KIR与SLE和ReA发病机制的相关研究及HIC1对SMG生长发育影响的分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     系统性红斑狼疮(systemic lupus erythematosus,SLE)是以多种自身抗体及多样性的多个系统和器官的炎症性损害为特征的系统性自身免疫病。虽然确切的病因和发病机制尚不清楚,但多种遗传和环境因素及免疫学异常可能参与其中。既往研究发现SLE患者存在T细胞和自然杀伤(natural killer, NK)细胞的异常活化及NK细胞数量减少和杀伤活性降低。并且SLE患者中CD3+CD56+natural killer T (NKT)细胞也存在数量减少现象并与SLE患者中高水平IgG及IgG anti-dsDNA抗体相关。因此可推测淋巴细胞亚群失衡与SLE发病相关。
     杀伤细胞免疫球蛋白样受体(Killer cell immunoglobulin-like receptors, KIR)为含有I型跨膜糖蛋白的免疫球蛋白超家族(immunoglobulin superfamily, IgSF)进化而来,表达于自然杀伤细胞及部分T细胞表面。KIR基因具有多态性及多基因性的特点。近期研究显示NK-和T-细胞KIR的表达模式为KIR基因位点甲基化状态所调控。已发现14个KIR基因和2个假基因。KIR分子的胞外段有两个(2D)或三个(3D)免疫球蛋白样结构域,而胞内段分为长(L)和短(S)两种类型。抑制性KIRs的长胞内段含有免疫受体酪氨酸抑制基序(immunoreceptor tyrosine-based inhibitory motif, ITIM),而活化性KIRs则为相对较短的胞内段,由含有adaptor DAP12的酪氨酸激活基序构成。KIRs的配体为人类白细胞抗原(human leukocyte antigen, HLA)I类分子,并且,不同的KIR和HLA组合,可以发挥不同的功能,抑制或活化NK细胞的杀伤活性或炎性细胞因子的分泌。
     基因学研究显示KIR和很多疾病状态存在广泛的相关性,包括感染性疾病如自身免疫缺陷病毒(HIV)和丙肝病毒(HCV)引起的疾病,自身免疫及炎症性异常如硬皮病、银屑病关节炎,癌症如宫颈癌,还有先兆子痫。一般来说,低抑制高活化的基因型模式有益于清除病毒性感染,但该群体患自身免疫性疾病的风险性却是增加的。而抑制性KIR显著的基因型似乎是先兆子痫的高风险因素之一。
     Pellet等发现在无KIR2DS2的情况下KIR2DS1基因频率在SLE患者中高于健康对照组。并且发现发生过血管性事件的患者较未发生的患者存在显著性增高的KIR2DS2及KIR2DL2基因频率。我们前期试验也发现中国SLE患者中KIR2DL2和KIR2DS1基因型频率增加且含有两个以上活化性KIR的基因型相对于健康对照组来说更常见于患者组。狼疮患者的T细胞存在去甲基化状态,使得活化性和抑制性KIRs在SLE患者中T细胞表达并具功能。因用于做流式检测的KIR2DL3/L2/S2和KIR2DL1/S1的抗体在未进行基因型检测的基础上无法区分活化性和抑制性KIRs,因此关于该领域的研究目前尚无明确结论。
     研究目的
     探明杀伤细胞免疫球蛋白样受体在系统性红斑狼疮患者NK(CD3-CD56+)细胞,natural killer T (NKT)(CD3+CD56+)细胞及T (CD3+CD56-)细胞上的表达模式特征。分析SLE患者CD158a/h, CD158b/i/j在NK-、NKT-、T-细胞上的表达与SLEDAI评分及各种免疫性特征之间是否存在相关性。并探明KIR2DL1, KIR2DS1及KIR2DL2在SLE患者NK-、NKT-、T-细胞中的转录情况。从而综合分析KIR在SLE患者淋巴细胞表达模式与发病机制的相关性。
     研究方法
     1.筛选SLE患者和健康对照
     SLE患者和健康对照均分为2DS1+2DL1+组(SLE患者组:n=16;健康对照组:n=12)和2DS2-2DL2+2DL3+组(SLE患者组:n=12;健康对照组:n=8)。SLE患者的免疫学指标数据由医院临床实验室提供。血清IgG> IgA> IgM、C3及C4水平通过Scatter Turbidimeter检测;IIFT法检测ANA,血清ds-DNA、 ss-DNA、AnuA、AHA、rRNP和SM通过ELISA法检测。样本各KIR基因的存在与否通过PCR-SSP方法测得。
     2.流式细胞术分析
     分离PBMC应用EPICS XL-4进行流式分析。所用主要单克隆抗体如下:(i)anti-human CD3(PE),(ii) anti-human CD56(Cy5),(iii) FITC-CD158a/h (EB6)(KIR2DL1/KIR2DS1),(iv) FITC-CD158b/i/j (GL183)(KIR2DL2/KIR2DL3/KIR2DS2)及各特异性抗体的同型对照.
     3.应用Pearson correlation coefficient (r2)分析CD158a/h, CD158b/i/j在SLE患者NK-、NKT-、T-细胞上的表达与SLEDAI评分及各种免疫性特征之间的相关性。two-tailed p-value≤0.05被认为具有统计学意义。
     4.应用CD56multi-sort试剂盒和CD3免疫磁珠分选SLE患者组及健康对照组PBMCs中的NK-、NKT-和T细胞。应用ABI PRISM7500检测系统通过RT-PCI技术以18S基因为对照分析KIR2DL1、KIR2DS1、KIR2DL2在NK-、NKT-和T细胞中的转录水平。
     实验结果
     1.SLE患者NK细胞在PBMC中的比率显著低于健康对照组(p<0.001)。同时,相对于健康对照组SLE患者的NKT细胞在外周血单个核细胞中的比率亦降低(p<0.001)。但是T细胞比率在两组中无显著差异。
     2. CD158a/h在SLE患者NK细胞的表达相对于健康对照组显著增加(p<0.001)。而相对于健康对照组CD158b/i/j在SLE患者NK细胞的表达显著降低(p<0.001)。并且SLE患者NK细胞CD158b/i/jMFI显著增高(p=0.036)。
     3.SLE患者NKT细胞CD158a/h表达显著高于健康对照组(p<0.001)。而CD158b/i/j在该类型细胞中的表达则是SLE患者组显著低于健康对照组(p=0.002)。
     4.SLE患者T细胞CD158a/h表达显著增加(p=0.026)。
     5.SLE患者NK细胞CD158a/h的表达与血清anti-dsDNA水平成正相关(R=0.742,p=0.001)。
     6.SLE患者CD158bl/b2/j+NKT细胞PBMCs中的比率与血清IgG水平成负相关(R=-0.591,p=0.043)
     7.相对于健康对照组SLE患者NK细胞KIR2DS1转录显著增加(p=0.025)而KIR2DL1转录显著减少(p=0.049)。
     8.相对于健康对照组KIR2DS1的转录在SLE患者NKT细胞中显著上调(p=0.041)。
     结论
     1.我们的研究结果证实SLE患者NK细胞活化性KIR表达增加而抑制性KIR表达减少。KIR2DS1的表达增加可能会降低SLE患者NK细胞对于靶细胞(例如自身反应性T细胞)的杀伤效应,从而导致自身抗体(例如Anti-dsDNA抗体)的生成。所以KIR在SLE患者NK细胞上的异常表达模式可能会影响此类型细胞的分化和功能活性并可能因此参与SLE的发病。
     2. KIRs在NKT细胞的异常表达可能具有功能并参与SLE的发病,并且可能至少部分是通过影响血清IgG水平实现的。
     3.狼疮患者T细胞上表达的活化性和抑制性KIRs是功能性的,而过表达的活性性KIRs可能参与了SLE患者自身反应性T细胞的活化。
     4. CD158a/h+NK-、NKT-和T细胞比率在SLE患者组是增加的,而它们的MFI水平却无显著性差异。因此KIR2DS1mRNA的增加可能是2DS1+淋巴细胞普遍扩增所致,而不是由少量很高表达2DS1的NK或NKT细胞亚群所致。
     研究背景:
     反应性关节炎(reactive arthritis, ReA)是一种由细菌性炎性肠病或泌尿生殖系统感染引起的无菌性关节炎。虽然ReA的发病机制尚未明确,但遗传因素似乎在其中具有重要作用。不同的杀伤细胞免疫球蛋白样受体(KIRs)和它们相对应的特异性组织相容性白细胞抗原-C (HLA-C)配体基因型组合在感染性疾病及自身免疫性疾病的易感性和耐受性方面的相关性研究被广泛探讨,但迄今为止,尚无关于ReA的相关研究。
     方法:
     本次实验纳入138例ReA患者(女性65例,男性73例);年龄18至69岁(平均37岁)和种族、年龄和性别相匹配的151例随机筛选的健康对照。样本均采用序列特异性聚合酶链式反应方法对KIR基因和HLA-C等位基因的基因型进行检测。
     结果:
     ReA患者中抑制性的KIR2DL2和KIR2DL5基因频率显著低于对照组(分别为P=0.005和P=0.033)。含有多于7个抑制性KIR的基因型不易发生ReA (P=0.016)。并且,我们发现活化性的KIR2DS1单独或和HLA-C1C1组合(即表示其同源抑制性基因KIR2DL1相对应的配体缺失)的基因型为ReA的易感因素(分别为P=0.039和P=0.011)。而KIR2DL2和它的配体HLA-C1同时存在却对个体起到保护作用,使其不易于患ReA(P=0.039).
     结论
     本次研究提示高水平的活化性和低水平的抑制性KIR信号可能会影响NK细胞和T细胞的功能,而这种固有和适应性免疫反应的失衡导致个体易于被致病原所激发,导致局部的或系统性的细胞因子生成过多从而引起ReA的发病。
     研究背景:
     肿瘤超甲基化基因1(Hypermethylated in cancer1, HIC1),是定位于17p13.3的转录阻遏物,存在于一个CpG岛中,在很多种癌症中呈高甲基化状态,与细胞增生、肿瘤生长和血管生成相关。最近,Underhill课题组构建出一种新的条件性HIC1基因敲除小鼠模型。对这种鼠的初步分析显示这种基因的缺陷导致多种骨骼畸形,包括骨的形态学异常,颅缝早闭及骨盐密度减低。
     我们发现这种条件性HIC1基因敲除小鼠胚胎唾液腺发育异常,所以本次实验拟探讨其发生机制以更好的了解HIC1的作用机制。并且这项研究给了我们一个应用此新的动物模型研究唾液腺异常性疾病的发病及治疗的机会。
     方法:
     1.取不同胎龄的小鼠胚胎,分离SMG并采集图像,同时检测其基因型。
     2.提取模型小鼠胚胎SMG RNA进行quantitative real-time PCR,检测BTBD7、 FGF10、MMP2、MMP9、Fnl (fibronectin)、Inhibin beta A (Activin beta A)、 Inhibin beta B (Activin beta A)的转录水平。
     3.模型小鼠SMG器官培养和Whole-mount X-gal染色。分离E13.5胎鼠SMGs滤膜上培养过夜后进行X-gal染色及图像采集。
     4.免疫组化和免疫荧光。模型小鼠胚胎组织甲醛固定脱水,石蜡包埋切片(厚度7mm),进行H&E及特异性抗体的免疫组化和免疫荧光染色。所用抗体包括:anti-Fnl (fibronectin、anti-colkligenl、anti-Ki67、anti-AQP5。二抗与488Alexa-fluor或594Alexa-fluor联合。
     结果:
     1.HIC1-/-胎鼠SMG由分化不全的较少分支的上皮组织和紧密排列分布的间充质构成。
     2.HIC1-/-胎鼠SMG AQP5表达减少。
     3.HIC1表达分布于SMG间充质,上皮组织无分布。
     4.HIC1-/-胎鼠SMG间充质细胞增生增加。
     5.HIC1-/-胎鼠SMG发育晚期阶段Fibronectin表达减少。
     6.HIC1-/-胎鼠SMG发育晚期阶段Collagen I表达减少。
     7.HIC1-/-胎鼠SMG E15.5胎龄时FGF-10转录减少。
     8.HIC1-/-胎鼠SMG E14.5胎龄时MMP2和MMP9转录增加。
     9. Activin beta A和Activin beta B的转录在HIC1-/-胎鼠SMGE14.5时增加。
     结论
     1.HIC1在SMG形态发育中具有重要作用,缺失该基因时SMG发育迟滞,分支状态和体积均异常。
     2.HIC1在SMG功能发育分化中具有重要作用,缺失该基因时作为分泌功能标志物的AQP5表达减少。
     3.HIC1定位于SMG间充质,其可能通过影响间充质细胞的增生间接影响了SMG功能发育分化。
     4.HIC1可能通过减少Fibronectin的表达影响SMG发育后期间叶结构的形成。
     5. Collagen I、TGF10、MMP2和MMP9可能也部分参与了HIC1信号系统对胎鼠SMG发育的调节。
Background
     Systemic lupus erythematosus (SLE) is a systemic auto-immune disorder,which is characterized by the production of different auto-antibodies and diverse clinical inflammation in multiple organ systems. Although the precise etiology and pathogenesis of SLE still remains unclear, various genetic and environmental factors along with multiple immunological abnormalities may be involved. Previous studies suggested the aberrant activation of T-cells and natural killer (NK) cellsith fewer NK cells and decreased cytotoxicity of NK cells in SLE patients. Furthermore, a lower frequency of CD3+CD56+natural killer T (NKT) cells was found to be associated with higher levels of plasma IgG and IgG anti-dsDNA antibodies in SLE patients. Hence, an imbalance of lymphocyte subsets has been implicated in the pathogenesis of SLE.
     Killer cell immunoglobulin-like receptors (KIR), which evolved from the Ig superfamily (IgSF) consisting of type I transmembrane glycoproteins, are expressed on NK cells and subsets of T-cells. The KIR genes are polymorphic, whereas the KIR gene complex is polygenic. Recent studies showed that the expression patterns of KIR on NK-and T-cells were regulated by the methylation of KIR gene loci. Fourteen KIR genes and two pseudogenes have been described. The extracellular domains of KIR molecules contain either two (2D) or three (3D) Ig-like domains, while the cytoplasmic tails are either long (L) or short (S). The inhibitory KIRs possess a long cytoplasmic tail, which contains immunoreceptor tyrosine-based inhibitory motif (ITIM), while the stimulatory KIRs possess a relatively shorter cytoplasmic tail, which comprises of tyrosine-based activation motifs containing adaptor DAP12. Human leukocyte antigen (HLA) class I molecules serve as ligands for the KIRs; besides, with different KIR and HLA, it either stimulates or inhibits the killing and secretion of inflammatory cytokines of NK cells.
     Genetic studies indicated the existence of an association between KIR and infectious diseases such as human immunodeficiency virus (HIV) and hepatitis C virus (HCV), autoimmune and inflammatory disorders such as scleroderma and psoriatic arthritis, cancer such as cervical cancer, and pre-eclampsia. Generally, the genotypes with lower inhibition and higher activation patterns appear to be beneficial in viral infections, but they constitute a risk for susceptibility to auto-immunity. However, the genotypes in which inhibitory KIR predominates seems to be at an increased risk of pre-eclampsia.
     According to Pellet et al., gene frequency of KIR2DS1in the absence of KIR2DS2increases in SLE patients in comparison to healthy controls. Moreover, patients with vascular arterial events were observed to have a significant increase in KIR2DS2and KIR2DL2gene frequencies when compared with patients without events. We also found that Chinese SLE patients had higher genotypic frequencies of KIR2DL2and KIR2DS1and were frequently observed with two more activating KIR genes than in controls. Stimulatory and inhibitory KIRs of SLE patients were found to be functional on lupus T cells as the DNA of these cells were hypomethylated. However, the mAbs of KIR2DL3/L2/S2and KIR2DL1/S1were used for flow cytometry as the stimulatory and inhibitory receptors could not be distinguished without genotyping nor were they related to any patient characteristics; thus, no conclusion was clearly established.
     Objective
     To investigate the expression pattern of Killer cell immunoglobulinlike receptors (KIR) on natural killer (NK)(CD3-CD56+) cells, natural killer T (NKT)(CD3+CD56+) cells, and subsets of T (CD3+CD56-) cells in SLE. To discussion the correlation between the expressions of CD158a/h, CD158b/i/j on NK-, NKT-, T-cells and SLEDAI score, immunological features of SLE patients. To investigate relative transcription_for KIR2DL1, KIR2DS1and KIR2DL2in NK-, NKT-and T-cells in SLE.
     Method
     1. Patients and controls
     Both SLE patients and controls were classified as2DS1+2DL1+groups (SLE patients:n=16; controls:n=12) and2DS2-2DL2+2DL3+groups (SLE patients:n=12; controls:n=8). The clinical laboratory of the hospital offered the immunological indices of SLE patients. Scatter Turbidimeter was used to measure the serum level of IgG, IgA, IgM, C3and C4; IIFT was used to measure ANA, and ELISA was used to measure ds-DNA, ss-DNA, AnuA, AHA, rRNP and SM. The cohort was genotyped for the presence or absence of KIR genes by using PCR-SSP.
     2. Flow cytometric analysis
     The PBMC were isolated and were then analyzed by EPICS XL-4flow cytometry. Monoclonal antibodies as follows:(i) anti-human CD3(PE),(ii) anti-human CD56(Cy5),(iii) FITC-CD158a/h (EB6)(KIR2DL1/KIR2DS1) and (iv) FITC-CD158b/i/j (GL183)(KIR2DL2/KIR2DL3/KIR2DS2).
     3. We analyzed the correlation between the expressions of CD158a/h, CD158b/i/j on NK-, NKT-, T-cells and SLEDAI score, immunological features of SLE patients by using the Pearson correlation coefficient (r). A two-tailed p-value≤0.05was considered to be statistically significant.
     4. A CD56multi-sort kit along with CD3magnetic beads were used to isolate the NK-, NKT-and T cells from the PBMCs taken from of SLE patient and healthy control. And RT-PCR analysis was used for quantification of KIR2DL1,2DS1,2DL2, and the control18S gene by the ABI PRISM7500detection system.
     Results
     1. In SLE patients, the proportion of NK cells was significantly lower as compared to the controls (p<0.001). Moreover, a reduction in the proportion of NKT cells was observed in the peripheral blood of SLE patients as compared to the controls (p<0.001). However, in the T-cells, no significant difference was detected between the two groups.
     2. The expression of CD158a/h on NK cells in the SLE patients was significantly increased when compared to the healthy controls (p<0.001). However, the expression of CD158b/i/j on NK cells in the SLE patients was significantly decreased when compared to the healthy controls (p<0.001). And a significant increase of CD158b/i/j MFI (p=0.036) was seen in the SLE group.
     3. The expression of CD158a/h on NKT cells in the SLE patients was significantly increased when compared to the healthy controls (p<0.001). The expression of CD158b/i/j on NKT cells in the SLE patients was significantly decreased when compared to the healthy controls (p=0.002).
     4. Expression of CD158a/h on T-cells was also significantly increased in the SLE patients (p=0.026).
     5. The proportion of CD158a/h+NK cells positively correlated with the serum levels of anti-dsDNA titer in SLE patients (R=0.742, p=0.001).
     6. The proportion of CD158b1/b2/j+NKT cells in PBMCs and the serum levels of IgG showed a significant negative correlation in SLE patients (R=-0.591, p=0.043).
     7. The results showed the up regulation of transcription for KIR2DS1(p=0.025) and down regulation of KIR2DL1(p=0.049) in NK cells from SLE patients compared to the controls.
     8. The transcription of KIR2DS1was up regulated in NKT cells from SLE patients (p=0.041).
     Conclusion
     1. Our results verified that SLE patients have increased stimulatory and decreased inhibitory KIRs expression on NK cells. The increased expression of KIR2DS1on NK cells in SLE patients may decrease their cytotoxic effect against the target cells, such as auto-reactive T-cells, thus, resulting in an auto-antibody production (for example, Anti-dsDNA antibodies). So abnormal expression patterns of KIRs on NK cells of SLE patients may influence their differentiation and functional activity, and these may participate in the pathogenesis of SLE.
     2. The abnormal KIRs expression on the NKT cells maybe functional and contributing to SLE pathogenesis at least partly through influence serum IgG level.
     3. Stimulatory and inhibitory KIRs are functional on lupus T-cells, and the over expressive stimulatory KIRs may take part in the activation of auto-reactive T-cells in SLE patients.
     4. The proportion of CD158a/h+NK-, NKT-and T cells appeared to increase in the SLE patients group, while their MFI levels did not show any significant difference. Therefore, the increased KIR2DS1mRNA may be the result of a general expansion of2DS1+lymphocytes, but not a very high expression among the small NK or NKT cell subset.
     Background
     Reactive arthritis (ReA) is sterile arthritis triggered by bacterial gastrointenstinal or urogenital infections. Although the pathogenesis of ReA remains unclear, genetic factors seem to play an important role. Different killer cell immunoglobulin-like receptors (KIRs) and their corresponding specific histocompatibility leukocyte antigen-C (HLA-C) ligand genotypes have been implicated in susceptibility and resistance to infections and autoimmune diseases but have, thus far, not been investigated in ReA.
     Methods
     This study was conducted in138ReA patients (65females,73males); aged18to69years (mean,37years) and151randomly selected healthy control individuals matched for ethnicity, age and sex. These subjects were genotyped for KIR genes and HLA-C alleles by polymerase chain reaction with sequence-specific primers.
     Results
     The frequencies of inhibitory KIR2DL2and KIR2DL5were significantly lower in the ReA patients than in the controls (P=0.005and P=0.033, respectively). The presence of more than seven inhibitory KIR genes was protective (P=0.016). Moreover, we found that activating KIR2DS1alone or-in combination with the HLA-C1C1genotype (which indicates the absence of the HLA ligands for their homologous inhibitory receptor KIR2DL1) is associated with susceptibility to ReA (P=0.039and P=0.011, respectively), whereas KIR2DL2in combination with the HLA-C1ligand is associated with protection against ReA (P=0.039).
     Conclusions
     These observations indicate that high levels of activating and low levels of inhibitory KIR signals may affect the functions of NK cells and T cells. This imbalance enables the innate and adaptive immune responses of the host to be easily triggered by pathogens, resulting in the overproduction of local and systemic cytokines that contribute to the pathogenesis of ReA.
     Background
     Hypermethylated in cancer1(HIC1), which is located at17p13.3, a transcriptional repressor, resides in a CpG island that is hypermethylated in many types of human cancers and its targets genes involved in proliferation, tumour growth and angiogenesis. Now the Underhill group has generated a novel conditional Hicl knockout mice model. Preliminary analysis of these mice indicates that deficiency of this gene leads to a variety of skeletal malformations including, bone morphological anomalies, craniosynostosis and reduced bone mineral density,
     we found the salivary gland of the HIC1knockout mice embryos have developing disorder, so we try to figure out how does this happen and this would help us know better about HICl.And these studies will give us an opportunity to learn a new animal model for studying the etiology and treatment of salivary gland disorders.
     Methods
     1. Dissect different stages embryos out of the uterus in ice cold PBS and place in single wells containing PBS. SMG was isolated and taken images, genotyping of the embryos were done at the same time.
     2. Preparation of RNA and cDNA and quantitative real-time PCR, RNA was extracted from each pair of salivary glands using RNAeasy micro kit.The transcription levels of BTBD7, FGF10, MMP2, MMP9, Fnl (fibronectin), Inhibin beta A (Activin beta A), Inhibin beta B (Activin beta A) were tested.
     3. Whole-mount X-gal staining. Dissected E13.5SMGs were grown on filters overnight, prior to processing for X-gal staining..
     4. Immunohistochemistry and Immunofluorescence. Tissues were fixed in formalin overnight at4℃. Paraffin-embedded sections (7mm) were prepared for H&E staining, Immunofluorescence, and immunohistochemistry (IHC). We stained sections with the following primary antibodies:anti-Fnl (fibronectin), anti-colligenl, anti-Ki67, anti-AQP5. Secondary antibodies, conjugated to either the488Alexa-fluor or the594Alexa-fluor.
     Results
     1. HIC1(?)SMG consists primarily of undifferentiated epithelium composed of very few branches surrounded by undifferentiated, condensed mesenchyme.
     2. AQP5expression was reduced in HIC1(?)SMG.
     3. HIC1is located in mesenchyme of salivary gland
     4. Mesenchymal cells proliferation increased in HIC1(?)SMG.
     5. Fibronectin expressions were decreased in HIC1(?)SMG at later stages.
     6. Collagen I staining was decreased in order stages of HIC1(?)SMG.
     7. FGF-10transcripts were decreased in HIC1-/-SMG at E15.5.
     8. MMP2and MMP9transcripts were increased in HIC1(?)SMG at E14.5
     9. Activin beta A and Activin beta B transcripts were increased in HIC1(?)SMG at stage E14.5while no Smad2staining difference can be found.
     Conclusions
     1. Impaired branching and size morphogenesis in HIC1(?)SMGs. Embryonic HIC1(?)SMGs are developmentally-delayed.
     2. As a functional marker of SMG, reduced AQP5expression means there is a function disorder in HIC1(?)SMGs. HIC1affects epithelial cell differentiation.
     3. HIC1affects the adjacent mesenchymal cells proliferation
     4. HIC1maybe influence the inter lobe formation in the later stages of SMG by affecting Fibronectin's expression.
     5. Collagen I,TGF10, MMP2and MMP9maybe also take part in HIC1signaling pathway in mice embryos salivary gland developing.
引文
1. KangⅠ, Quan T, Nolasco H, Park SH, Hong MS, Crouch J, Pamer EG, Howe JG, Craft J:Defective control of latent Epstein-Barr virus infection in systemic lupus erythematosus. J Immunol 2004,172(2):1287-1294.
    2. La Cava A:Lupus and T cells. Lupus 2009,18(3):196-201.
    3. Wong M, Tsao BP:Current topics in human SLE genetics. Springer Semin Immunopathol 2006, 28(2):97-107.
    4. Anand A, Dean GS, Quereshi K, Isenberg DA, Lydyard PM:Characterization of CD3+CD4-CD8-(double negative) T cells in patients with systemic lupus erythematosus:activation markers. Lupus 2002, 11(8):493-500.
    5. Hervier B, Beziat V, Haroche J, Mathian A, Lebon P, Ghillani-Dalbin P, Musset L, Debre P, Amoura Z, Vieillard V:Phenotype and function of natural killer cells in systemic lupus erythematosus:excess interferon-gamma production in patients with active disease. Arthritis Rheum 2011,63(6):1698-1706.
    6. Riccieri V, Spadaro A, Parisi G, Taccari E, Moretti T, Bernardini G, Favaroni M, Strom R: Down-regulation of natural killer cells and of gamma/delta T cells in systemic lupus erythematosus. Does it correlate to autoimmunity and to laboratory indices of disease activity? Lupus 2000,9(5):333-337.
    7. Green MR, Kennell AS, Larche MJ, Seifert MH, Isenberg DA, Salaman MR:Natural killer T cells in families of patients with systemic lupus erythematosus:their possible role in regulation of IGG production. Arthritis Rheum 2007,56(1)303-310.
    8. Chen S, Hu D, Shi X, Shen N, Gu Y, Bao C:The relationship between Th1/Th2-type cells and disease activity in patients with systemic lupus erythematosus. Chin Med J (Engl) 2000, 113(10):877-880.
    9. Parham P:MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol 2005,5(3).-201-214.
    10. Basu D, Liu Y, Wu A, Yarlagadda S, Gorelik GJ, Kaplan MJ, Hewagama A, Hinderer RC, Strickland FM, Richardson BC:Stimulatory and inhibitory killer Ig-like receptor molecules are expressed and functional on lupus T cells. J Immunol 2009,183(5):3481-3487.
    11. Chan HW, Kurago ZB, Stewart CA, Wilson MJ, Martin MP, Mace BE, Carrington M, Trowsdale J, Lutz CT:DNA methylation maintains allele-specific KIR gene expression in human natural killer cells. J Exp Med 2003,197(2):245-255.
    12. Wagtmann N, Rajagopalan S, Winter CC, Peruzzi M, Long EO:Killer cell inhibitory receptors specific for HLA-C and HLA-B identified by direct binding and by functional transfer. Immunity 1995,3(6):801-809.
    13. Colonna M:Immunology. Unmasking the killer's accomplice. Nature 1998, 391(6668):642-643.
    14. Stebbins CC, Watzl C, Billadeau DD, Leibson PJ, Burshtyn DN, Long EO:Vavl dephosphorylation by the tyrosine phosphatase SHP-1 as a mechanism for inhibition of cellular cytotoxicity. Mol Cell Biol 2003,23(17):6291-6299.
    15. Sambrook JG, Bashirova A, Andersen H, Piatak M, Vernikos GS, Coggill P, Lifson JD, Carrington M, Beck S:Identification of the ancestral killer immunoglobulin-like receptor gene in primates. BMC Genomics 2006,7:209.
    16. Kulkarni S, Martin MP, Carrington M:The Yin and Yang of HLA and KIR in human disease. Semin Immunol 2008,20(6)343-352.
    17. Chan HW, Miller JS, Moore MB, Lutz CT:Epigenetic control of highly homologous killer Ig-like receptor gene alleles. J Immunol 2005,175(9):5966-5974.
    18. van Bergen J, Stewart CA, van den Elsen PJ, Trowsdale J:Structural and functional differences between the promoters of independently expressed killer cell Ig-like receptors. EurJ Immunol 2005,35(7):2191-2199.
    19. Li H, Pascal V, Martin MP, Carrington M, Anderson SK:Genetic control of variegated KIR gene expression:polymorphisms of the bi-directional KIR3DL1 promoter are associated with distinct frequencies of gene expression. PLoS Genet 2008,4(11):e1000254.
    20. Davies GE, Locke SM, Wright PW, Li H, Hanson RJ, Miller JS, Anderson SK:Identification of bidirectional promoters in the human KIR genes. Genes Immun 2007,8(3):245-253.
    21. Vivier E, Daeron M:Immunoreceptor tyrosine-based inhibition motifs. Immunol Today 1997, 18(6):286-291.
    22. Kogure T, Fujinaga H, Niizawa A, Hai LX, Shimada Y, Ochiai H, Terasawa K:Killer-cell inhibitory receptors, CD158a/b, are upregulated by interleukin-2, but not interferon-gamma or interleukin-4. Mediators Inflamm 1999,8(6):313-318.
    23. Kogure T, Ltoh K, Tatsumi T, Sekiya N, Sakai S, Shimada Y, Tamura J, Terasawa K:The effect of Juzen-taiho-to/TJ-48 on the expression of killer-cell immunoglobulin-like receptors (CD158a/b) on peripheral lymphocytes in vitro experiment. Phytomedicine 2005, 12(5):327-332.
    24. Ligthart GJ, Schuit HR, Hijmans W:Natural killer cell function is not diminished in the healthy aged and is proportional to the number of NK cells in the peripheral blood. Immunology 1989,68(3):396-402.
    25. Kutza J, Murasko DM:Effects of aging on natural killer cell activity and activation by interleukin-2 and IFN-alpha. Cell Immunol 1994,155(1):195-204.
    26. Borrego F, Alonso MC, Galiani MD, Carracedo J, Ramirez R, Ostos B, Pena J, Solana R:NK phenotypic markers and IL2 response in NK cells from elderly people. Exp Gerontol 1999, 34(2):253-265.
    27. Sansoni P, Cossarizza A, Brianti V, Fagnoni F, Snelli G, Monti D, Marcato A, Passeri G, Ortolani C, Forti E et al. Lymphocyte subsets and natural killer cell activity in healthy old people and centenarians. Blood 1993,82(9):2767-2773.
    28. Santourlidis S, Trompeter HI, Weinhold S, Eisermann B, Meyer KL, Wernet P, Uhrberg M: Crucial role of DNA methylation in determination of clonally distributed killer cell Ig-like receptor expression patterns in NK cells. J Immunol 2002,169(8):4253-4261.
    29. Graakjaer J, Pascoe L, Der-Sarkissian H, Thomas G, Kolvraa S, Christensen K, Londono-Vallejo JA:The relative lengths of individual telomeres are defined in the zygote and strictly maintained during life. Aging Cell 2004,3(3):97-102.
    30. Abedin S, Michel JJ, Lemster B, Vallejo AN:Diversity of NKR expression in aging T cells and in T cells of the aged:the new frontier into the exploration of protective immunity in the elderly. Exp Gerontol 2005,40(7):537-548.
    31. Davodeau F, Peyrat MA, Necker A, Dominici R, Blanchard F, Leget C, Gaschet J, Costa P, Jacques Y, Godard A et al: Close phenotypic and functional similarities between human and murine alphabeta T cells expressing invariant TCR alpha-chains. J Immunol 1997, 158(12):5603-5611.
    32. Carrington M, Wang S, Martin MP, Gao X, Schiffman M, Cheng J, Herrero R, Rodriguez AC, Kurman R, Mortel R et al. Hierarchy of resistance to cervical neoplasia mediated by combinations of killer immunoglobulin-like receptor and human leukocyte antigen loci. J Exp Med 2005,201(7):1069-1075.
    33. Hiby SE, Walker JJ, O'Shaughnessy K M, Redman CW, Carrington M, Trowsdale J, Moffett A: Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J Exp Med 2004,200(8):957-965.
    34. Long BR, Ndhlovu LC, Oksenberg JR, Lanier LL, Hecht FM, Nixon DF, Barbour JD:Conferral of enhanced natural killer cell function by KIR3DS1 in early human immunodeficiency virus type 1 infection. J Virol 2008,82(10):4785-4792.
    35. Momot T, Koch S, Hunzelmann N, Krieg T, Ulbricht K, Schmidt RE, Witte T:Association of killer cell immunoglobulin-like receptors with scleroderma. Arthritis Rheum 2004, 50(5):1561-1565.
    36. Nelson GW, Martin MP, Gladman D, Wade J, Trowsdale J, Carrington M:Cutting edge: heterozygote advantage in autoimmune disease:hierarchy of protection/susceptibility conferred by HLA and killer Ig-like receptor combinations in psoriatic arthritis. J Immunol 2004,173(7):4273-4276.
    37. Sharkey AM, Gardner L, Hiby S, Farrell L, Apps R, Masters L, Goodridge J, Lathbury L, Stewart CA, Verma S et al: Killer Ig-like receptor expression in uterine NK cells is biased toward recognition of HLA-C and alters with gestational age. J Immunol 2008,181(1):39-46.
    38. Abi-Rached L, Parham P:Natural selection drives recurrent formation of activating killer cell immunoglobulin-like receptor and Ly49 from inhibitory homologues. J Exp Med 2005, 201(8):1319-1332.
    39. Hou L, Steiner NK, Chen M, Belle I, Kubit AL, Ng J, Hurley CK:Limited allelic diversity of stimulatory two-domain killer cell immunoglobulin-like receptors. Hum Immunol 2008, 69(3):174-178.
    40. Single RM, Martin MP, Gao X, Meyer D, Yeager M, Kidd JR, Kidd KK, Carrington M:Global diversity and evidence for coevolution of KIR and HLA. Nat Genet 2007,39(9):1114-1119.
    41. Yen JH, Moore BE, Nakajima T, Scholl D, Schaid DJ, Weyand CM, Goronzy JJ:Major histocompatibility complex class 1-recognizing receptors are disease risk genes in rheumatoid arthritis. J Exp Med 2001,193(10):1159-1167.
    42. Nakajima T, Goek O, Zhang X, Kopecky SL, Frye RL, Goronzy JJ, Weyand CM:De novo expression of killer immunoglobulin-like receptors and signaling proteins regulates the cytotoxic function of CD4 T cells in acute coronary syndromes. Circ Res 2003,93(2):106-113.
    43. Majorczyk E, Pawlik A, Luszczek W, Nowak I, Wisniewski A, Jasek M, Kusnierczyk P: Associations of killer cell immunoglobulin-like receptor genes with complications of rheumatoid arthritis. Genes Immun 2007,8(8):678-683.
    44. Brooks AG, Boyington JC, Sun PD:Natural killer cell recognition of HLA class I molecules. Rev Immunogenet 2000,2(3):433-448.
    45. Saruhan-Direskeneli G, Uyar FA, Cefle A, Onder SC, Eksioglu-Demiralp E, Kamali S, Inanc M, Ocal L, Gul A:Expression of KIR and C-type lectin receptors in Behcet's disease. Rheumatology (Oxford) 2004,43(4):423-427.
    46. Holm SJ, Sakuraba K, Mallbris L, Wolk K, Stahle M, Sanchez FO:Distinct HLA-C/KIR genotype profile associates with guttate psoriasis. J Invest Dermatol 2005,125(4):721-730.
    47. Karlsen TH, Boberg KM, Olsson M, Sun JY, Senitzer D, Bergquist A, Schrumpf E, Thorsby E, Lie BA:Particular genetic variants of ligands for natural killer cell receptors may contribute to the HLA associated risk of primary sclerosing cholangitis. J Hepatol 2007,46(5):899-906.
    48. Kitawaki J, Xu B, Ishihara H, Fukui M, Hasegawa G, Nakamura N, Mizuno S, Ohta M, Obayashi H, Honjo H:Association of killer cell immunoglobulin-like receptor genotypes with susceptibility to endometriosis. Am J Reprod Immunol 2007,58(6):481-486.
    49. Levinson RD, Du Z, Luo L, Monnet D, Tabary T, Brezin AP, Zhao L, Gjertson DW, Holland GN, Reed EF et al: Combination of KIR and HLA gene variants augments the risk of developing birdshot chorioretinopathy in HLA-A*29-positive individuals. Genes Immun 2008, 9(3):249-258.
    50. Boyton RJ, Smith J, Ward R, Jones M, Ozerovitch L, Wilson R, Rose M, Trowsdale J, Altmann DM:HLA-C and killer cell immunoglobulin-like receptor genes in idiopathic bronchiectasis. Am J Respir Crit Care Med 2006,173(3):327-333.
    51. Middleton D, Halfpenny I, Meenagh A, Williams F, Sivula J, Tuomilehto-Wolf E:Investigation of KIR gene frequencies in type 1 diabetes mellitus. Hum Immunol 2006,67(12):986-990.
    52. Toyabe S, Kaneko U, Uchiyama M:Decreased DAP12 expression in natural killer lymphocytes from patients with systemic lupus erythematosus is associated with increased transcript mutations. JAutoimmun 2004,23(4):371-378.
    53. Tulunay A, Yavuz S, Direskeneli H, Eksioglu-Demiralp E:CD8+CD28-, suppressive T cells in systemic lupus erythematosus. Lupus 2008,17(7):630-637.
    54. Pellett F, Siannis F, Vukin I, Lee P, Urowitz MB, Gladman DD:KIRs and autoimmune disease: studies in systemic lupus erythematosus and scleroderma. Tissue Antigens 2007,69 Suppl 1:106-108.
    55. Toloza S, Pellett F, Chandran V, Ibanez D, Urowitz M, Gladman D:Association of killer cell immunoglobulin-like receptor genotypes with vascular arterial events and anticardiolipin antibodies in patients with lupus. Lupus 2008,17(9):793-798.
    56. Hou YF, Zhang YC, Jiao YL, Wang LC, Li JF, Pan ZL, Yang QR, Sun HS, Zhao YR:Disparate distribution of activating and inhibitory killer cell immunoglobulin-like receptor genes in patients with systemic lupus erythematosus. Lupus 2010,19(1):20-26.
    57. Schleinitz N, Chiche L, Guia S, Bouvier G, Vernier J, Morice A, Houssaint E, Harle JR, Kaplanski G, Montero-Julian FA et al. Pattern of DAP12 expression in leukocytes from both healthy and systemic lupus erythematosus patients. PLoS One 2009,4(7).e6264.
    58. Hochberg MC:Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1997,40(9):1725.
    59. Martin MP, Nelson G, Lee JH, Pellett F, Gao X, Wade J, Wilson MJ, Trowsdale J, Gladman D, Carrington M:Cutting edge:susceptibility to psoriatic arthritis:influence of activating killer Ig-like receptor genes in the absence of specific HLA-C alleles. J Immunol 2002, 169(6):2818-2822.
    60. Hoglund P, Ohlen C, Carbone E, Franksson L, Ljunggren HG, Latour A, Koller B, Karre K: Recognition of beta 2-microglobulin-negative (beta 2m-) T-cell blasts by natural killer cells from normal but not from beta 2m-mice:nonresponsiveness controlled by beta 2m-bone marrow in chimeric mice. Proc Natl Acad Sci U S A 1991,88(22):10332-10336.
    61. Diefenbach A, Raulet DH:Strategies for target cell recognition by natural killer cells. Immunol Rev 2001,181:170-184.
    62. Valiante NM, Uhrberg M, Shilling HG, Lienert-Weidenbach K, Arnett KL, D'Andrea A, Phillips JH, Lanier LL, Parham P:Functionally and structurally distinct NK cell receptor repertoires in the peripheral blood of two human donors. Immunity 1997,7(6):739-751.
    63. Cooper MA, Fehniger TA, Caligiuri MA:The biology of human natural killer-cell subsets. Trends Immunol 2001,22(11):633-640.
    64. Fernandez NC, Treiner E, Vance RE, Jamieson AM, Lemieux S, Raulet DH:A subset of natural killer cells achieves self-tolerance without expressing inhibitory receptors specific for self-MHC molecules. Blood 2005,105(11):4416-4423.
    65. Kim S, Poursine-Laurent J, Truscott SM, Lybarger L, Song YJ, Yang L, French AR, Sunwoo JB, Lemieux S, Hansen TH et al:Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 2005,436(7051):709-713.
    66. Raulet DH, Held W, Correa I, Dorfman JR, Wu MF, Corral L:Specificity, tolerance and developmental regulation of natural killer cells defined by expression of class 1-specific Ly49 receptors. Immunol Rev 1997,155:41-52.
    67. Liao NS, Bix M, Zijlstra M, Jaenisch R, Raulet D:MHC class I deficiency:susceptibility to natural killer (NK) cells and impaired NK activity. Science 1991,253(5016):199-202.
    68. Anfossi N, Andre P, Guia S, Falk CS, Roetynck S, Stewart CA, Breso V, Frassati C, Reviron D, Middleton D et al:Human NK cell education by inhibitory receptors for MHC class I. Immunity 2006,25(2):331-342.
    69. Kim S, Sunwoo JB, Yang L, Choi T, Song YJ, French AR, Vlahiotis A, Piccirillo JF, Cella M, Colonna M et al:HLA alleles determine differences in human natural killer cell responsiveness and potency. Proc Natl Acad Sci U S A 2008,105(8)3053-3058.
    70. Green MR, Kenneil AS, Larche MJ, Seifert MH, Isenberg DA, Salaman MR:Natural killer cell activity in families of patients with systemic lupus erythematosus:demonstration of a killing defect in patients. Clin Exp Immunol 2005,141(1):165-173.
    71. Yabuhara A, Yang FC, Nakazawa T, Iwasaki Y, Mori T, Koike K, Kawai H, Komiyama A:A killing defect of natural killer cells as an underlying immunologic abnormality in childhood systemic lupus erythematosus. J Rheumatol 1996,23(1):171-177.
    72. Park YW, Kee SJ, Cho YN, Lee EH, Lee HY, Kim EM, Shin MH, Park JJ, Kim TJ, Lee SS et al: Impaired differentiation and cytotoxicity of natural killer cells in systemic lupus erythematosus. Arthritis Rheum 2009,60(6):1753-1763.
    73. Fauriat C, Ivarsson MA, Ljunggren HG, Malmberg KJ, Michaelsson J:Education of human natural killer cells by activating killer cell immunoglobulin-like receptors. Blood 2010, 115(6):1166-1174.
    74. Riccieri V, Parisi G, Spadaro A, Scrivo R, Barone F, Moretti T, Bernardini G, Strom R, Taccari E, Valesini G:Reduced circulating natural killer T cells and gamma/delta T cells in patients with systemic sclerosis. J Rheumatol 2005,32(2):283-286.
    75. Wither J, Cai YC, Lim S, McKenzie T, Roslin N, Claudio JO, Cooper GS, Hudson TJ, Paterson AD, Greenwood CM et al:Reduced proportions of natural killer T cells are present in the relatives of lupus patients and are associated with autoimmunity. Arthritis Res Ther 2008, 10(5):R108.
    76. Li WX, Pan HF, Hu JL, Wang CZ, Zhang N, Li J, Li XP, Xu JH, Ye DQ:Assay of T-and NK-cell subsets and the expression of NKG2A and NKG2D in patients with new-onset systemic lupus erythematosus. Clin Rheumatol 2010,29(3):315-323.
    1. Chan HW, Kurago ZB, Stewart CA, Wilson MJ, Martin MP, Mace BE, Carrington M, Trowsdale J, Lutz CT:DNA methylation maintains allele-specific KIR gene expression in human natural killer cells. J Exp Med 2003,197(2):245-255.
    2. Martin AM, Kulski JK, Gaudieri S, Witt CS, Freitas EM, Trowsdale J, Christiansen FT: Comparative genomic analysis, diversity and evolution of two KIR haplotypes A and B. Gene 2004,335:121-131.
    3. Martin MP, Bashirova A, Traherne J, Trowsdale J, Carrington M:Cutting edge:expansion of the KIR locus by unequal crossing over. J Immunol 2003,171(5):2192-2195.
    4. Marsh SG, Parham P, Dupont B, Geraghty DE, Trowsdale J, Middleton D, Vilches C, Carrington M, Witt C, Guethlein LA et al:Killer-cell immunoglobulin-like receptor (KIR) nomenclature report,2002. Tissue Antigens 2003,62(1):79-86.
    5. Parham P:MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol 2005,5(3):201-214.
    6. Rajalingam R:Killer cell immunoglobulin-like receptors influence the innate and adaptive immune responses. Iran J Immunol 2007,4(2):61-78.
    7. Long BR, Ndhlovu LC, Oksenberg JR, Lanier LL, Hecht FM, Nixon DF, Barbour JD:Conferral of enhanced natural killer cell function by K1R3OS1 in early human immunodeficiency virus type 1 infection. J Virol 2008,82(10):4785-4792.
    8. Deng L, Mariuzza RA:Structural basis for recognition of MHC and MHC-like ligands by natural killer cell receptors. Semin Immunol 2006,18(3):159-166.
    9. Vilches C, Parham P:KIR:diverse, rapidly evolving receptors of innate and adaptive immunity. Annu Rev Immunol 2002,20:217-251.
    10. Du Z, Gjertson DW, Reed EF, Rajalingam R:Receptor-ligand analyses define minimal killer cell Ig-like receptor (KIR) in humans. Immunogenetics 2007,59(1):1-15.
    11. Naumova E, Mihaylova A, Ivanova M, Mihailova S:Impact of KIR/HLA ligand combinations on immune responses in malignant melanoma. Cancer Immunol Immunother 2007, 56(1):95-100.
    12. Romero V, Azocar J, Zuniga J, Clavijo OP, Terreros D, Gu X, Husain Z, Chung RT, Amos C, Yunis EJ:Interaction of NK inhibitory receptor genes with HLA-C and MHC class Ⅱ alleles in Hepatitis C virus infection outcome. Mol Immunol 2008,45(9):2429-2436.
    13. Martin MP, Gao X, Lee JH, Nelson GW, Detels R, Goedert JJ, Buchbinder S, Hoots K, Vlahov D, Trowsdale J et al:Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nature genetics 2002,31(4):429-434.
    14. Gao X, Jiao Y, Wang L, Liu X, Sun W, Cui B, Chen Z, Zhao Y:Inhibitory KIR and specific HLA-C gene combinations confer susceptibility to or protection against chronic hepatitis B. Clinical immunology (Orlando, Fla,137(1):139-146.
    15. Khakoo SI, Thio CL, Martin MP, Brooks CR, Gao X, Astemborski J, Cheng J, Goedert JJ, Vlahov D, Hilgartner M et al:HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science (New York, NY 2004,305(5685):872-874.
    16. Momot T, Koch S, Hunzelmann N, Krieg T, Ulbricht K, Schmidt RE, Witte T:Association of killer cell immunoglobulin-like receptors with scleroderma. Arthritis and rheumatism 2004, 50(5):1561-1565.
    17. Yen JH, Moore BE, Nakajima T, Scholl D, Schaid DJ, Weyand CM, Goronzy JJ:Major histocompatibility complex class 1-recognizing receptors are disease risk genes in rheumatoid arthritis. J Exp Med 2001,193(10):1159-1167.
    18. Naumova E, Mihaylova A, Stoitchkov K, Ivanova M, Quin L, Toneva M:Genetic polymorphism of NK receptors and their ligands in melanoma patients:prevalence of inhibitory over activating signals. Cancer Immunol Immunother 2005,54(2):172-178.
    19. Saito S, Takeda Y, Sakai M, Nakabayahi M, Hayakawa S:The incidence of pre-eclampsia among couples consisting of Japanese women and Caucasian men. Journal of reproductive immunology 2006,70(1-2):93-98.
    20. Braun J, Sieper J:The sacroiliac joint in the spondyloarthropathies. Current opinion in rheumatology 1996,8(4):275-287.
    21. Yu D, Kuipers JG:Role of bacteria and HLA-B27 in the pathogenesis of reactive arthritis. Rheumatic diseases clinics of North America 2003,29(1):21-36, v-vi.
    22. Kuipers JG, Zeidler H, Kohler L:How does Chlamydia cause arthritis? Rheumatic diseases clinics of North America 2003,29(3):613-629.
    23. Bas S, Neff L, Vuillet M, Spenato U, Seya T, Matsumoto M, Gabay C:The proinflammatory cytokine response to Chlamydia trachomatis elementary bodies in human macrophages is partly mediated by a lipoprotein, the macrophage infectivity potentiator, through TLR2/TLR1/TLR6 and CD14. J Immunol 2008,180(2):1158-1168.
    24. Gaston JS, Deane KH, Jecock RM, Pearce JH:Identification of 2 Chlamydia trachomatis antigens recognized by synovial fluid T cells from patients with Chlamydia induced reactive arthritis. The Journal of rheumatology 1996,23(1):130-136.
    25. Sieper J:Pathogenesis of reactive arthritis. Current rheumatology reports 2001, 3(5):412-418.
    26. Bensinger SJ, Bandeira A, Jordan MS, Caton AJ, Laufer TM:Major histocompatibility complex class 11-positive cortical epithelium mediates the selection of CD4(+)25(+) immunoregulatory T cells. J Exp Med 2001,194(4):427-438.
    27. Singh R, Aggarwal A, Misra R:Th1/Th17 cytokine profiles in patients with reactive arthritis/undifferentiated spondyloarthropathy. The Journal of rheumatology 2007, 34(11):2285-2290.
    28. Colbert RA:HLA-B27 misfolding:a solution to the spondyloarthropathy conundrum? Molecular medicine today 2000,6(6):224-230.
    29. Jiao YL, Ma CY, Wang LC, Cui B, Zhang J, You L, Chen ZJ, Li JF, Zhao YR:Polymorphisms of KIRs gene and HLA-C alleles in patients with ankylosing spondylitis:possible association with susceptibility to the disease. Journal of clinical immunology 2008,28(4)343-349.
    30. Jiao YL, Zhang BC, You L, Li JF, Zhang J, Ma CY, Cui B, Wang LC, Chen ZJ, Zhao YR: Polymorphisms of KIR gene and HLA-C alleles:possible association with susceptibility to HLA-B27-positive patients with ankylosing spondylitis. Journal of clinical immunology, 30(6):840-844.
    31. Martin MP, Nelson G, Lee JH, Pellett F, Gao X, Wade J, Wilson MJ, Trowsdale J, Gladman D, Carrington M:Cutting edge:susceptibility to psoriatic arthritis:influence of activating killer Ig-like receptor genes in the absence of specific HLA-C alleles. J Immunol 2002, 169(6):2818-2822.
    32. Nelson GW, Martin MP, Gladman D, Wade J, Trowsdale J, Carrington M:Cutting edge: heterozygote advantage in autoimmune disease:hierarchy of protection/susceptibility conferred by HLA and killer Ig-like receptor combinations in psoriatic arthritis. J Immunol 2004,173(7):4273-4276.
    33. Kingsley G, Sieper J:Third International Workshop on Reactive Arthritis.23-26 September 1995, Berlin, Germany. Report and abstracts. Annals of the rheumatic diseases 1996, 55(8):564-584.
    34. Pacheco-Tena C, Burgos-Vargas R, Vazquez-Mellado J, Cazarin J, Perez-Diaz JA:A proposal for the classification of patients for clinical and experimental studies on reactive arthritis. The Journal of rheumatology 1999,26(6):1338-1346.
    35. Hou YF, Zhang YC, Jiao YL, Wang LC, Li JF, Pan ZL, Yang QR, Sun HS, Zhao YR:Disparate distribution of activating and inhibitory killer cell immunoglobulin-like receptor genes in patients with systemic lupus erythematosus. Lupus,19(1):20-26.
    36. Single RM, Martin MP, Gao X, Meyer D, Yeager M, Kidd JR, Kidd KK, Carrington M:Global diversity and evidence for coevolution of KIR and HLA. Nature genetics 2007, 39(9):1114-1119.
    37. Bunce M, O'Neill CM, Barnardo MC, Krausa P, Browning MJ, Morris PJ, Welsh Kl:Phototyping: comprehensive DIMA typing for HLA-A, B, C, DRB1, DRB3, DRB4, DRB5 & DQB1 by PCR with 144 primer mixes utilizing sequence-specific primers (PCR-SSP). Tissue Antigens 1995, 46(5):355-367.
    38. Hoglund P, Ohlen C, Carbone E, Franksson L, Ljunggren HG, Latour A, Koller B, Karre K: Recognition of beta 2-microglobulin-negative (beta 2m-) T-cell blasts by natural killer cells from normal but not from beta 2m-mice:nonresponsiveness controlled by beta 2m-bone marrow in chimeric mice. Proc Natl Acad Sci U S A 1991,88(22):10332-10336.
    39. Diefenbach A, Raulet DH:Strategies for target cell recognition by natural killer cells. Immunological reviews 2001,181:170-184.
    40. Valiante NM, Uhrberg M, Shilling HG, Lienert-Weidenbach K, Arnett KL, D'Andrea A, Phillips JH, Lanier LL, Parham P:Functionally and structurally distinct NK cell receptor repertoires in the peripheral blood of two human donors. Immunity 1997,7(6):739-751.
    41. Cooper MA, Fehniger TA, Caligiuri MA:The biology of human natural killer-cell subsets. Trends in immunology 2001,22(11):633-640.
    42. Fernandez NC, Treiner E, Vance RE, Jamieson AM, Lemieux S, Raulet DH:A subset of natural killer cells achieves self-tolerance without expressing inhibitory receptors specific for self-MHC molecules. Blood 2005,105(11):4416-4423.
    43. Kim S, Poursine-Laurent J, Truscott SM, Lybarger L, Song YJ, Yang L, French AR, Sunwoo JB, Lemieux S, Hansen TH et al:Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 2005,436(7051):709-713.
    44. Namekawa T, Snyder MR, Yen JH, Goehring BE, Leibson PJ, Weyand CM, Goronzy JJ:Killer cell activating receptors function as costimulatory molecules on CD4+CD28null T cells clonally expanded in rheumatoid arthritis. J Immunol 2000,165(2):1138-1145.
    45. Schmidt D, Goronzy JJ, Weyand CM:CD4+ CD7- CD28- T cells are expanded in rheumatoid arthritis and are characterized by autoreactivity. The Journal of clinical investigation 1996, 97(9):2027-2037.
    46. van Bergen J, Thompson A, van der Slik A, Ottenhoff TH, Gussekloo J, Koning F:Phenotypic and functional characterization of CD4 T cells expressing killer Ig-like receptors. J Immunol 2004,173(11):6719-6726.
    47. Basu D, Liu Y, Wu A, Yarlagadda S, Gorelik GJ, Kaplan MJ, Hewagama A, Hinderer RC, Strickland FM, Richardson BC:Stimulatory and inhibitory killer Ig-like receptor molecules are expressed and functional on lupus T cells. J Immunol 2009,183(5):3481-3487.
    48. Snyder MR, Nakajima T, Leibson PJ, Weyand CM, Goronzy JJ:Stimulatory killer Ig-like receptors modulate T cell activation through DAP12-dependent and DAP12-independent mechanisms. J Immunol 2004,173(6):3725-3731.
    49. Holm SJ, Sakuraba K, Mallbris L, Wolk K, Stahle M, Sanchez FO:Distinct HLA-C/KIR genotype profile associates with guttate psoriasis. J Invest Dermatol 2005,125(4):721-730.
    50. Jobim M, Jobim LF, Salim PH, Cestari TF, Toresan R, Gil BC, Jobim MR, Wilson TJ, Kruger M, Schlottfeldt J et al:A study of the killer cell immunoglobulin-like receptor gene KIR2DS1 in a Caucasoid Brazilian population with psoriasis vulgaris. Tissue Antigens 2008,72(4)392-396.
    51. Fauriat C, Ivarsson MA, Ljunggren HG, Malmberg KJ, Michaelsson J:Education of human natural killer cells by activating killer cell immunoglobulin-like receptors. Blood, 115(6):1166-1174.
    52. Majorczyk E, Pawlik A, Luszczek W, Nowak I, Wisniewski A, Jasek M, Kusnierczyk P: Associations of killer cell immunoglobulin-like receptor genes with complications of rheumatoid arthritis. Genes and immunity 2007,8(8):678-683.
    53. Kimoto Y, Horiuchi T, Tsukamoto H, Kiyohara C, Mitoma H, Uchino A, Furugo I, Yoshizawa S, Ueda A, Harashima S et al:Association of killer cell immunoglobulin-like receptor 2DL5 with systemic lupus erythematosus and accompanying infections. Rheumatology (Oxford, England),49(7):1346-1353.
    54. Estefania E, Flores R, Gomez-Lozano N, Aguilar H, Lopez-Botet M, Vilches C:Human KIR2DL5 is an inhibitory receptor expressed on the surface of NK and T lymphocyte subsets. J Immunol 2007,178(7):4402-4410.
    55. Vilches C, Rajalingam R, Uhrberg M, Gardiner CM, Young NT, Parham P:KIR2DL5, a novel killer-cell receptor with a D0-D2 configuration of Ig-like domains. J Immunol 2000, 164(11):5797-5804.
    56. Ahlenstiel G, Martin MP, Gao X, Carrington M, Rehermann B:Distinct KIR/HLA compound genotypes affect the kinetics of human antiviral natural killer cell responses. The Journal of clinical investigation 2008,118(3):1017-1026.
    1. MM Wales, MA Biel, W el Deiry, BD Nelkin, JP Issa, WK Cavenee, SJ Kuerbitz, SB Baylin:p53 activates expression of HIC-1, a new candidate tumour suppressor gene on 17p13.3. Nat Med 1995,1:570-7.
    2. S Del tour, C Guerardel, D Leprince:Recruitment of SMRT/N-CoR-mSin3A-HDAC-repressing complexes is not a general mechanism for BTB/POZ transcriptional repressors:the case of HIC-1 and gammaFBP-B. Proc Natl Acad Sci U S A 1999,96:14831-6.
    3. S Deltour, S Pinte, C Guerardel, B Wasylyk, D Leprince:The human candidate tumor suppressor gene HIC1 recruits CtBP through a degenerate GLDLSKK motif. Mol Cell Biol 2002, 22:4890-901.
    4. WY Chen, DH Wang, RC Yen, J Luo, W Gu, SB Baylin:Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 2005,123:437-48.
    5. Q Zhang, SY Wang, C Fleuriel, D Leprince, JV Rocheleau, DW Piston, RH Goodman:Metabolic regulation of SIRT1 transcription via a HICl:CtBP corepressor complex. Proc Natl Acad Sci U SA 2007,104:829-33.
    6. VR Briones, S Chen, AT Riegel, RJ Lechleider:Mechanism of fibroblast growth factor-binding protein 1 repression by TGF-beta. Biochem Biophys Res Commun 2006,345:595-601.
    7. KJ Briggs, IM Corcoran-Schwartz, W Zhang, T Harcke, WL Devereux, SB Baylin, CG Eberhart, DN Watkins:Cooperation between the Hicl and Ptch1 tumor suppressors in medulloblastoma. Genes Dev 2008,22:770-85.
    8. T Valenta, J Lukas, L Doubravska, B Fafilek, V Korinek:HIC1 attenuates Wnt signaling by recruitment of TCF-4 and beta-catenin to the nuclear bodies. EMBO J 2006,25:2326-37.
    9. H Nogawa, T Mizuno:Mesenchymal control over elongating and branching morphogenesis in salivary gland development. J Embryol Exp Morphol 1981,66:209-21.
    10. LS Cutler:The dependent and independent relationships between cytodifferentiation and morphogenesis in developing salivary gland secretory cells. Anat Rec 1980,196:341-7.
    11. PC Denny, WD Ball, RS Redman:Salivary glands:a paradigm for diversity of gland development. Crit Rev Oral Biol Med 1997,8:51-75.
    12. H Ohuchi, Y Hori, M Yamasaki, H Harada, K Sekine, S Kato, N Itoh:FGF10 acts as a major ligand for FGF receptor 2 Ⅲb in mouse multi-organ development. Biochem Biophys Res Commun 2000,277:643-9.
    13. M Entesarian, H Matsson, J Klar, B Bergendal, L Olson, R Arakaki, Y Hayashi, H Ohuchi, B Falahat, Al Bolstad, et al:Mutations in the gene encoding fibroblast growth factor 10 are associated with aplasia of lacrimal and salivary glands. Nat Genet 2005,37:125-7.
    14. T Jaskoll, G Abichaker, D Witcher, FG Sala, S Bellusci, MK Hajihosseini, M Melnick: FGF10/FGFR2b signaling plays essential roles during in vivo embryonic submandibular salivary gland morphogenesis. BMC Dev Biol 2005,5:11.
    15. JM Milunsky, G Zhao, TA Maher, R Colby, DB Everman:LADD syndrome is caused by FGF10 mutations. Clin Genet 2006,69:349-54.
    16. L De Moerlooze, B Spencer-Dene, JM Revest, M Hajihosseini, I Rosewell, C Dickson:An important role for the Ⅲb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development 2000, 127:483-92.
    17. T Jaskoll, M Melnick:Submandibular gland morphogenesis:stage-specific expression of TGF-alpha/EGF, IGF, TGF-beta, TNF, and IL-6 signal transduction in normal embryonic mice and the phenotypic effects of TGF-beta2, TGF-beta3, and EGF-r null mutations. Anat Rec 1999,256:252-68.
    18. M Bernfield, SD Banerjee:The turnover of basal lamina glycosaminoglycan correlates with epithelial morphogenesis. Dev Biol 1982,90:291-305.
    19. HA Thompson, BS Spooner:Proteoglycan and glycosaminoglycan synthesis in embryonic mouse salivary glands:effects of beta-D-xyloside, an inhibitor of branching morphogenesis. J Cell Biol 1983,96:1443-50.
    20. T Hayakawa, J Kishi, Y Nakanishi:Salivary gland morphogenesis:possible involvement of collagenase. Matrix Suppl 1992,1:344-51.
    21. T Sakai, M Larsen, KM Yamada:Fibronectin requirement in branching morphogenesis. Nature 2003,423:876-81.
    22. Z Steinberg, C Myers, VM Heim, CA Lathrop, IT Rebustini, JS Stewart, M Larsen, MP Hoffman: FGFR2b signaling regulates ex vivo submandibular gland epithelial cell proliferation and branching morphogenesis. Development 2005,132:1223-34.
    23. T Jaskoll, T Leo, D Witcher, M Ormestad, J Astorga, P Bringas, Jr., P Carlsson, M Melnick:Sonic hedgehog signaling plays an essential role during embryonic salivary gland epithelial branching morphogenesis. Dev Dyn 2004,229:722-32.
    24. EM Ball, GP Risbridger:Activins as regulators of branching morphogenesis. Dev Biol 2001, 238:1-12.
    25.0 Ritvos, T Tuuri, M Eramaa, K Sainio, K Hilden, L Saxen, SF Gilbert:Activin disrupts epithelial branching morphogenesis in developing glandular organs of the mouse. Mech Dev 1995, 50:229-45.
    26. M Melnick, H Chen, Y Zhou, T Jaskoll:Embryonic mouse submandibuiar salivary gland morphogenesis and the TNF/TNF-R1 signal transduction pathway. Anat Rec 2001, 262:318-30.
    27. T Jaskoll, H Chen, Y Min Zhou, D Wu, M Melnick:Developmental expression of survivin during embryonic submandibuiar salivary gland development. BMC Dev Biol 2001,1:5.
    28. A Hashizume, Y Hieda:Hedgehog peptide promotes cell polarization and lumen formation in developing mouse submandibuiar gland. Biochem Biophys Res Commun 2006, 339:996-1000.
    29. T Jaskoll, YM Zhou, G Trump, M Melnick:Ectodysplasin receptor-mediated signaling is essential for embryonic submandibuiar salivary gland development. Anat Rec A Discov Mol Cell Evol Biol 2003,271:322-31.
    30. J Pispa, ML Mikkola, T Mustonen, I Thesleff:Ectodysplasin, Edar and TNFRSF19 are expressed in complementary and overlapping patterns during mouse embryogenesis. Gene Expr Patterns 2003,3:675-9.
    31. M Melnick, T Jaskoll:Mouse submandibuiar gland morphogenesis:a paradigm for embryonic signal processing. Crit Rev Oral Biol Med 2000,11:199-215.
    32. EW Gresik:The granular convoluted tubule (GCT) cell of rodent submandibuiar glands. Microsc Res Tech 1994,27:1-24.
    33. T Jaskoll, H Chen, PC Denny, PA Denny, M Melnick:Mouse submandibuiar gland mucin: embryo-specific mRNA and protein species. Mech Dev 1998,74:179-83.
    34. V Gresz, TH Kwon, PT Hurley, G Varga, T Zelles, S Nielsen, RM Case, MC Steward: Identification and localization of aquaporin water channels in human salivary giands. Am J Physiol Gastrointest Liver Physiol 2001,281:G247-54.
    35. CM Krane, DL Goldstein:Comparative functional analysis of aquaporins/glyceroporins in mammals and anurans. Mamm Genome 2007,18:452-62.
    36. AS Verkman:Mammalian aquaporins:diverse physiological roles and potential clinical significance. Expert Rev Mol Med 2008,10:e13.
    37. DJ Culp, RQ Quivey, WH Bowen, MA Fallon, SK Pearson, R Faustoferri:A mouse caries model and evaluation of aqp5-/-knockout mice. Caries Res 2005,39:448-54.
    38. CM Krane, JE Melvin, HV Nguyen, L Richardson, JE Towne, T Doetschman, AG Menon:Salivary acinar cells from aquaporin 5-deficient mice have decreased membrane water permeability and altered cell volume regulation. J Biol Chem 2001,276:23413-20.
    39. T Ma, Y Song, A Gillespie, EJ Carlson, GJ Epstein, AS Verkman:Defective secretion of saliva in transgenic mice lacking aquaporin-5 water channels. J Biol Chem 1999,274:20071-4.
    40. JL Walker, AS Menko, S Khalil, I Rebustini, MP Hoffman, JA Kreidberg, MA Kukuruzinska: Diverse roles of E-cadherin in the morphogenesis of the submandibular gland:insights into the formation of acinar and ductal structures. Dev Dyn 2008,237:3128-41.
    41. S Steinfeld, E Cogan, LS King, P Agre, R Kiss, C Delporte:Abnormal distribution of aquaporin-5 water channel protein in salivary glands from Sjogren's syndrome patients. Lab Invest 2001,81:143-8.