveolitis integral waspositively correlated with optical density of MMP-9,lung pathology integraloptical density and MMP-12was positively correlated.FEV0.3and MMP-9protein was negatively correlated,FVC and the optical density of MMP-9wasnegatively correlated,FEV0.3/FVC and MMP-12optical density was negativelycorrelated.Respiratory rate was negatively correlated with TIMP1mRNA.
     3.1.7Changes of JAKs/STATs and correlation analysis
     JAK1,STAT3mRNA expression,and STAT4positive area ratio were increases,JAK1,p-JAK1,STAT3,p-STAT3protein expression were increased.FEV0.3/FVC was positively correlated with STAT6, respiratory rate and p-STAT3protein was positively correlated, integral alveolitis,pulmonary pathology integraland STAT4were positively correlated.FEV0.3and p-JAK1negative corre lation,FVC was negatively correlated with STAT3mRNA,FEV0.3/FVC was negatively correlated with STAT3,alveolitis points and STAT6,p-JAK1werenegatively correlated.
     3.1.8Changes of T-bet,RORγt,GATA and correlation analysis
     GATA-3mRNA,protein expression were decreased,and T-bet,mRNA andprotein expression of RORγt were increased in COPD rat.Compared with thenormal group,T-bet,RORγt protein and T-bet/GATA-3ratio were increased,andGATA-3protein was reduced.FEV0.3and lung tissue GATA-3mRNA waspositive correlation,respiratory rate and RORγt protein was positively correlated,alveolitis integral and T-bet protein was positively correlated,and lungpathology score and T-bet mRNA was positively correlated (P<0.05orP<0.01).FEV0.3and RORγt protein was negatively correlated,FEV0.3/FVC andT-bet mRNA was negatively correlated,PEF and RORγt mRNA was negatively correlated,pulmonary pathology integral and GATA-3protein wascorrelated negatively (P<0.05).
     3.2Liuwei Buqi Capsules on prevention and treatment in COPD rats
     3.2.1Liuwei Buqi Capsules on prevention of respiratory in rat
     Compared with the model group,Liuwei Buqi prevention and treatment ofrats crouched less dynamic,Archlying curled summarized hair,decreasedappetite,hair loss of luster,yellow, easy to fall off the symptoms and signs,bodyweight increased respiratory rate reduced.Liuwei Buqi prevention and treatment of lung function parameters in rats FEV0.3,FVC,FEV0.3/FVC increased.Liuwei Buqi prevention and treatment group rat tracheal,bronchial inflammatory cell infiltration, but reduce the number compared with the modelgroup;epithelial necrosis,loss;less destruction of the alveolar septa,some alveolar expansion into vesicles of different sizes;cilia arranged in a more regular.Liu Wei bu qi prevention and treatment of lung coefficient,integral and pathological alveolitis total score lower.Group compared with Liuwei Buqi,spleen aminopeptidase group FEV0.3,FEV0.3/FVC,PEF lower;pathology total score comparison,Liuwei Buqi group were lower than the spleen aminopeptidase.
     3.2.2Liuwei Buqi Capsules on cytokines in ratCompared with the model group,IL-1β,IL-6,IL-12were reduced in LiuweiBuqi prevention and treatment group;IL-10,IL-13,IL-35expression were increased.Compared with Liuwei Buqi,IL-1β,IL-6expression were increased inspleen aminopeptidase group,IL-10, IL-35expression were decreased,expression of IL-12was increased in Jinshuibao group.
     3.2.3Liuwei Buqi Capsules on Th cell lung
     Compared with the model group,expression of IFN-γ,IL-17,Th1/Th2ofserum were decreased in Liuwei Buqi prevention and treatment,IL-4,IL-4mRNA and IL-4protein levels was increased;IFN-γ mRNA,IL-17protein inlung tissue were reduced.Compared with Liuwei Buqi group, IL-4in serumwas decreased IL-17,Th1/Th2were increased in spleen aminopeptidasegroup,and IFN-,IL-17were increased in Jinshuibao.Compared with LiuweiBuqi group,IL-17in lung tissue was increased in Jinshuibao;andIL-4,IFN-γprotein in lung tissue was reduced spleen aminopeptidase.
     3.2.4Liuwei Buqi Capsules on Prevention of Treg in rats
     Compared with the model group,CD4+CD25+Treg,CD4+CD25+FoxP3+Tregof peripheral blood were increased in Liuwei Buqi prevention and treatment,FoxP3protein expression in lung tissue was increased. Compared with LiuweiBuqi group,CD4+CD25+Treg,CD4+CD25+FoxP3+Treg,FoxP3protein expression were reduced in spleen aminopeptidase group and Jinshuibao group.
     3.2.5Liuwei Buqi Capsules on DC,HSP70prevention
     Compared with the model group,DC,HSP70optical density of lung tissuewere decreased,the positive area ratio was decreases in Liuwei Buqi prevention and treatment.Statistical analysis between treatment groups showed nosignificant difference(P>0.05).
     3.2.6Liuwei Buqi Capsules on MMPs/TIMPs prevention
     Compared with the model group,MMP-9,MMP-12expression level of lungtissue were significantly decreased in Liuwei Buqi prevention and treatment;TIMP1expression was enhanced.MMP-9gene and protein expression in lungtissue were reduced,TIMP1mRNA and protein expression were increased.Compared with Liuwei Buqi group, MMP-9optical density values was increased in spleen aminopeptidase group,TIMP1was lower in Jinshuibao group,MMP-9protein was increased,TIMP1protein expression was decreased inspleen aminopeptidase group.
     3.2.7Liuwei Buqi Capsules on COPD JAKs/STATs prevention
     Compared with the model group,STAT4positive area ratio,the mean opticaldensity of lung tissue were decreased in Liuwei Buqi prevention and treatment.JAK1mRNA expression of JAK1,p-JAK1,p-STAT3STAT4protein expression were decreased.Compared with Liuwei Buqi group,JAK1,p-JAK1protein levels; spleen aminopeptidase group JAK1mRNA and JAK1,p-STAT3protein levels,STAT6protein concentration were decreased in Jinshuibaogroup and spleen aminopeptidase group.
     3.2.8Liuwei Buqi Capsules on T-bet,RORγt,GATA prevention
     Compared with the model group,GATA-3mRNA,protein expression wereelevated in Liuwei Buqi prevention and treatment group,T-bet,RORγt mRNAand protein expression were decreased.Compared with Liuwei Buqi group,T-bet mRNA and protein,T-bet/GATA-3,RORγt gene increases,GATA3proteinwere reduced in Jinshuibao group;RORγt gene,T-bet protein expression wereincreased in spleen aminopeptidase group.
     4Conclusion
     Mechanisms of Liuwei Buqi capsules on prevention in COPD rats with lungdeficiency as follows.
     4.1Improve symptoms and signs of respiratory in COPD rats
     Liuwei Buqi capsules can improve symptoms and signs of respire atory inrats,increased lung function parameters.Reduced lung coef ficient,alveolitispoints,pathology total points.Reduced lung tissue inflammatory cell infiltration,improve COPD lung deficiency rat respiratory symptoms and signs,tofurther enhance the level and improve lung function in lung tissue damage.
     4.2Reduce lung inflammation in COPD rats
     Liuwei Buqi capsules can increase IL-10,IL-13,IL-35expression, decreaseIL-1β, IL-6,IL-12expression levels in serum,reduce the body's inflammatoryres ponse,corrected serum cytokine expression imbalance,reduceinflammatory mediators and lung tissues and organs oozing stimulation toimprove COPD lung deficiency rat respiratory symptoms and signs.
     4.3Regulate Th cell lung balance in COPD rats
     Liuwei Buqi capsules can upregulate the expression of IL-4,down IFN-γ,IL-17,reduce Th17cells secrete to correct the Th1/Th2balance,reduce the secretion of inflammatory cells,regulating cell-mediated immunity and humoralimmune function,reduced lung tissue cell membrane permeability,thus improving the signs and symptoms of COPD lung respiratory deficiency in rats.
     4.4Upregulate expression of Treg in COPD rats
     Liuwei Buqi Capsules can upregulate CD4+Treg,CD4+CD25+Treg,FoxP3mRNA and FoxP3protein expression,inhibit of CD4+CD25+Treg to CD4+CD25-T cells,reduce the release of inflammatory mediators, reducing the inflammatory response to tissue damage,thereby improving the signs and symptoms of COPD lung respiratory deficiency in rats.
     4.5Reduce DC,HSP70expression in COPD rats
     Liuwei Buqi capsules can down DC,HSP70expression,reduce inflam matory cell lung tissue stimulation,thereby improving COPD lung deficiency ratrespiratory symptoms and signs.
     4.6Adjust MMPs/TIMPs system in COPD rats
     Liuwei Buqi capsules can upregulate the expression of TIMP1,down MMP-9,MMP-12,correct MMP-9/TIMP1balance,inhibit the body's inflammatoryresponse,thus improving COPD symptoms and signs of respir atory lung deficiency in rats.
     4.7Adjust JAKs/STATs pathway expression in COPD rats
     Liuwei Buqi capsules may be regulated by STAT6expression,down JAK1,p-JAK1,p-STAT3expression and regulation of JAK/STAT signal,inhibit JAKs/STATs signaling pathway active,improving airway inflamemation and airflowlimitation symptoms,thereby improving COPD symptoms and signs of respiretory lung deficiency in rats.
     4.8Adjust T-bet,RORγt,GATA expression in COPD rats
     Liuwei Buqi capsules may be reduced by T-bet,RORγt expression, increaseed expression of GATA-3,thereby improving COPD lung deficiency rat respiretory symptoms and signs.
引文
[1]宋一平,崔德健,茅培英.慢性阻塞性肺病大鼠模型的建立及药物干预的影响[J].军医进修学院学报,2001,22(2):99-102.
    [2]张伟,张心月,邵雨萌.五种不同中药经典方剂影响各型慢性阻塞性肺疾病大鼠气道病理改变的特点[J].中国临床康复,2006,10(47):75-79.
    [3]Li Q Y, Huang S G,Wan H Y,et al.Effect of smoking cessation on airwayinflammation of rats with chronic bronchitis.Chin Med J (Engl),2007;120(17):1511-6.
    [4]De Santis M, Bosello S, La Torre G, et al. Functional, radiological andbiological markers of alveolitis and infections of the lower respiratory tract inpatients with systemic sclerosis. Respir Res,2005;(6):96.
    [5]李红梅,崔德健,佟欣,等.熏香烟加气管注内毒素和单纯熏香烟法建立大鼠COPD模型[J].中国病理生理杂志,2002,18(7):808-812.
    [6]张伟,刘海瑜.COPD大鼠造模方法及研究指标应用状况[C].中华中医药学会中医药学术发展大会论文集.2005:658-660.
    [7]顾延会,欧阳瑶.烟熏联合脂多糖制备大鼠慢性阻塞性肺疾病动物模型[J].重庆医学,2012,41(13):1295-1296.
    [8]高振,哈木拉提·吾甫尔,廖春燕,等.慢性阻塞性肺疾病动物模型研究概况[J].国际病理科学与临床杂志,2012,32(2):169-174.
    [9]Khedoe P P,Wong M C,Wagenaar G T,et al.The Effect of PPE-InducedEmphysema and Chronic LPS-Induced Pulmonary Inflammation on Atherosclerosis Development in APOE3-LEIDEN Mice.PLoS One,2013;8(11): e80196.
    [10]王传博,李泽庚,彭波,等.5种病证结合慢性阻塞性肺疾病动物模型评介[J].安徽中医学院学报,2011,30(2):79-80.
    [11]刘清泉,程发峰,杨保林,等.病证结合研究是中医循证医学实现的基础[J].北京中医药,2009;28(2):101-104.
    [12]李柳骥,陈家旭.试述中医病证结合的关系[J].北京中医药大学学报,2004;27(3):7-9.
    [13]王少丽,王承龙,史大卓,等.中医病证结合疗效评价方法的研究现状与探讨[J].中西医结合心脑血管病杂志,2010;8(10):1245-1246.
    [14]李建生,余学庆,李素云,等.病证结合模式下慢性阻塞性肺疾病疗效指标体系的构建[J].中医学报,2010;25(6):1070-1074.
    [15]孙广仁,王洪武,高博,等.COPD寒饮蕴肺证大鼠病证结合模型的建立[J].山东中医药大学学报,2007;31(3):242-244.
    [16]秦俊莲,宋建平.病证结合模型与中医实验研究[J].中医杂志,2003,44(8):636.
    [17]Baarsma H A,Bos S, Meurs H, et al. Pharmacological inhibition of GSK-3in a guinea pig model of LPS-induced pulmonary inflammation: I. Effects onlung remodeling and pathology. Respir Res,2013;14(1):113.
    [18]Zhou S,Wright J L,Liu J,et al.Aging does not enhance experimental cigarette smoke-induced COPD in the mouse.PLoS One,2013;8(8):e71410.
    [19]Jacono F J.Control of ventilation in COPD and lung injury.Respir PhysiolNeurobiol,2013;189(2):371-376.
    [20]Liu K,Liu X S,Yu M Q,et al.Change of extracellular signal-regulated kinase expression in pulmonary arteries from smokers with and without chronicobstructive pulmonary disease.Exp Lung Res,2013;39(4-5):162-172.
    [21]Lainscak M,Gosker H R,Schols A M.Chronic obstructive pulmonarydisease patient journey:hospitalizations as window of opportunity for extra-pulmonary intervention.Curr Opin Clin Nutr Metab Care,2013;16(3):278-283.
    [22]Hogg J C,McDonough J E,Suzuki M.Small airway obstruction in COPD:new insights based on micro-CT imaging and MRI imaging. Chest,2013;143(5):1436-1443.
    [23]Sim M H,Kim M Y,Jeong I C,et al.Development and evaluation of animproved technique for pulmonary function testing using electrical impedancepneumography intended for the diagnosis of chronic obstructive pulmonarydisease patients.Sensors (Basel),2013;13(11):15846-15860.
    [24]Peinado V I, Gómez F P, Barberà J A, et al.Pulmonary vascular abnormalities in chronic obstructive pulmonary disease undergoing lung transplant.JHeart Lung Transplant,2013;32(12):1262-9.
    [25]Aminuddin F,Hackett T L,Stefanowicz D,et al.Nitric oxide synthasepolymorphisms,gene expression and lung function in chronic obstructive pulmonary disease.BMC Pulm Med,2013;13(1):64.
    [26]Ou C Y,Chen C Z,Lee C H,et al.Pulmonary function change in patientswith Sauropus androgynus-related obstructive lung disease15years later.JFormos Med Assoc,2013;112(10):630-4.
    [27]Viby N E,Isidor M S,Buggeskov K B,et al.Glucagon-Like Peptide-1(GLP-1) Reduces Mortality and Improves Lung Function in a Model of Experimental Obstructive Lung Disease in Female Mice.Endocrinology,2013;154(12):4503-4511.
    [28]Ando K, Sekiya M, Tobino K, et al.Relationship Between Quantitative CTMetrics and Pulmonary Function in Combined Pulmonary Fibrosis and Emphysema.Lung,2013;191(6):585-591.
    [29]Cukic V, Lovre V, Ustamujic A.The Changes of Pulmonary Function inCOPD During Four-Year Period.Mater Sociomed,2013;25(2):88-92.
    [30]Shen Y, Yang T, Guo S, et al.Increased serum ox-LDL levels correlatedwith lung function, inflammation, and oxidative stress in COPD. MediatorsInflamm,2013;2013:972347.
    [31]Barczyk A,Pierzcha a W,Kon O M,et al.Cytokine production by bronchoalveolar lavage T lymphocytes in chronic obstructive pulmonary disease. J Allergy Clin Immunol,2006;117(6):1484-1492.
    [32]Tang S, Cui H, Yao L, et al. Increased cytokines response in patients withtuberculosis complicated with chronic obstructive pulmonary disease[J].PLoSOne,2013,8(4):e62385.
    [33]De Backer J, Vos W, Van Holsbeke C, et al.Effect of high-dose N-acetylcysteine on airway geometry, inflammation, and oxidative stress in COPD patients.Int J Chron Obstruct Pulmon Dis,2013;8:569-579.
    [34]Verhees K J, Pansters N A, Baarsma H A, et al.Pharmacological inhibitionof GSK-3in a guinea pig model of LPS-induced pulmonary inflammation: II.Effects on skeletal muscle atrophy.Respir Res,2013;14:117.
    [35]Tan D B, Fernandez S, Price P, et al.The proportion and function ofperipheral myeloid-derived suppressor cells do not correlate with systemicinflammation in chronic obstructive pulmonary disease.Hum Immunol,2014;75(1):5-9.
    [36]Givi M E,Peck M J,Boon L,et al.The role of dendritic cells in thepathogenesis of cigarette smoke-induced emphysema in mice.Eur J Pharmacol,2013;721(1-3):259-266.
    [37]Dong J, Guo L, Liao Z, et al.Increased expression of heat shock protein70in chronic obstructive pulmonary disease. Int Immunopharmacol,2013;17(3):885-93.
    [38]Mori M, Andersson C K, Svedberg K A, et al.Appearance of remodelledand dendritic cell-rich alveolar-lymphoid interfaces provides a structural basisfor increased alveolar antigen uptake in chronic obstructive pulmonarydisease.Thorax,2013;68(6):521-31.
    [39]Haczku A.The dendritic cell niche in chronic obstructive pulmonarydisease.Respir Res,2012;13:80.
    [40]Givi M E, Redegeld F A, Folkerts G, et al.Dendritic cells in pathogenesisof COPD.Curr Pharm Des,2012;18(16):2329-35.
    [41]Larsen J M,Steen-Jensen D B,Laursen J M,et al.Divergent pro-inflammatory profile of human dendritic cells in response to commensal and pathogenicbacteria associated with the airway microbiota.PLoS One,2012;7(2): e31976.
    [42]Matokanovi M,Rumora L,Popovi-Grle S, et al.Association of hsp70-2(+1267A/G),hsp70-hom (+2437T/C), HMOX-1(number of GT repeats) andTNF-alpha (+489G/A) polymorphisms with COPD in Croatian population.Clin Biochem,2012;45(10-11):770-774.
    [43]Holownia A, Mroz R M, Kielek A, et al.Nuclear HSP90and HSP70inCOPD patients treated with formoterol or formoterol and corticosteroids.Eur JMed Res,2009;14Suppl4:104-107.
    [44]Xie J, Zhao J, Xiao C, et al.Reduced heat shock protein70in airwaysmooth muscle in patients with chronic obstructive pulmonary disease.ExpLung Res,2010;36(4):219-226.
    [45]Xie J, Xu Y, Zhang Z, et al.Heat shock protein70gene polymorphisms inHan nationality of China with chronic obstructive pulmonary diseases.JHuazhong Univ Sci Technolog Med Sci,2004;24(1):28-31.
    [46]Kirkham P A, Barnes P J. Oxidative Stress in COPD. Chest,2013;144(1):266-273.
    [47]Nillawar A N, Joshi K B, Patil S B, et al. Evaluation of HS-CRP and LipidProfile in COPD. J Clin Diagn Res,2013;7(5):801-803.
    [48]Mallia P, Message S D, Contoli M, et al. Neutrophil adhesion molecules inexperimental rhinovirus infection in COPD. Respir Res,2013;14(1):72-77.
    [49]Holloway R A, Donnelly L E. Immunopathogenesis of chronic obstructive pulmonary disease. Curr Opin Pulm Med,2013;19(2):95-102.
    [50]Zhu X, Gadgil A S, Givelber R, et al. Peripheral T cell functions correlatewith the severity of chronic obstructive pulmonary disease. J Immunol,2009;182(5):3270-3277.
    [51]Limón-Camacho L,Solleiro-Villavicencio H,Pupko-Sissa I,et al. Regulatory T cells in chronic obstructive pulmonary disease. Arch Cardiol Mex,2013;83(1):45-54.
    [52]Singh M,Lee S H,Porter P,et al. Human rhinovirus proteinase2A inducesTH1and TH2immunity in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol,2010;125(6):1369-1378.
    [53]Barceló B,Pons J,Ferrer J M,et al.Phenotypic characterisation of T-lymphocytes in COPD: abnormal CD4+CD25+regulatory T-lymphocyte response totobacco smoking. Eur Respir J,2008;31(3):555-562.
    [54]Yang L,Ma Q L,Yao W,et al.Relationship between the anti-inflammatoryproperties of salmeterol/fluticasone and the expression of CD4+CD25+Foxp3+regulatory T cells in COPD. Respir Res,2011;12:142-146.
    [55]Vargas-Rojas M I, Ramírez-Venegas A, Limón-Camacho L, et al. Increaseof Th17cells in peripheral blood of patients with chronic obstructive pulmonary disease. Respir Med,2011;105(11):1648-1654.
    [56]Hodge G, Nairn J, Holmes M, et al. Increased intracellular T helper1proinflammatory cytokine production in peripheral blood, bronchoalveolar lavageand intraepithelial T cells of COPD subjects. Clin Exp Immunol,2007;150(1):22-29.
    [57]Chu S, Zhong X, Zhang J, et al. The expression of Foxp3and ROR gammat in lung tissues from normal smokers and chronic obstructive pulmonary disease patients. Int Immunopharmacol,2011;11(11):1780-1788.
    [58]Halwani R, Al-Muhsen S, Hamid Q.T helper17cells in airway diseases:from laboratory bench to bedside. Chest,2013;143(2):494-501.
    [59]Vanaudenaerde B M, Verleden S E, Vos R, et al. Innate and adaptive interleukin-17-producing lymphocytes in chronic inflammatory lung disorders. AmJ Respir Crit Care Med,2011;183(8):977-986.
    [60]Yildirim E, Kormi I, Ba o lu K, et al. Periodontal health and serum,saliva matrix metalloproteinases in patients with mild chronic obstructive pulmonary disease. J Periodontal Res,2013;48(3):269-275.
    [61]Zhang J, Wu L, Qu J M. Inhibited proliferation of human lung fibroblastsby LPS is through IL-6and IL-8release.Cytokine,2011;54(3):289-295.
    [62]Markovics JA,Araya J,Cambier S,et al.Interleukin-1beta induces increased transcriptional activation of the transforming growth factor-beta-activatingintegrin subunit beta8through altering chromatin architecture. J Biol Chem,2011;286(42):36864-36874.
    [63]Korytina G F, Tselousova O S, Akhmadishina L Z, et al. Association of theMMP3,MMP9,ADAM33and TIMP3genes polymorphic markers with development and progression of chronic obstructive pulmonary disease.Mol Biol(Mosk),2012;46(3):487-499.
    [64]Mocchegiani E, Giacconi R, Costarelli L. Metalloproteases/anti-metalloproteases imbalance in chronic obstructive pulmonary disease: genetic factorsand treatment implications. Curr Opin Pulm Med,2011;17Suppl1:S11-9.
    [65]Kwiatkowska S, Noweta K, Zieba M, et al. metalloproteinase-1in patients with COPD exacerbation: a prospective study. Respiration,2012;84(3):231-241.
    [66]Gao Z, Halmurat U, Jing J,et al. Inflammatory responses of the rat lungsin cold-dryness syndrome in the northwest of China. J Tradit Chin Med,2012;32(2):234-237.
    [67]Yoon H K, Cho H Y, Kleeberger S R. Protective role of matrix metalloprotei nase-9in ozone-induced airway inflammation. Environ Health Perspect,2007;115(11):1557-1563.
    [68]Russell R E,Culpitt S V,Dematos C, et al. Release and activity of matrixmet alloproteinase-9and tissue inhibitor of met allopro-teinase-1by alveolarmacrophages from patients with chronic obstructive pulmonary disease. AmJrespir Cell Mol Biol,2002;26(5):602-609.
    [69]Chen L, Ge Q, Black J L, et al. Differential regulation of extracellular matrix and soluble fibulin-1levels by TGF-β1in airway smooth muscle cells. PLoS One,2013;8(6):e65544.
    [70]Zhang M, Fu Z, Tian D, et al. Investigation of the interaction between CREB-binding protein and STAT4/STAT6.Mol Biol Rep,2011;38(7):4805-4811.
    [71]Quintás-Cardama A,Verstovsek S.Molecular pathways:Jak/STAT path way:mutations,inhibitors and resistance.Clin Cancer Res,2013;19(8):1933-1940.
    [72]Coskun M, Salem M, Pedersen J, Nielsen O H. Involvement of JAK/STAT signaling in the pathogenesis of inflammatory bowel disease. Pharmacol Res,2013;76C:1-8.
    [73]Chen Y, Lan Q, Zheng T, et al. Polymorphisms in JAK/STAT signalingpathway genes and risk of non-Hodgkin lymphoma. Leuk Res,2013;37(9):1120-1124.
    [74]Peine M, Rausch S, Helmstetter C, et al. Stable T-bet(+)GATA-3(+)Th1/Th2Hybrid Cells Arise In Vivo, Can Develop Directly from Naive Precursors, and Limit Immunopathologic Inflammation. PLoS Biol,2013;11(8):e1001633. PMID:23976880
    [75]Gu W, Li C, Yin W et al. Effects of Shen-Fu Injection on the Expressionof T-Cell-Specific Transcription Factors T-bet/Gata-3in Porcine Postresuscitation Lung Injury. Evid Based Complement Alternat Med,2013;2013:464650.
    [76]Dong L,Chen M,Zhang Q,et al.T-bet/GATA-3ratio is a surrogate measureof Th1/Th2cytokine profiles and may be novel targets for CpG ODN treatment in asthma patients.Chin Med J (Engl),2006;119(16):1396-1399.
    [77]Dutta A,Miaw S C,Yu J S,et al.Altered T-bet dominance in IFN-γ-decoupled CD4+T cells with attenuated cytokine storm and preserved memory ininfluenza. J Immunol,2013;190(8):4205-4214.
    [78]Cazzola M,Matera M G.IL-17in chronic obstructive pulmonary disease.Expert Rev Respir Med,2012;6(2):135-8.
    [79]Rauen T,Juang Y T,Hedrich C M,et al.A novel isoform of the orphan recaptor RORγt suppresses IL-17production in human T cells. Genes Immun,2012;13(4):346-350.
    [80]周晶.薄层扫描法测定六味补气胶囊中黄芪甲苷的含量.安徽医药[J].2013,17(1):37-38.
    [81]刘志刚,李泽庚,彭波,等.六味补气胶囊对肺气虚型慢性阻塞性肺疾病稳定期患者生活质量和肺功能的影响[J].安徽中医学院学报,2012,31(1):6-9.
    [82]王成阳,李泽庚,刘向国,等.六味补气胶囊对COPD肺气虚证模型STAT4,STAT6蛋白表达影响[J].中国实验方剂学杂志,2013,19(21):194-198.
    [83]吕磊,王成阳,李泽庚,等.六味补气胶囊对肺气虚型慢性阻塞性肺疾病大鼠肺组织病理形态及热休克蛋白70表达的影响[J].甘肃中医学院学报,2013;30(3):1-5.
    [84]申海燕,邓丽文.金水宝胶囊改善COPD稳定期患者生活质量的临床研究[J].中国保健营养(中旬刊),2012,(4):113-114.
    [85]邱军.加味六君子汤及金水宝胶囊配合西药综合治疗对稳定期慢性阻塞性肺病肺功能的影响[J].山西中医,2012,28(6):34-35,38.
    [86]张才擎,梁铁军,张伟,等.金水宝胶囊对肺肾两虚型COPD大鼠病理及免疫功能的影响[J].首都医药,2008,(16):41-42.
    [87]杨鹰,侯刚,王丽云,等.脾氨肽冻干粉对预防慢性阻塞性肺疾病急性期加重的疗效观察[J].实用医学杂志,2013,29(2):306-307.
    [88]赖金梅,黄旺,苏玉琴,等.脾氨肽口服冻干粉对慢性阻塞性肺疾病的疗效观察[J].医药前沿,2012,(23):232-233.
    [89]于海英.脾氨肽在小儿支原体肺炎治疗中的价值及对相关细胞因子的影响[J].中国医疗前沿,2013,(16):44-44.
    [90]胡晓艳,钱卫疆,张双船,等.肺炎支原体肺炎患儿细胞免疫功能的变化及脾氨肽的辅助治疗作用[J].海南医学,2012,23(21):5-7.
    [91]谢俊刚,徐永健.COPD的发病机制、诊断和治疗[J].中国实用内科杂志(前沿版),2006,26(4):298-301.
    [92]徐丹,高振,李风森,等.2241例慢阻肺患者中医证型分布及用药规律研究[J].中医药临床杂志,2010,22(4):300-301.
    [93]陈明静,吴维平.COPD中医病因病机及辨证分型研究进展[J].光明中医,2009,24(1):168-169.
    [94]何德平,林琳,吴蕾,等.中医药对慢阻肺呼吸衰竭机械通气患者作用的临床研究[J].新中医,2006,38(11):42-43.
    [95]史增信.中医药对慢阻肺急性加重期的疗效研究[J].中国中医药咨讯,2010,02(31):101.
    [96]李杰,王琦,武维屏,等.结合GOLD分级浅析慢性阻塞性肺疾病的病机演变[J].北京中医药大学学报(中医临床版),2005,12(6):8-11.
    [97]王传博,李泽庚,彭波,等.中医药防治慢阻肺肺动脉高压的临床研究进展[J].世界中西医结合杂志,2012,07(4):358-360.
    [98]邹鑫鑫,张念志.中医药治疗慢阻肺研究进展[J].临床肺科杂志,2011,16(3):418-419.
    [99]张景隆.论慢阻肺及继发症的中医治疗[J].中国中医药现代远程教育,2012,10(22):133-134.
    [100]Fu B D, Bi W Y, He C L, et al. Sulfated derivatives of20(S)-ginsenosideRh2and their inhibitory effects on LPS-induced inflammatory cytokines andmediators. Fitoterapia,2013;84:303-307.
    [101]Lee J M,Hah J O,Kim H S.The effect of red ginseng extract on inflammatory cytokines after chemotherapy in children.J Ginseng Res,2012;36(4):383-390.
    [102]Li C T,Wang H B,Xu B J.A comparative study on anticoagulant activitiesof three Chinese herbal medicines from the genus Panax and anticoagulantactivities of ginsenosides Rg1and Rg2. Pharm Biol,2013;51(8):1077-1080.
    [103]Tang Y, Guan Y, Liu Y, et al. The Role of the Serum IL-33/sST2Axis andInflammatory Cytokines in Chronic Obstructive Pulmonary Disease.J Interferon Cytokine Res,2013;1:120-129.
    [104]Kim J, Han B J, Kim H, et al. Th1immunity induction by ginsenosideRe involves in protection of mice against disseminated candidiasis due toCandida albicans.Int Immunopharmacol,2012;14(4):481-486.
    [105]Takei M, Tachikawa E,Umeyama A.Dendritic Cells Promoted by Ginseng Saponins Drive a Potent Th1Polarization[J].Biomark Insights,2008;3:269-286.
    [106]Bae J, Koo J, Kim S, Park T Y, et al. Ginsenoside Rp1Exerts Anti-inflammatory Effects via Activation of Dendritic Cells and Regulatory T Cells. J Ginseng Res,2012;36(4):375-82.
    [107]Shin Y M, Jung H J, Choi W Y, et al.Antioxidative, anti-inflammatory,and matrix metalloproteinase inhibitory activities of20(S)-ginsenoside Rg3incultured mammalian cell lines. Mol Biol Rep,2013;40(1):269-279.
    [108]Chen W, Xia Y P, Chen W J, et al. Improvement of myocardial glycolipidmetabolic disorder in diabetic hamster with Astragalus polysaccharidestreatment. Mol Biol Rep,2012;39(7):7609-7615.
    [109]Huang X, Tan H, Chen B, et al. Influence of astragalosides and Panaxnotoginseng saponins compatibility on MMP-9and TIMP-1after cerebralischemia-reperfusion in mice. J Chin Trad Med,2010;35(16):2187-2191.
    [110]He X, Shu J, Xu L, et al. Inhibitory effect of Astragalus polysaccharideson lipopolysaccharide-induced TNF-a and IL-1β production in THP-1cells.Molecules,2012;17(3):3155-3164.
    [111]Chang Y X,Sun Y G, Li J,Zhang QH,et al.The experimental study of Astragalus membranaceus on meridian tropsim: the distribution study of astragaloside IV in rat tissues. J Chromatogr B Analyt Technol Biomed Life Sci,2012;911:71-75.
    [112]耿宏伟.黄芪注射液和丹参注射液对慢性阻塞性肺病患者微量元素及肺功能的影响[J].中国中西医结合急救杂志,2000;7(4):249-250.
    [113]Chen L,Sun B B,Wang T,et al.Cigarette smoke enhances beta-defensin2expression in rat airways via nuclear factor-kappa B activation.Eur Respir J,2010;36(3):638-645.
    [114]Du X, Zhao B, Li J, et al. Astragalus polysaccharides enhance immuneresponses of HBV DNA vaccination via promoting the dendritic cell maturation and suppressing Treg frequency in mice. Int Immunopharmacol,2012;14(4):463-470.
    [115]Jin H, Luo Q, Zheng Y, et al. CD4+CD25+Foxp3+T cells contribute to theantiasthmatic effects of Astragalus membranaceus extract in a rat model ofasthma. Int Immunopharmacol,2013;15(1):42-49.
    [116]Li J, Cao Y X, Wang D, et al. Effect of Astragalus and Salvia's effectivecomponents and their compatibility on JAK/STAT pathway. J Chin herbal med,2011;34(9):1388-1391.
    [117]袁颖,郭忻,金素安,等.黄芪-当归配伍对气道变应性炎症大鼠IFN-γ,IL-4,STAT6,STAT4的影响[J].中国实验方剂学杂志,2012;18(17):223-226.
    [118]Peng Y, Yuan Z, Li H. Removal of inflammatory cytokines and endotoxin by veno-venous continuous renal replacement therapy for burned patients with sepsis. Burns,2005;31(5):623-628.
    [119]Guo H, Zhao H,Kanno Y, et al. A dihydrochalcone and several homoisoflavonoids from Polygonatum odoratum are activators of adenosine monophosphate-activated protein kinase.Bioorg Med Chem Lett,2013;23(11):3137-3139
    [120]Llorens E,Fernández-Crespo E,Vicedo B,et al.Enhancement of the citrusimmune system provides effective resistance against Alternaria brown spotdisease. J Plant Physiol,2013;170(2):146-154.
    [121]Suksamrarn A,Chotipong A,Suavansri T,et al. Antimycobacterial activityand cytotoxicity of flavonoids from the flowers of Chromolaena odorata. ArchPharm Res,2004;27(5):507-511.
    [122]Mann R S,Rouseff R L,Smoot J,et al.Chemical and behavioral analysisof the cuticular hydrocarbons from Asian citrus psyllid,Diaphorina citri.InsectSci,2013;20(3):367-78.
    [123]Nie Y C,Wu H,Li P B,et al.Anti-inflammatory effects of naringin inchronic pulmonary neutrophilic inflammation in cigarette smoke-exposed rats.J Med Food,2012;15(10):894-900.
    [124]Wang C,Huang R,Yang ZJ,et al.Dynamic changes of soil respiration inCitrus reticulata and Castanea henryi orchards in Wanmulin Nature Reserve,Fujian Province of East China. App Ecol,2012;23(6):1469-1475.
    [125]代立娟,王琳,冯澜,等.肉桂醛抗呼吸道合胞病毒的作用[J].中国老年学杂志,2013;33(6):1309-1312.
    [126]侯仙明,贾运乔,杨洪霞,等.肉桂的平喘作用及对哮喘模型豚鼠肺组织形态学的影响[J].河北中医药学报,2008;23(2):3-4.
    [1]王成阳,李泽庚.肺气虚证基础研究现状与思考[J].中医杂志,2012,53(24):2137-2141.
    [2]童佳兵,彭波,张念志,等.肺气虚证本质研究的思路和方法[J].中国中医药现代远程教育,2007,5(6):9-11.
    [3]李泽庚.肺气虚证研究的现状与对策[J].浙江中西医结合杂志,2003,13(9):555-556.
    [4]李泽庚,王国俊,彭波,等.肺气虚证和肺阴虚证蛋白芯片研究[J].中华中医药学刊,2010,28(4):705-707.
    [5]韩明向,李泽庚.肺气虚证浅探[J].安徽中医学院学报,1993,12(2):2-4.
    [6]彭波,李泽庚,孙志广.肺气虚证的认识及内涵[J].辽宁中医药大学学报,2008,10(8):36-38.
    [7]彭波,李泽庚.肺气虚证与呼吸功能的研究进展[J].安徽中医学院学报,2004,23(1):57-59.
    [8]杨程,彭波,张念志,等.肺气虚证和肺阴虚证患者肺功能变化的研究[J].中医药临床杂志,2013,25(1):16-17.
    [9]王国俊,李泽庚,彭波,等.肺气虚证患者肺功能分级研究[J].中医杂志,2010,51(3):259-261.
    [10]李泽庚,王国俊,彭波,等.肺气虚证患者的高分辨CT研究[J].成都中医药大学学报,2008,31(2):14-17.
    [11]李泽庚,张杰根,彭波,等.肺气虚证患者血清IL-8、TNF的水平及临床意义[J].浙江中医学院学报,2005,29(6):13-15.
    [12]杨程,彭波,童佳兵,等.肺气虚证和肺阴虚证患者细胞因子变化的研究[J].中医药临床杂志,2012,24(4):298-299.
    [13]李振卿,倪静,方朝义.慢性支气管炎肺气虚证大鼠转化生长因子-β1的变化及其意义[J].河北中医,2011,33(2):265-266.
    [14]张新芳,蔡圣荣,赵蜀军.肺气虚证和肺阳虚证模型大鼠血清中细胞因子含量变化研究[J].辽宁中医药大学学报,2011,13(9):67-69.
    [15]李泽庚,张杰根,彭波,等.肺气虚证和肺阴虚证患者外周血T细胞的变化[J].中国医师杂志,2004,15(4):102.
    [16]李泽庚,张杰根,彭波,等.肺气虚证和肺阴虚证患者外周血NK细胞表达分析[J].中医杂志2005,46(7):533-534.
    [17]李泽庚,童佳兵,彭波,等.肺气虚证患者T淋巴细胞相关基因的表达研究[J].中华中医药杂志,2006,21(9):536-539.
    [18]章天寿,彭波,刘志刚,等.肺气虚证患者情绪障碍调查分析[J].中国中医药信息杂志,2012,19(10):13-17.
    [19]李泽庚,张杰根.肺气虚证的神经内分泌免疫网络研究现状及探讨[J].中医药学刊,2005,23(9):1602-1604.
    [20]张杰根,李泽庚,彭波,等.肺气虚证患者TNF、T3和T4的变化及临床意义[J].安徽中医学院学报,2004,2(2):9-11.
    [21]李泽庚,韩明向,王元勋.肺气虚证与氧自由基代谢初探-附102例资料分析[J].辽宁中医杂志,1995,22(5):207-209.
    [22]李泽庚,彭波,张杰根,等.肺气虚证模型大鼠的建立[J].北京中医,2005,24(1):53-55.
    [23]李泽庚,张超,彭波,等.肺气虚证模型豚鼠肺功能与血气分析的变化[J].安徽中医学院学报,2006,25(3):29-31.
    [24]李泽庚,彭波,王桂珍,等.肺气虚证模型大鼠的影像学表现[J].甘肃中医学院学报,2007,24(3):6-8.
    [25]李泽庚,张杰根,彭波,等.肺气虚证模型大鼠支气管灌洗液TNF-α和LTB4测定的意义[J].天津中医药,2006,22(3):226-228.
    [26]李泽庚,彭波,张念志,等.肺气虚证模型大鼠血清VEGF、TNF-A的测定及意义[J].成都中医药大学学报,2005,28(1):45-46.
    [27]李泽庚,张杰根,彭波,等.肺气虚证模型大鼠血清ICAM-1、IL-8的水平变化[J].光明中医,2005,20(6):38-40.
    [28]李泽庚,彭波,张念志,等.肺气虚证模型大鼠肺组织细胞凋亡及Fas、FasL蛋白表达变化[J].安徽中医学院学报,2004,23(3):33-34.
    [29]刘志刚,李泽庚,彭波,等.肺气虚型慢性阻塞性肺疾病大鼠模型及其中药干预的血浆代谢组学研究[J].中华中医药杂志,2013,2(3):797-797.
    [30]刘志刚,李泽庚,彭波,等.基于代谢组学的肺气虚证证本质探索[J].天津中医药,2010,27(6):525-526.