逆转糖酵解
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:饥饿状态下机体的肝细胞通过糖异生来保证重要器官的葡萄糖供给。恶性转化的肝细胞是否还具有糖异生的能力目前尚不清楚。有氧糖酵解是恶性肿瘤的重要标志,除了三步不可逆反应外,糖异生的其余七步反应均是糖酵解的逆反应,因此可以说糖异生拮抗糖酵解。本研究将探讨人和小鼠肝癌组织中糖异生的变化及相应的肝癌治疗策略。
     方法:(1) Real-time PCR和免疫组化分析10例肝癌病人肝癌组织中糖异生的限速酶PEPCK、G6Pase和调控糖皮质激素的两个关键酶11β-HSD1、11β-HSD2的表达,进一步免疫组化分析58例肝癌病人的肝癌组织和癌旁组织中11β-HSD1和11β-HSD2的表达,并统计分析11β-HSD1/11β-HSD2的比值与肝癌病人的生存时间和肿瘤复发率的关系。(2) RT-PCR、Western blot和免疫组化分析小鼠肝癌组织中PEPCK、G6Pas、11β-HSD1和11β-HSD2的表达,进一步建立高表达11β-HSD1或下调11β-HSD2的肝癌细胞,并将高表达11β-HSD1或下调11β-HSD2的肝癌细胞接种小鼠进行肿瘤生长实验,验证11β-HSD1和11β-HSD2对肝癌生长的影响,并采用RT-PCR检测相应高表达11β-HSD1或下调11β-HSD2的肝癌组织中PEPCK和G6Pase的表达,以探讨糖异生对肝癌生长的影响。(3)体外条件下,分别用0M、0.1M、1M、10M地塞米松处理H22细胞一周后,RT-PCR和Western blot检测PEPCK和G6Pase的表达并检测胞内葡萄糖的变化。体内条件下,皮下接种H22细胞至BALB/c右背侧,4天后随机分为四组(6只/组),分别腹腔注射0g/g、1.25g/g、2.5g/g和5g/g地塞米松,观察并记录肿瘤生长情况,16天后处死小鼠分离肝癌组织,RT-PCR和Western blot检测PEPCK和G6Pase的表达并检测组织内葡萄糖的变化。为排除不同接种部位对地塞米松治疗效果的影响,建立小鼠原位肝癌模型,随机分为四组(6只/组)分别腹腔注射0g/g、1.25g/g、2.5g/g和5g/g地塞米松,16天后处死小鼠,观察肿瘤大小。为探讨对地塞米松对非肝脏来源的肿瘤的影响,皮下接种B16细胞至C57BL/6右背侧,4天后随机分为四组(6只/组),分别腹腔注射0g/g、1.25g/g、2.5g/g和5g/g地塞米松,观察并记录肿瘤生长情况;为探讨地塞米松治疗肿瘤的机制,采用PEPCK抑制剂3-MPA和地塞米松联合治疗H22皮下瘤小鼠,观察并测量肿瘤生长情况;最后利用非活性形式的糖皮质激素泼尼松体外处理H22细胞,体内治疗H22皮下瘤小鼠,RT-PCR分析PEPCK和G6Pase的表达并记录肿瘤生长情况。(4)皮下接种H22细胞至BALB/c右背侧,4天后随机分为四组(6只/组),分别腹腔注射0g/g、1.25g/g、2.5g/g和5g/g地塞米松,16天后处死小鼠分离肝癌组织,RT-PCR检测一系列代谢相关基因(HK2, PFK1, PKM2, LDHA,PDHA1, CS, SDHA, ACL, ACC, HMGCR, G6PD, GPD1)的表达,Real-time PCR和Western blot进一步检测中LDH和GPD1的表达并检测肿瘤组织内乳酸的水平。
     结果:(1)肝癌病人肝癌组织中糖异生限速酶PEPCK、G6Pase表达显著下调,调控糖皮质激素的关键酶11β-HSD1表达下调,而11β-HSD2表达上调,且肝癌病人中11β-HSD1和11β-HSD2在癌旁组织和肝癌组织中表达呈逆关联,即癌旁组织中11β-HSD1表达高、11β-HSD2表达低,而肝癌组织恰与此相反11β-HSD1表达低、11β-HSD2表达高,进一步统计结果显示11β-HSD1/11β-HSD2比值与肝癌病人总体生存时间与复发率相关。(2)小鼠肝癌组织中PEPCK和G6Pase表达显著下调,糖异生丧失,11β-HSD1表达下调,而11β-HSD2表达上调,恢复小鼠肝癌细胞H22中11β-HSD1和11β-HSD2的表达后,小鼠肿瘤生长变慢且肿瘤组织内PEPCK和G6Pase表达上调。(3)体外条件下,地塞米松可上调H22细胞中PEPCK和G6Pase的表达并上调胞内葡萄糖含量,体内条件下,地塞米松可抑制皮下瘤肝癌和原位肝癌的生长并上调肝癌组织内的PEPCK和G6Pase的表达和相应的葡萄糖含量,但是对小鼠黑色素瘤无影响,揭示地塞米松对肝癌治疗的特异性,同时利用PEPCK的抑制剂3-MPA可阻断地塞米松对肝癌的抑制作用,揭示地塞米松可能是通过糖异生途径抑制肝癌,且非活性形式的糖皮质激素泼尼松体外对H22的PEPCK和G6Pase表达无影响,体内对小鼠皮下瘤无抑制作用。(4)地塞米松治疗后小鼠肝癌组织中LDH和GPD1表达下调且相应组织内乳酸水平降低。结论:人和小鼠肝癌细胞中调控糖皮质激素的关键酶11β-HSD1和11β-HSD2表达逆转,导致内源性糖皮质激素的失活和糖异生的丧失。11β-HSD1/11β-HSD2的比值与肝癌病人的生存时间和肿瘤复发情况有关。糖皮质激素的活性形式地塞米松通过绕过11β-HSD1和11β-HSD2的调控上调肝癌细胞的糖异生抑制肝癌生长。这些发现揭示肝癌细胞中11β-HSD1和11β-HSD2的逆转表达可能在糖异生到糖酵解的转化中发挥重要作用,有望成为肝癌治疗的新靶点。
Objective: Gluconeogenesis by which glucose is biosynthesized leading to acontinuous glucose supply to vital organs is a fundamental feature of normalhepatocytes. Whether this gluconeogenic activity is also present in malignanthepatocytes remains largely unexplored, despite that an answer may give rise to noveltherapeutic strategies to target glycolysis, one hallmark of malignant cells.
     Methods:(1) The expressions of PEPCK, G6Pase and11β-HSD1,11β-HSD2inhuman hepatocarcinoma were analyzed by real-time PCR and immunohistochemisty.To further clarify the exact situation of11β-HSD1/11β-HSD2in hepatocarcinomapatients,58human hepatocarcinoma specimens were immunohistochemicallyanalyzed and the relative expressions of11β-HSD1and11β-HSD2were quantified.Then, the ratios of11β-HSD1/11β-HSD2were calculated and the relationshipbetween11β-HSD1/11β-HSD2and patients’ survival time and tumor recurrence wasanalyzed by the Kaplan-Meier survival method.(2) The expressions of11β-HSD1,11β-HSD2and PEPCK, G6Pase in murine hepatocarcinoma were analyzed byRT-PCR, Western blot and immunohistochemisty. Then,11β-HSD1-overexpression or11β-HSD2-knockdown H22was constructed and these engineered H22tumor celllines were inoculated into the mice, the growth of tumor was monitored. To further investigate the effect of gluconeogenesis on hepatocarcinoma, the PEPCK andG6Pase expressions in11β-HSD1-overexpression or11β-HSD2-knockdown H22tumor were analyzed by RT-PCR.(3) In vitro, H22cells were treated with0,0.1,1or10M dexamethasone for7days. Then, the expressions of PEPCK and G6Pase weredetermined by RT-PCR and Western blot and cellular glucose was measured withglucose assay kit. In vivo, The BALB/c mice were subcutaneously injected with3×105H22cells for4days, and then treated with the intraperitoneal injections ofdifferent concentrations of dexamethasone (1.25,2.5and5g/g) or saline once perday for16days. The growth of tumor was monitored.16days later, the mice weresacrificed and hepatocarcinoma was separated for PEPCK and G6Pase expressionanalysis and tissue glucose was measured with glucose assay kit. To exclude theinfluence of different inoculation sites on dexamethasone treatment, BALB/c miceliver were inoculated with H22cells and treated with0g/g,1.25g/g,2.5g/g or5g/g dexamethasone.16days later, the mice were sacrificed and livers wereseparated and analyzed. To further investigated the influence of dexamethasone onnon-liver cancers,3×105non-liver derived melanoma B16tumor cells weresubcutaneously injected into C57BL/6mice for4days, and then treating them withdifferent concentrations of dexamethasone, the growth of tumor was monitored. Toconfirm that the antitumor effect of dexamethasone is via the gluconeogeneticpathway,3-MPA, the PEPCK-selective inhibitor was used and growth of tumor wasmonitored. To further strengthen dexamethasone as a potential agent in the treatmentof hepatocarcinoma, prednisone, a dehydrogenated inactive form of glucocorticoids,was additionally tested in H22tumor cells in vitro and H22tumor-bearing mice invivo.(4) The molecular basis of dexamethasone affecting the glucose metabolism ofhepatocarcinoma was further investigated. H22tumor-bearing mice were treated withdifferent concentrations of dexamethasone for seven days. A panel of metabolism-related genes (HK2, PFK1, PKM2, LDHA, PDHA1, CS, SDHA, ACL, ACC, HMGCR, G6PD, GPD1) in tumor tissues was analyzed by RT-PCR. Then, theexpressions of LDH and GPD1in tumor tissues were further analyzed by real-timePCR and Western blot, and lactate in tumor tissues was measured.
     Results:(1) Both the transcripts and proteins of PEPCK and G6Pase werestrikingly lower in the tumor tissues but much higher in the peritumoral liver tissues,as shown by real time PCR and immunohistochemical staining. In line with theseresults, it was clear that11β-HSD1was downregulated but11β-HSD2wasupregulated in hepatocarcinoma tissues. Moreover,58human hepatocarcinomaspecimens were immunohistochemically analyzed and the relative expressions of11β-HSD1and11β-HSD2were quantified, which revealed the inversely expressed11β-HSD1and11β-HSD2in hepatocarcinoma relative to normal liver tissue. Theratios of11β-HSD1/11β-HSD2were calculated and the patients’ samples were splitinto2classes (high and low) according to the median value in the whole set of58samples. The Kaplan-Meier survival analysis showed that patients with high ratio hada significant longer survival time and lesser recurrence than those with low ratio.(2)When we used murine hepatocarcinoma tumor cell line H22to generatehepatocarcinoma, the expressions of PEPCK and G6Pase were found to be strikinglydecreased and were not affected by fasting, as shown by RT-PCR, Western blot andimmunohistochemical staining. Surprisingly,11β-HSD1was markedly downregulatedand11β-HSD2was markedly upregulated in hepatocarcinoma tissues, compared tonormal liver tissues. In addition, the primary hepatocarcinoma cells and normalhepatocytes, isolated from tumor-bearing mice, also showed downregulation of11β-HSD1and upregulation of11β-HSD2. Not therefore unexpectedly,11β-HSD1-overexpression or11β-HSD2-knockdown both restored gluconeogenesiswith upregulations of PEPCK and G6Pase in H22tumor tissues. As a result, theinoculation of these engineered H22tumor cell lines to the mice resulted in theinhibition of tumor growth and the corresponding prolonged survival of the mice.(3) In vitro, dexamethasone-treated H22tumor cells showed the upregulation of PEPCKand G6Pase expressions under the concentrations of1and10M. Consistently, thelevels of intracellular glucose were also found to be increased. In line with these invitro results the in vivo dexamethasone treatments resulted in increases in PEPCK andG6Pase expressions and tissue glucose in all the mice, compared to the saline control.Moreover, dexamethasone treatment showed significant inhibition of the ectopic H22tumor growths and orthotopic H22tumor growths. But dexamethasone did notsignificantly suppress tumor growth and only produced marginal effects, suggesting arelative selectivity of dexamethasone for hepatocarcinoma but not non-liver cancers.It was found that the intragastric administration of3-MPA the PEPCK-selectiveinhibitor effectively counteracted the inhibitory effects of dexamethasone on H22tumor. Unlike dexamethasone and its efficacy, prednisone a dehydrogenated inactiveform of glucocorticoids did not show the upregulation of PEPCK and G6Pase or anyantitumor effect.(4) LDHA and GPD1were found to be downregulated afterdexamethasone treatment and the lactate level was also downregulated.
     Conclusions: We show here that gluconeogenesis was not present in human ormouse malignant hepatocytes. Two critical enzymes11β-HSD1and11β-HSD2thatregulate glucocorticoid activities were found to be expressed inversely in malignanthepatocytes, resulting in the inactivation of endogenous glucocorticoids and the lossof gluconeogenesis. In patients’ hepatocarcinoma, the expressions of11β-HSD1and11β-HSD2are strikingly linked to patients’ prognosis and survival. Dexamethasone,the active form of synthesized glucocorticoids, is capable of restoringgluconeogenesis in malignant cells by bypassing the abnormal regulation of11β-HSDenzymes, leading to therapeutic efficacy against hepatocarcinoma. These findingsreveal that the reversed expressions of11β-HSD1and11β-HSD2may play animportant role in the switch gluconeogenesis to glycolysis in hepatocarcinoma,begging it to be a new hepatocarcinoma treatment target.
引文
[1] Harada, T.[Recent advances of non-surgical treatment of hepatocellularcarcinoma]. Nihon Naika Gakkai zasshi. The Journal of the Japanese Societyof Internal Medicine, Sep10,1990,79(9):1244-9.
    [2] Hsu, C.,Cheng, J. C.,Cheng, A. L. Recent advances in non-surgical treatmentfor advanced hepatocellular carcinoma. Journal of the Formosan MedicalAssociation=Taiwan yi zhi, Jul,2004,103(7):483-95.
    [3] Lin, S. M. Recent advances in radiofrequency ablation in the treatment ofhepatocellular carcinoma and metastatic liver cancers. Chang Gung medicaljournal, Jan-Feb,2009,32(1):22-32.
    [4] Padhya, K. T.,Marrero, J. A.,Singal, A. G. Recent advances in the treatment ofhepatocellular carcinoma. Current opinion in gastroenterology, Mar15,2013.
    [5] Singal, A. G.,Marrero, J. A. Recent advances in the treatment of hepatocellularcarcinoma. Current opinion in gastroenterology, May,2010,26(3):189-95.
    [6] Darvesh, A. S.,Bishayee, A. Chemopreventive and therapeutic potential of teapolyphenols in hepatocellular cancer. Nutrition and cancer, Apr,2013,65(3):329-44.
    [7] Ilardi, C. F.,Ying, Y. Y.,Ackerman, L. V., et al. Hepatitis B surface antigen andhepatocellular carcinoma in the People's Republic of China. Cancer, Oct1,1980,46(7):1612-6.
    [8] Peng, W.,Chen, Y.,Jiang, Q., et al. Spatial analysis of hepatocellular carcinomaand socioeconomic status in China from a population-based cancer registry.Cancer epidemiology, Feb,2010,34(1):29-33.
    [9] Tanaka, M.,Katayama, F.,Kato, H., et al. Hepatitis B and C virus infection andhepatocellular carcinoma in China: a review of epidemiology and controlmeasures. Journal of epidemiology/Japan Epidemiological Association,2011,21(6):401-16.
    [10] Tang, Z. Recent advances in clinical research of hepatocellular carcinoma inChina. Chinese medical journal, Aug,1995,108(8):568-70.
    [11] Yeh, F. S.,Mo, C. C.,Yen, R. C. Risk factors for hepatocellular carcinoma inGuangxi, People's Republic of China. National Cancer Institute monograph,Dec,1985,6947-8.
    [12] Yeh, F. S.,Yu, M. C.,Mo, C. C., et al. Hepatitis B virus, aflatoxins, andhepatocellular carcinoma in southern Guangxi, China. Cancer research, May1,1989,49(9):2506-9.
    [13] Ying, Y. Y.,Yan, R. Q.,Xu, B. D., et al. Relationship of hepatocellularcarcinoma, liver cirrhosis, and hepatitis B virus. A pathologic study of1,069autopsy cases in different areas of China. Chinese medical journal, Oct,1984,97(10):758-64.
    [14] Zhou, Y. Z.,Butel, J. S.,Li, P. J., et al. Integrated state of subgenomic fragmentsof hepatitis B virus DNA in hepatocellular carcinoma from mainland China.Journal of the National Cancer Institute, Aug,1987,79(2):223-31.
    [15] Song, P. P.,Feng, X. B.,Zhang, K. M., et al. Screening for and surveillance ofhigh-risk patients with HBV-related chronic liver disease: Promoting the earlydetection of hepatocellular carcinoma in China. Bioscience trends, Feb,2013,7(1):1-6.
    [16] Chen, Y.,Yu, D.,Zhang, W., et al. HBV Subgenotype C2Infection,A1762T/G1764A Mutations May Contribute To Hepatocellular Carcinomawith Cirrhosis in Southeast China. Iranian journal of public health,2012,41(11):10-8.
    [17] Gao, J. D.,Shao, Y. F.,Xu, Y., et al. Tight association of hepatocellularcarcinoma with HBV infection in North China. Hepatobiliary&pancreaticdiseases international: HBPD INT, Feb,2005,4(1):46-9.
    [18] Fang, Z. L.,Ling, R.,Wang, S. S., et al. HBV core promoter mutations prevailin patients with hepatocellular carcinoma from Guangxi, China. Journal ofmedical virology, Sep,1998,56(1):18-24.
    [19] Xiao, L.,Fu, Z. R.,Ding, G. S., et al. Liver transplantation for hepatitis Bvirus-related hepatocellular carcinoma: one center's experience in China.Transplantation proceedings, Jun,2009,41(5):1717-21.
    [20] Fan, J.,Yang, G. S.,Fu, Z. R., et al. Liver transplantation outcomes in1,078hepatocellular carcinoma patients: a multi-center experience in Shanghai,China. Journal of cancer research and clinical oncology, Oct,2009,135(10):1403-12.
    [21] Zhou, J.,Fan, J.,Wu, Z. Q., et al. Liver transplantation for patients withhepatocellular carcinoma at the Liver Cancer Institute of Fudan University,China. Chinese medical journal, Apr20,2005,118(8):654-9.
    [22] Chen, X. P.,Huang, Z. Y. Surgical treatment of hepatocellular carcinoma inChina: surgical techniques, indications, and outcomes. Langenbeck's archivesof surgery/Deutsche Gesellschaft fur Chirurgie, Jun,2005,390(3):259-65.
    [23] Gehrau, R. C.,Archer, K. J.,Mas, V. R., et al. Molecular profiles of HCVcirrhotic tissues derived in a panel of markers with clinical utility forhepatocellular carcinoma surveillance. PloS one,2012,7(7): e40275.
    [24] Zuo, Q.,Huang, H.,Shi, M., et al. Multivariate analysis of several molecularmarkers and clinicopathological features in postoperative prognosis ofhepatocellular carcinoma. Anatomical record, Mar,2012,295(3):423-31.
    [25] Minguez, B.,Lachenmayer, A. Diagnostic and prognostic molecular markers inhepatocellular carcinoma. Disease markers,2011,31(3):181-90.
    [26] Singhal, A.,Jayaraman, M.,Dhanasekaran, D. N., et al. Molecular and serummarkers in hepatocellular carcinoma: predictive tools for prognosis andrecurrence. Critical reviews in oncology/hematology, May,2012,82(2):116-40.
    [27] Dai, Z.,Yu, L.,Zhou, J., et al. Molecular markers and hepatocellular carcinoma:lending a helping hand in liver transplantation? Expert review ofgastroenterology&hepatology, Jun,2009,3(3):211-3.
    [28] Moribe, T.,Iizuka, N.,Miura, T., et al. Methylation of multiple genes asmolecular markers for diagnosis of a small, well-differentiated hepatocellularcarcinoma. International journal of cancer. Journal international du cancer, Jul15,2009,125(2):388-97.
    [29] Perkins, J. D. Molecular markers for predicting hepatocellular carcinomarecurrence following liver transplantation. Liver transplantation: officialpublication of the American Association for the Study of Liver Diseases andthe International Liver Transplantation Society, Oct,2008,14(10):1535-6.
    [30] Sakamoto, M.,Mori, T.,Masugi, Y., et al. Candidate molecular markers forhistological diagnosis of early hepatocellular carcinoma. Intervirology,2008,51Suppl142-5.
    [31] Mann, C. D.,Neal, C. P.,Garcea, G., et al. Prognostic molecular markers inhepatocellular carcinoma: a systematic review. European journal of cancer,Apr,2007,43(6):979-92.
    [32] Elgendy, S. M.,Hessien, M.,Elsherbiny, M. M., et al. A panel of molecularmarkers in hepatitis C virus-related hepatocellular carcinoma. Journal of theEgyptian National Cancer Institute, Dec,2005,17(4):270-8.
    [33] Yao, D. F.[Molecular markers for early diagnosis of hepatocellularcarcinoma]. Zhonghua gan zang bing za zhi=Zhonghua ganzangbing zazhi=Chinese journal of hepatology, Aug,2004,12(8):492.
    [34] Varma, V.,Cohen, C. Immunohistochemical and molecular markers in thediagnosis of hepatocellular carcinoma. Advances in anatomic pathology, Sep,2004,11(5):239-49.
    [35] Qin, L. X.,Tang, Z. Y. The prognostic molecular markers in hepatocellularcarcinoma. World journal of gastroenterology: WJG, Jun,2002,8(3):385-92.
    [36] Plesch, F. N.,Kubicka, S.,Manns, M. P. Prevention of hepatocellular carcinomain chronic liver disease: molecular markers and clinical implications.Digestive diseases,2001,19(4):338-44.
    [37] Witjes, C. D.,van Aalten, S. M.,Steyerberg, E. W., et al. Recently introducedbiomarkers for screening of hepatocellular carcinoma: a systematic review andmeta-analysis. Hepatology international, Mar,2013,7(1):59-64.
    [38] Owen, O. E.,Reichard, G. A., Jr.,Patel, M. S., et al. Energy metabolism infeasting and fasting. Advances in experimental medicine and biology,1979,111169-88.
    [39] Rhee, J.,Inoue, Y.,Yoon, J. C., et al. Regulation of hepatic fasting response byPPARgamma coactivator-1alpha (PGC-1): requirement for hepatocyte nuclearfactor4alpha in gluconeogenesis. Proceedings of the National Academy ofSciences of the United States of America, Apr1,2003,100(7):4012-7.
    [40] Wolf, G. The effect of fasting and fructose and glucose infusion ongluconeogenesis and triose phosphate flux in rats in vivo. Nutrition reviews,Oct,1995,53(10):299-301.
    [41] Hers, H. G.,Hue, L. Gluconeogenesis and related aspects of glycolysis. Annualreview of biochemistry,1983,52617-53.
    [42] Pilkis, S. J.,el-Maghrabi, M. R.,Claus, T. H. Hormonal regulation of hepaticgluconeogenesis and glycolysis. Annual review of biochemistry,1988,57755-83.
    [43] Lemaigre, F. P.,Rousseau, G. G. Transcriptional control of genes that regulateglycolysis and gluconeogenesis in adult liver. The Biochemical journal, Oct1,1994,303(Pt1)1-14.
    [44] de Meis, L.,Grieco, M. A.,Galina, A. Reversal of oxidative phosphorylation insubmitochondrial particles using glucose6-phosphate and hexokinase as anATP regenerating system. FEBS letters, Aug17,1992,308(2):197-201.
    [45] Montero-Lomeli, M.,de Meis, L. Glucose6-phosphate and hexokinase can beused as an ATP-regenerating system by the Ca(2+)-ATPase of sarcoplasmicreticulum. The Journal of biological chemistry, Jan25,1992,267(3):1829-33.
    [46] Schellenberger, W.,Eschrich, K.,Hofmann, E. Glycolytic and gluconeogenicstates in an enzyme system reconstituted from phosphofructokinase andfructose1,6-bisphosphatase. Biomedica biochimica acta,1985,44(4):503-16.
    [47] Meixner-Monori, B.,Kubicek, C. P.,Rohr, M. Pyruvate kinase from Aspergillusniger: a regulatory enzyme in glycolysis? Canadian journal of microbiology,Jan,1984,30(1):16-22.
    [48] Smart, J. B.,Pritchard, G. G. Control of pyruvate kinase activity duringglycolysis and gluconeogenesis in Propionibacterium shermanii. Journal ofgeneral microbiology, Jan,1982,128(1):167-76.
    [49] Tornheim, K. Co-ordinate control of phosphofructokinase and pyruvate kinaseby fructose diphosphate: a mechanism for amplification and step changes inthe regulation of glycolysis in liver. Journal of theoretical biology, Jul21,1980,85(2):199-222.
    [50] Blair, J. B.,James, M. E.,Foster, J. L. Adrenergic control of glycolysis andpyruvate kinase activity in hepatocytes from young and old rats. The Journalof biological chemistry, Aug25,1979,254(16):7585-90.
    [51] Takagaki, G. Control of aerobic glycolysis and pyruvate kinase activity incerebral cortex slices. Journal of neurochemistry, Sep,1968,15(9):903-16.
    [52] Krimsky, I. Phosphorylation of pyruvate by the pyruvate kinase reaction andreversal of glycolysis in a reconstructed system. The Journal of biologicalchemistry, Feb,1959,234(2):232-6.
    [53] Clottes, E.,Middleditch, C.,Burchell, A. Rat liver glucose-6-phosphatasesystem: light scattering and chemical characterization. Archives ofbiochemistry and biophysics, Dec1,2002,408(1):33-41.
    [54] Foster, J. D.,Nordlie, R. C. The biochemistry and molecular biology of theglucose-6-phosphatase system. Experimental biology and medicine, Sep,2002,227(8):601-8.
    [55] van Schaftingen, E.,Gerin, I. The glucose-6-phosphatase system. TheBiochemical journal, Mar15,2002,362(Pt3):513-32.
    [56] Eschrich, K.,Schellenberger, W.,Hofmann, E. Sustained oscillations in areconstituted enzyme system containing phosphofructokinase and fructose1,6-bisphosphatase. Archives of biochemistry and biophysics, Apr15,1983,222(2):657-60.
    [57] Yang, J.,Kalhan, S. C.,Hanson, R. W. What is the metabolic role ofphosphoenolpyruvate carboxykinase? The Journal of biological chemistry, Oct2,2009,284(40):27025-9.
    [58] Xiong, Y.,Lei, Q. Y.,Zhao, S., et al. Regulation of glycolysis andgluconeogenesis by acetylation of PKM and PEPCK. Cold Spring Harborsymposia on quantitative biology,2011,76285-9.
    [59] Hanson, R. W.,Hakimi, P. Born to run; the story of the PEPCK-Cmus mouse.Biochimie, Jun,2008,90(6):838-42.
    [60] Sullivan, S. M.,Holyoak, T. Structures of rat cytosolic PEPCK: insight into themechanism of phosphorylation and decarboxylation of oxaloacetic acid.Biochemistry, Sep4,2007,46(35):10078-88.
    [61] Holyoak, T.,Sullivan, S. M.,Nowak, T. Structural insights into the mechanismof PEPCK catalysis. Biochemistry, Jul11,2006,45(27):8254-63.
    [62] She, P.,Burgess, S. C.,Shiota, M., et al. Mechanisms by which liver-specificPEPCK knockout mice preserve euglycemia during starvation. Diabetes, Jul,2003,52(7):1649-54.
    [63] Curi, R. Does PEPCK play a key role in amino acid oxidation? Brazilianjournal of medical and biological research=Revista brasileira de pesquisasmedicas e biologicas/Sociedade Brasileira de Biofisica...[et al.],1988,21(1):27-30.
    [64] Stein, M.,Lin, H.,Jeyamohan, C., et al. Targeting tumor metabolism with2-deoxyglucose in patients with castrate-resistant prostate cancer andadvanced malignancies. The Prostate, Sep15,2010,70(13):1388-94.
    [65] Birsoy, K.,Sabatini, D. M.,Possemato, R. Untuning the tumor metabolicmachine: Targeting cancer metabolism: a bedside lesson. Nature medicine, Jul,2012,18(7):1022-3.
    [66] Clendening, J. W.,Penn, L. Z. Targeting tumor cell metabolism with statins.Oncogene, Nov29,2012,31(48):4967-78.
    [67] Meijer, T. W.,Kaanders, J. H.,Span, P. N., et al. Targeting hypoxia, HIF-1, andtumor glucose metabolism to improve radiotherapy efficacy. Clinical cancerresearch: an official journal of the American Association for Cancer Research,Oct15,2012,18(20):5585-94.
    [68] Garber, K. Energy deregulation: licensing tumors to grow. Science, May26,2006,312(5777):1158-9.
    [69] Paudyal, B.,Paudyal, P.,Oriuchi, N., et al. Clinical implication of glucosetransport and metabolism evaluated by18F-FDG PET in hepatocellularcarcinoma. International journal of oncology, Nov,2008,33(5):1047-54.
    [70] Avril, N.,Menzel, M.,Dose, J., et al. Glucose metabolism of breast cancerassessed by18F-FDG PET: histologic and immunohistochemical tissueanalysis. Journal of nuclear medicine: official publication, Society of NuclearMedicine, Jan,2001,42(1):9-16.
    [71] Dang, C. V. Links between metabolism and cancer. Genes&development,May1,2012,26(9):877-90.
    [72] Pedersen, P. L. Warburg, me and Hexokinase2: Multiple discoveries of keymolecular events underlying one of cancers' most common phenotypes, the"Warburg Effect", i.e., elevated glycolysis in the presence of oxygen. Journalof bioenergetics and biomembranes, Jun,2007,39(3):211-22.
    [73] Bertoni, J. M. Competitive inhibition of rat brain hexokinase by2-deoxyglucose, glucosamine, and metrizamide. Journal of neurochemistry,Dec,1981,37(6):1523-8.
    [74] Marxsen, J. H.,Stengel, P.,Doege, K., et al. Hypoxia-inducible factor-1(HIF-1)promotes its degradation by induction of HIF-alpha-prolyl-4-hydroxylases.The Biochemical journal, Aug1,2004,381(Pt3):761-7.
    [75] Mole, D. R.,Maxwell, P. H.,Pugh, C. W., et al. Regulation of HIF by the vonHippel-Lindau tumour suppressor: implications for cellular oxygen sensing.IUBMB life, Jul,2001,52(1-2):43-7.
    [76] Levine, A. J.,Puzio-Kuter, A. M. The control of the metabolic switch incancers by oncogenes and tumor suppressor genes. Science, Dec3,2010,330(6009):1340-4.
    [77] Harris, A. P.,Holmes, M. C.,de Kloet, E. R., et al. Mineralocorticoid andglucocorticoid receptor balance in control of HPA axis and behaviour.Psychoneuroendocrinology, Sep11,2012.
    [78] Roland, B. L.,Krozowski, Z. S.,Funder, J. W. Glucocorticoid receptor,mineralocorticoid receptors,11beta-hydroxysteroid dehydrogenase-1and-2expression in rat brain and kidney: in situ studies. Molecular and cellularendocrinology, Apr28,1995,111(1): R1-7.
    [79] Patel, P. D.,Lopez, J. F.,Lyons, D. M., et al. Glucocorticoid andmineralocorticoid receptor mRNA expression in squirrel monkey brain.Journal of psychiatric research, Nov-Dec,2000,34(6):383-92.
    [80] Watzka, M.,Beyenburg, S.,Blumcke, I., et al. Expression of mineralocorticoidand glucocorticoid receptor mRNA in the human hippocampus. Neuroscienceletters, Aug25,2000,290(2):121-4.
    [81] Chao, H. M.,Choo, P. H.,McEwen, B. S. Glucocorticoid and mineralocorticoidreceptor mRNA expression in rat brain. Neuroendocrinology, Oct,1989,50(4):365-71.
    [82] Yudt, M. R.,Cidlowski, J. A. The glucocorticoid receptor: coding a diversity ofproteins and responses through a single gene. Molecular endocrinology, Aug,2002,16(8):1719-26.
    [83] Funder, J. W. Glucocorticoid and mineralocorticoid receptors: biology andclinical relevance. Annual review of medicine,1997,48231-40.
    [84] Seckl, J. R.11beta-hydroxysteroid dehydrogenases: changing glucocorticoidaction. Current opinion in pharmacology, Dec,2004,4(6):597-602.
    [85] Quinkler, M.,Oelkers, W.,Diederich, S. Clinical implications of glucocorticoidmetabolism by11beta-hydroxysteroid dehydrogenases in target tissues.European journal of endocrinology/European Federation of EndocrineSocieties, Feb,2001,144(2):87-97.
    [86] Lloyd-MacGilp, S. A.,Nelson, S. M.,Florin, M., et al.11beta-hydroxysteroiddehydrogenase and corticosteroid action in lyon hypertensive rats.Hypertension, Nov,1999,34(5):1123-8.
    [87] Kosicka, K.,Cymerys, M.,Majchrzak-Celinska, A., et al.11beta-Hydroxysteroid dehydrogenase type2in hypertension: comparison ofphenotype and genotype analysis. Journal of human hypertension, Jan10,2013.
    [88] Stewart, P. M.,Krozowski, Z. S.,Gupta, A., et al. Hypertension in the syndromeof apparent mineralocorticoid excess due to mutation of the11beta-hydroxysteroid dehydrogenase type2gene. Lancet, Jan13,1996,347(8994):88-91.
    [89] Kotelevtsev, Y.,Brown, R. W.,Fleming, S., et al. Hypertension in mice lacking11beta-hydroxysteroid dehydrogenase type2. The Journal of clinicalinvestigation, Mar,1999,103(5):683-9.
    [90] Lovati, E.,Ferrari, P.,Dick, B., et al. Molecular basis of human salt sensitivity:the role of the11beta-hydroxysteroid dehydrogenase type2. The Journal ofclinical endocrinology and metabolism, Oct,1999,84(10):3745-9.
    [91] Tomlinson, J. W.,Walker, E. A.,Bujalska, I. J., et al.11beta-hydroxysteroiddehydrogenase type1: a tissue-specific regulator of glucocorticoid response.Endocrine reviews, Oct,2004,25(5):831-66.
    [92] Seckl, J. R.,Walker, B. R. Minireview:11beta-hydroxysteroid dehydrogenasetype1-a tissue-specific amplifier of glucocorticoid action. Endocrinology, Apr,2001,142(4):1371-6.
    [93] Wiegand, S.,Richardt, A.,Remer, T., et al. Reduced11beta-hydroxysteroiddehydrogenase type1activity in obese boys. European journal ofendocrinology/European Federation of Endocrine Societies, Sep,2007,157(3):319-24.
    [94] Stewart, P. M.,Boulton, A.,Kumar, S., et al. Cortisol metabolism in humanobesity: impaired cortisone-->cortisol conversion in subjects with centraladiposity. The Journal of clinical endocrinology and metabolism, Mar,1999,84(3):1022-7.
    [95] Rask, E.,Olsson, T.,Soderberg, S., et al. Tissue-specific dysregulation ofcortisol metabolism in human obesity. The Journal of clinical endocrinologyand metabolism, Mar,2001,86(3):1418-21.
    [96] Rask, E.,Walker, B. R.,Soderberg, S., et al. Tissue-specific changes inperipheral cortisol metabolism in obese women: increased adipose11beta-hydroxysteroid dehydrogenase type1activity. The Journal of clinicalendocrinology and metabolism, Jul,2002,87(7):3330-6.
    [97] Schmittgen, T. D.,Livak, K. J. Analyzing real-time PCR data by thecomparative C(T) method. Nature protocols,2008,3(6):1101-8.
    [98] Livak, K. J.,Schmittgen, T. D. Analysis of relative gene expression data usingreal-time quantitative PCR and the2(-Delta Delta C(T)) Method. Methods,Dec,2001,25(4):402-8.
    [99] Huidobro, C.,Torano, E. G.,Fernandez, A. F., et al. A DNA methylationsignature associated with the epigenetic repression of glycineN-methyltransferase in human hepatocellular carcinoma. Journal of molecularmedicine, Mar12,2013.
    [100] Nishida, N.,Kudo, M.,Nagasaka, T., et al. Characteristic patterns of alteredDNA methylation predict emergence of human hepatocellular carcinoma.Hepatology, Sep,2012,56(3):994-1003.
    [101] Sceusi, E. L.,Loose, D. S.,Wray, C. J. Clinical implications of DNAmethylation in hepatocellular carcinoma. HPB: the official journal of theInternational Hepato Pancreato Biliary Association, Jun,2011,13(6):369-76.
    [102] Hernandez-Vargas, H.,Lambert, M. P.,Le Calvez-Kelm, F., et al.Hepatocellular carcinoma displays distinct DNA methylation signatures withpotential as clinical predictors. PloS one,2010,5(3): e9749.
    [103] Feng, Q.,Stern, J. E.,Hawes, S. E., et al. DNA methylation changes in normalliver tissues and hepatocellular carcinoma with different viral infection.Experimental and molecular pathology, Apr,2010,88(2):287-92.
    [104] Iyer, P.,Zekri, A. R.,Hung, C. W., et al. Concordance of DNA methylationpattern in plasma and tumor DNA of Egyptian hepatocellular carcinomapatients. Experimental and molecular pathology, Feb,2010,88(1):107-11.
    [105] Tischoff, I.,Tannapfe, A. DNA methylation in hepatocellular carcinoma. Worldjournal of gastroenterology: WJG, Mar21,2008,14(11):1741-8.
    [106] Zhu, J. DNA methylation and hepatocellular carcinoma. Journal ofhepato-biliary-pancreatic surgery,2006,13(4):265-73.
    [107] Shen, L.,Fang, J.,Qiu, D., et al. Correlation between DNA methylation andpathological changes in human hepatocellular carcinoma.Hepato-gastroenterology, Sep-Oct,1998,45(23):1753-9.
    [108] Alpini, G.,Glaser, S. S.,Zhang, J. P., et al. Regulation of placenta growth factorby microRNA-125b in hepatocellular cancer. Journal of hepatology, Dec,2011,55(6):1339-45.
    [109] Barker, J. M.,Zhang, Y.,Wang, F., et al. Ethanol-induced Htr3a promotermethylation changes in mouse blood and brain. Alcoholism, clinical andexperimental research, Jan,2013,37Suppl1E101-7.
    [110] Wong, I. H.,Lo, Y. M.,Yeo, W., et al. Frequent p15promoter methylation intumor and peripheral blood from hepatocellular carcinoma patients. Clinicalcancer research: an official journal of the American Association for CancerResearch, Sep,2000,6(9):3516-21.
    [111] Mueller, K. M.,Kornfeld, J. W.,Friedbichler, K., et al. Impairment of hepaticgrowth hormone and glucocorticoid receptor signaling causes steatosis andhepatocellular carcinoma in mice. Hepatology, Oct,2011,54(4):1398-409.
    [112] Kim, S. J.,Rabbani, Z. N.,Vollmer, R. T., et al. Carbonic anhydrase IX inearly-stage non-small cell lung cancer. Clinical cancer research: an officialjournal of the American Association for Cancer Research, Dec1,2004,10(23):7925-33.
    [113] Kyzas, P. A.,Stefanou, D.,Batistatou, A., et al. Hypoxia-induced tumorangiogenic pathway in head and neck cancer: an in vivo study. Cancer letters,Jul28,2005,225(2):297-304.
    [114] Wang, C. J.,Zhou, Z. G.,Holmqvist, A., et al. Survivin expression quantified byImage Pro-Plus compared with visual assessment. Appliedimmunohistochemistry&molecular morphology: AIMM/official publicationof the Society for Applied Immunohistochemistry, Dec,2009,17(6):530-5.
    [115] Bensinger, S. J.,Christofk, H. R. New aspects of the Warburg effect in cancercell biology. Seminars in cell&developmental biology, Jun,2012,23(4):352-61.
    [116] Warburg, O. On the origin of cancer cells. Science, Feb24,1956,123(3191):309-14.
    [117] Demetrius, L. A.,Coy, J. F.,Tuszynski, J. A. Cancer proliferation and therapy:the Warburg effect and quantum metabolism. Theoretical biology&medicalmodelling,2010,72.
    [118] Gatenby, R. A.,Gillies, R. J. Why do cancers have high aerobic glycolysis?Nature reviews. Cancer, Nov,2004,4(11):891-9.
    [119] Vander Heiden, M. G.,Cantley, L. C.,Thompson, C. B. Understanding theWarburg effect: the metabolic requirements of cell proliferation. Science, May22,2009,324(5930):1029-33.
    [120] Kim, J. W.,Dang, C. V. Cancer's molecular sweet tooth and the Warburg effect.Cancer research, Sep15,2006,66(18):8927-30.
    [121] Koppenol, W. H.,Bounds, P. L.,Dang, C. V. Otto Warburg's contributions tocurrent concepts of cancer metabolism. Nature reviews. Cancer, May,2011,11(5):325-37.
    [122] Landor, S. K.,Mutvei, A. P.,Mamaeva, V., et al. Hypo-and hyperactivatedNotch signaling induce a glycolytic switch through distinct mechanisms.Proceedings of the National Academy of Sciences of the United States ofAmerica, Nov15,2011,108(46):18814-9.
    [123] Ward, P. S.,Thompson, C. B. Metabolic reprogramming: a cancer hallmarkeven warburg did not anticipate. Cancer cell, Mar20,2012,21(3):297-308.
    [124] Hainaut, P.,Plymoth, A. Targeting the hallmarks of cancer: towards a rationalapproach to next-generation cancer therapy. Current opinion in oncology, Jan,2013,25(1):50-1.
    [125] Hanahan, D.,Weinberg, R. A. Hallmarks of cancer: the next generation. Cell,Mar4,2011,144(5):646-74.
    [126] Dohm, G. L.,Newsholme, E. A. Metabolic control of hepatic gluconeogenesisduring exercise. The Biochemical journal, Jun15,1983,212(3):633-9.
    [127] Pilkis, S. J.,Park, C. R.,Claus, T. H. Hormonal control of hepaticgluconeogenesis. Vitamins and hormones,1978,36383-460.
    [128] Exton, J. H.,Mallette, L. E.,Jefferson, L. S., et al. The hormonal control ofhepatic gluconeogenesis. Recent progress in hormone research,1970,26411-61.
    [129] Feliu, J. E.,Hue, L.,Hers, H. G. Hormonal control of pyruvate kinase activityand of gluconeogenesis in isolated hepatocytes. Proceedings of the NationalAcademy of Sciences of the United States of America, Aug,1976,73(8):2762-6.
    [130] Yoon, J. C.,Puigserver, P.,Chen, G., et al. Control of hepatic gluconeogenesisthrough the transcriptional coactivator PGC-1. Nature, Sep13,2001,413(6852):131-8.
    [131] Cole, T. J.,Blendy, J. A.,Monaghan, A. P., et al. Targeted disruption of theglucocorticoid receptor gene blocks adrenergic chromaffin cell developmentand severely retards lung maturation. Genes&development, Jul1,1995,9(13):1608-21.
    [132] Kotelevtsev, Y.,Holmes, M. C.,Burchell, A., et al.11beta-hydroxysteroiddehydrogenase type1knockout mice show attenuatedglucocorticoid-inducible responses and resist hyperglycemia on obesity orstress. Proceedings of the National Academy of Sciences of the United Statesof America, Dec23,1997,94(26):14924-9.
    [133] Huang, B.,Lei, Z.,Zhang, G. M., et al. SCF-mediated mast cell infiltration andactivation exacerbate the inflammation and immunosuppression in tumormicroenvironment. Blood, Aug15,2008,112(4):1269-79.
    [134] Lin, L.,Valore, E. V.,Nemeth, E., et al. Iron transferrin regulates hepcidinsynthesis in primary hepatocyte culture through hemojuvelin and BMP2/4.Blood, Sep15,2007,110(6):2182-9.
    [135] Lee, P.,Peng, H.,Gelbart, T., et al. The IL-6-and lipopolysaccharide-inducedtranscription of hepcidin in HFE-, transferrin receptor2-, and beta2-microglobulin-deficient hepatocytes. Proceedings of the National Academyof Sciences of the United States of America, Jun22,2004,101(25):9263-5.
    [136] Prowse, K. R.,Baumann, H. Interleukin-1and interleukin-6stimulateacute-phase protein production in primary mouse hepatocytes. Journal ofleukocyte biology, Jan,1989,45(1):55-61.
    [137] Baumann, H.,Jahreis, G. P.,Gaines, K. C. Synthesis and regulation of acutephase plasma proteins in primary cultures of mouse hepatocytes. The Journalof cell biology, Sep,1983,97(3):866-76.
    [138] Zhou, Y.,Wang, S.,Ma, J. W., et al. Hepatitis B virus protein X-inducedexpression of the CXC chemokine IP-10is mediated through activation ofNF-kappaB and increases migration of leukocytes. The Journal of biologicalchemistry, Apr16,2010,285(16):12159-68.
    [139] Hers, H. G. Effects of glucocorticoids on carbohydrate metabolism. Agentsand actions, Jan,1986,17(3-4):248-54.
    [140] McMahon, M.,Gerich, J.,Rizza, R. Effects of glucocorticoids on carbohydratemetabolism. Diabetes/metabolism reviews, Feb,1988,4(1):17-30.
    [141] Olefsky, J. M.,Kimmerling, G. Effects of glucocorticoids on carbohydratemetabolism. The American journal of the medical sciences, Mar-Apr,1976,271(2):202-10.
    [142] Yasuda, K.,Takeda, N.,Miura, K.[Effects of glucocorticoids on carbohydratemetabolism]. Nihon rinsho. Japanese journal of clinical medicine, Nov,1989,47(11):2425-30.
    [143] Goldberg, A. L.,Tischler, M.,DeMartino, G., et al. Hormonal regulation ofprotein degradation and synthesis in skeletal muscle. Federation proceedings,Jan,1980,39(1):31-6.
    [144] May, R. C.,Bailey, J. L.,Mitch, W. E., et al. Glucocorticoids and acidosisstimulate protein and amino acid catabolism in vivo. Kidney international,Mar,1996,49(3):679-83.
    [145] MacDonald, R. G.,Martin, T. P.,Cidlowski, J. A. Glucocorticoids stimulateprotein degradation in lymphocytes: a possible mechanism of steroid-inducedcell death. Endocrinology, Nov,1980,107(5):1512-24.
    [146] May, R. C.,Kelly, R. A.,Mitch, W. E. Metabolic acidosis stimulates proteindegradation in rat muscle by a glucocorticoid-dependent mechanism. TheJournal of clinical investigation, Feb,1986,77(2):614-21.
    [147] Kassel, O.,Sancono, A.,Kratzschmar, J., et al. Glucocorticoids inhibit MAPkinase via increased expression and decreased degradation of MKP-1. TheEMBO journal, Dec17,2001,20(24):7108-16.
    [148] Brindley, D. N. Role of glucocorticoids and fatty acids in the impairment oflipid metabolism observed in the metabolic syndrome. International journal ofobesity and related metabolic disorders: journal of the InternationalAssociation for the Study of Obesity, May,1995,19Suppl1S69-75.
    [149] Johnston, D.,Matthews, E. R.,Melnykovych, G. Glucocorticoid effects on lipidmetabolism in HeLa cells: inhibition of cholesterol synthesis and increasedsphingomyelin synthesis. Endocrinology, Nov,1980,107(5):1482-8.
    [150] Mitchell, C. D.,Richards, S. M.,Kinsey, S. E., et al. Benefit of dexamethasonecompared with prednisolone for childhood acute lymphoblastic leukaemia:results of the UK Medical Research Council ALL97randomized trial. Britishjournal of haematology, Jun,2005,129(6):734-45.
    [151] Veerman, A. J.,Kamps, W. A.,van den Berg, H., et al. Dexamethasone-basedtherapy for childhood acute lymphoblastic leukaemia: results of theprospective Dutch Childhood Oncology Group (DCOG) protocol ALL-9(1997-2004). The lancet oncology, Oct,2009,10(10):957-66.
    [152] Henzi, I.,Walder, B.,Tramer, M. R. Dexamethasone for the prevention ofpostoperative nausea and vomiting: a quantitative systematic review.Anesthesia and analgesia, Jan,2000,90(1):186-94.
    [153] Karanicolas, P. J.,Smith, S. E.,Kanbur, B., et al. The impact of prophylacticdexamethasone on nausea and vomiting after laparoscopic cholecystectomy: asystematic review and meta-analysis. Annals of surgery, Nov,2008,248(5):751-62.
    [154] Chen, W. Y.,Cheng, Y. T.,Lei, H. Y., et al. IL-24inhibits the growth ofhepatoma cells in vivo. Genes and immunity, Sep,2005,6(6):493-9.
    [155] Chang, C. P.,Yang, M. C.,Liu, H. S., et al. Concanavalin A induces autophagyin hepatoma cells and has a therapeutic effect in a murine in situ hepatomamodel. Hepatology, Feb,2007,45(2):286-96.
    [156] DiTullio, N. W.,Berkoff, C. E.,Blank, B., et al.3-mercaptopicolinic acid, aninhibitor of gluconeogenesis. The Biochemical journal, Mar,1974,138(3):387-94.
    [157] Yamauchi, T.,Nio, Y.,Maki, T., et al. Targeted disruption of AdipoR1andAdipoR2causes abrogation of adiponectin binding and metabolic actions.Nature medicine, Mar,2007,13(3):332-9.
    [158] She, P.,Shiota, M.,Shelton, K. D., et al. Phosphoenolpyruvate carboxykinase isnecessary for the integration of hepatic energy metabolism. Molecular andcellular biology, Sep,2000,20(17):6508-17.
    [159] Lunt, S. Y.,Vander Heiden, M. G. Aerobic glycolysis: meeting the metabolicrequirements of cell proliferation. Annual review of cell and developmentalbiology,2011,27441-64.
    [160] Le, A.,Cooper, C. R.,Gouw, A. M., et al. Inhibition of lactate dehydrogenase Ainduces oxidative stress and inhibits tumor progression. Proceedings of theNational Academy of Sciences of the United States of America, Feb2,2010,107(5):2037-42.
    [161] Goldman, R. D.,Kaplan, N. O.,Hall, T. C. Lactic Dehydrogenase in HumanNeoplastic Tissues. Cancer research, Apr,1964,24389-99.
    [162] Ying, W. NAD+/NADH and NADP+/NADPH in cellular functions and celldeath: regulation and biological consequences. Antioxidants&redox signaling,Feb,2008,10(2):179-206.
    [163] Ansell, R.,Granath, K.,Hohmann, S., et al. The two isoenzymes for yeastNAD+-dependent glycerol3-phosphate dehydrogenase encoded by GPD1andGPD2have distinct roles in osmoadaptation and redox regulation. The EMBOjournal, May1,1997,16(9):2179-87.
    [164] Albertyn, J.,Hohmann, S.,Thevelein, J. M., et al. GPD1, which encodesglycerol-3-phosphate dehydrogenase, is essential for growth under osmoticstress in Saccharomyces cerevisiae, and its expression is regulated by thehigh-osmolarity glycerol response pathway. Molecular and cellular biology,Jun,1994,14(6):4135-44.
    [165] Beale, E. G.,Hammer, R. E.,Antoine, B., et al. Glyceroneogenesis comes ofage. FASEB journal: official publication of the Federation of AmericanSocieties for Experimental Biology, Nov,2002,16(13):1695-6.
    [166] Su, C. Y.,Lardy, H. Induction of hepatic mitochondrial glycerophosphatedehydrogenase in rats by dehydroepiandrosterone. Journal of biochemistry,Aug,1991,110(2):207-13.
    [167] Baylin, S. B.,Jones, P. A. A decade of exploring the cancer epigenome-biological and translational implications. Nature reviews. Cancer, Oct,2011,11(10):726-34.
    [168] Dawson, M. A.,Kouzarides, T. Cancer epigenetics: from mechanism to therapy.Cell, Jul6,2012,150(1):12-27.
    [169] Wyrwoll, C. S.,Holmes, M. C.,Seckl, J. R.11beta-hydroxysteroiddehydrogenases and the brain: from zero to hero, a decade of progress.Frontiers in neuroendocrinology, Aug,2011,32(3):265-86.
    [170] Lavery, G. G.,Zielinska, A. E.,Gathercole, L. L., et al. Lack of significantmetabolic abnormalities in mice with liver-specific disruption of11beta-hydroxysteroid dehydrogenase type1. Endocrinology, Jul,2012,153(7):3236-48.
    [171] Reshef, L.,Olswang, Y.,Cassuto, H., et al. Glyceroneogenesis and thetriglyceride/fatty acid cycle. The Journal of biological chemistry, Aug15,2003,278(33):30413-6.
    [172] Arumugam, R.,Horowitz, E.,Lu, D., et al. The interplay of prolactin and theglucocorticoids in the regulation of beta-cell gene expression, fatty acidoxidation, and glucose-stimulated insulin secretion: implications forcarbohydrate metabolism in pregnancy. Endocrinology, Nov,2008,149(11):5401-14.
    [173] Ottonello, G. A.,Primavera, A. Gastrointestinal complication of high-dosecorticosteroid therapy in acute cerebrovascular patients. Stroke; a journal ofcerebral circulation, Mar-Apr,1979,10(2):208-10.
    [174] Tang, K.,Zhang, Y.,Zhang, H., et al. Delivery of chemotherapeutic drugs intumour cell-derived microparticles. Nature communications,2012,31282.
    [1] Koppenol, W. H.,Bounds, P. L.,Dang, C. V. Otto Warburg's contributions tocurrent concepts of cancer metabolism. Nature reviews. Cancer, May,2011,11(5):325-37.
    [2] Warburg, O. On the origin of cancer cells. Science, Feb24,1956,123(3191):309-14.
    [3] Ward, P. S.,Thompson, C. B. Metabolic reprogramming: a cancer hallmarkeven warburg did not anticipate. Cancer cell, Mar20,2012,21(3):297-308.
    [4] Garber, K. Energy deregulation: licensing tumors to grow. Science, May26,2006,312(5777):1158-9.
    [5] Di Chiro, G.,DeLaPaz, R. L.,Brooks, R. A., et al. Glucose utilization ofcerebral gliomas measured by [18F] fluorodeoxyglucose and positronemission tomography. Neurology, Dec,1982,32(12):1323-9.
    [6] Demetrius, L. A.,Coy, J. F.,Tuszynski, J. A. Cancer proliferation and therapy:the Warburg effect and quantum metabolism. Theoretical biology&medicalmodelling,2010,72.
    [7] Pedersen, P. L. Warburg, me and Hexokinase2: Multiple discoveries of keymolecular events underlying one of cancers' most common phenotypes, the"Warburg Effect", i.e., elevated glycolysis in the presence of oxygen. Journalof bioenergetics and biomembranes, Jun,2007,39(3):211-22.
    [8] Bertoni, J. M. Competitive inhibition of rat brain hexokinase by2-deoxyglucose, glucosamine, and metrizamide. Journal of neurochemistry,Dec,1981,37(6):1523-8.
    [9] Lunt, S. Y.,Vander Heiden, M. G. Aerobic glycolysis: meeting the metabolicrequirements of cell proliferation. Annual review of cell and developmentalbiology,2011,27441-64.
    [10] Gatenby, R. A.,Gillies, R. J. Why do cancers have high aerobic glycolysis?Nature reviews. Cancer, Nov,2004,4(11):891-9.
    [11] Schornack, P. A.,Gillies, R. J. Contributions of cell metabolism and H+diffusion to the acidic pH of tumors. Neoplasia, Mar-Apr,2003,5(2):135-45.
    [12] Ullah, M. S.,Davies, A. J.,Halestrap, A. P. The plasma membrane lactatetransporter MCT4, but not MCT1, is up-regulated by hypoxia through aHIF-1alpha-dependent mechanism. The Journal of biological chemistry, Apr7,2006,281(14):9030-7.
    [13] Nijsten, M. W.,van Dam, G. M. Hypothesis: using the Warburg effect againstcancer by reducing glucose and providing lactate. Medical hypotheses, Jul,2009,73(1):48-51.
    [14] Rotin, D.,Robinson, B.,Tannock, I. F. Influence of hypoxia and an acidicenvironment on the metabolism and viability of cultured cells: potentialimplications for cell death in tumors. Cancer research, Jun,1986,46(6):2821-6.
    [15] Gillies, R. J.,Robey, I.,Gatenby, R. A. Causes and consequences of increasedglucose metabolism of cancers. Journal of nuclear medicine: officialpublication, Society of Nuclear Medicine, Jun,2008,49Suppl224S-42S.
    [16] Bartrons, R.,Caro, J. Hypoxia, glucose metabolism and the Warburg's effect.Journal of bioenergetics and biomembranes, Jun,2007,39(3):223-9.
    [17] Lal, A.,Peters, H.,St Croix, B., et al. Transcriptional response to hypoxia inhuman tumors. Journal of the National Cancer Institute, Sep5,2001,93(17):1337-43.
    [18] Hockel, M.,Vaupel, P. Biological consequences of tumor hypoxia. Seminars inoncology, Apr,2001,28(2Suppl8):36-41.
    [19] Gleadle, J. M.,Ratcliffe, P. J. Hypoxia and the regulation of gene expression.Molecular medicine today, Mar,1998,4(3):122-9.
    [20] Mole, D. R.,Maxwell, P. H.,Pugh, C. W., et al. Regulation of HIF by the vonHippel-Lindau tumour suppressor: implications for cellular oxygen sensing.IUBMB life, Jul,2001,52(1-2):43-7.
    [21] Marxsen, J. H.,Stengel, P.,Doege, K., et al. Hypoxia-inducible factor-1(HIF-1)promotes its degradation by induction of HIF-alpha-prolyl-4-hydroxylases.The Biochemical journal, Aug1,2004,381(Pt3):761-7.
    [22] Kaelin, W. G. The von Hippel-Lindau tumor suppressor protein: roles incancer and oxygen sensing. Cold Spring Harbor symposia on quantitativebiology,2005,70159-66.
    [23] Papandreou, I.,Cairns, R. A.,Fontana, L., et al. HIF-1mediates adaptation tohypoxia by actively downregulating mitochondrial oxygen consumption. Cellmetabolism, Mar,2006,3(3):187-97.
    [24] Kim, J. W.,Tchernyshyov, I.,Semenza, G. L., et al. HIF-1-mediated expressionof pyruvate dehydrogenase kinase: a metabolic switch required for cellularadaptation to hypoxia. Cell metabolism, Mar,2006,3(3):177-85.
    [25] Firth, J. D.,Ebert, B. L.,Ratcliffe, P. J. Hypoxic regulation of lactatedehydrogenase A. Interaction between hypoxia-inducible factor1and cAMPresponse elements. The Journal of biological chemistry, Sep8,1995,270(36):21021-7.
    [26] Witkiewicz, A. K.,Whitaker-Menezes, D.,Dasgupta, A., et al. Using the"reverse Warburg effect" to identify high-risk breast cancer patients: stromalMCT4predicts poor clinical outcome in triple-negative breast cancers. Cellcycle, Mar15,2012,11(6):1108-17.
    [27] Denko, N. C. Hypoxia, HIF1and glucose metabolism in the solid tumour.Nature reviews. Cancer, Sep,2008,8(9):705-13.
    [28] Lagana, A.,Vadnais, J.,Le, P. U., et al. Regulation of the formation of tumorcell pseudopodia by the Na(+)/H(+) exchanger NHE1. Journal of cell science,Oct,2000,113(Pt20)3649-62.
    [29] Shimoda, L. A.,Fallon, M.,Pisarcik, S., et al. HIF-1regulates hypoxicinduction of NHE1expression and alkalinization of intracellular pH inpulmonary arterial myocytes. American journal of physiology. Lung cellularand molecular physiology, Nov,2006,291(5): L941-9.
    [30] Semenza, G. L. HIF-1: upstream and downstream of cancer metabolism.Current opinion in genetics&development, Feb,2010,20(1):51-6.
    [31] Au, K. K.,Liong, E.,Li, J. Y., et al. Increases in mRNA levels of glucosetransporters types1and3in Ehrlich ascites tumor cells during tumordevelopment. Journal of cellular biochemistry, Oct1,1997,67(1):131-5.
    [32] Moreno-Sanchez, R.,Rodriguez-Enriquez, S.,Marin-Hernandez, A., et al.Energy metabolism in tumor cells. The FEBS journal, Mar,2007,274(6):1393-418.
    [33] Nakashima, R. A.,Paggi, M. G.,Scott, L. J., et al. Purification andcharacterization of a bindable form of mitochondrial bound hexokinase fromthe highly glycolytic AS-30D rat hepatoma cell line. Cancer research, Feb15,1988,48(4):913-9.
    [34] Okar, D. A.,Lange, A. J. Fructose-2,6-bisphosphate and control ofcarbohydrate metabolism in eukaryotes. BioFactors,1999,10(1):1-14.
    [35] Staal, G. E.,Kalff, A.,Heesbeen, E. C., et al. Subunit composition, regulatoryproperties, and phosphorylation of phosphofructokinase from human gliomas.Cancer research, Oct1,1987,47(19):5047-51.
    [36] Rider, M. H.,Bertrand, L.,Vertommen, D., et al.6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with abifunctional enzyme that controls glycolysis. The Biochemical journal, Aug1,2004,381(Pt3):561-79.
    [37] Semenza, G. L.,Roth, P. H.,Fang, H. M., et al. Transcriptional regulation ofgenes encoding glycolytic enzymes by hypoxia-inducible factor1. The Journalof biological chemistry, Sep23,1994,269(38):23757-63.
    [38] Mazurek, S.,Boschek, C. B.,Hugo, F., et al. Pyruvate kinase type M2and itsrole in tumor growth and spreading. Seminars in cancer biology, Aug,2005,15(4):300-8.
    [39] Ferguson, E. C.,Rathmell, J. C. New roles for pyruvate kinase M2: workingout the Warburg effect. Trends in biochemical sciences, Aug,2008,33(8):359-62.
    [40] Hardie, D. G. The AMP-activated protein kinase pathway--new playersupstream and downstream. Journal of cell science, Nov1,2004,117(Pt23):5479-87.
    [41] Marsin, A. S.,Bouzin, C.,Bertrand, L., et al. The stimulation of glycolysis byhypoxia in activated monocytes is mediated by AMP-activated protein kinaseand inducible6-phosphofructo-2-kinase. The Journal of biological chemistry,Aug23,2002,277(34):30778-83.
    [42] Koike, T.,Kimura, N.,Miyazaki, K., et al. Hypoxia induces adhesion moleculeson cancer cells: A missing link between Warburg effect and induction ofselectin-ligand carbohydrates. Proceedings of the National Academy ofSciences of the United States of America, May25,2004,101(21):8132-7.
    [43] Sakamoto, T.,Niiya, D.,Seiki, M. Targeting the Warburg effect that arises intumor cells expressing membrane type-1matrix metalloproteinase. TheJournal of biological chemistry, Apr22,2011,286(16):14691-704.
    [44] Wong, K. K.,Engelman, J. A.,Cantley, L. C. Targeting the PI3K signalingpathway in cancer. Current opinion in genetics&development, Feb,2010,20(1):87-90.
    [45] Bartholomeusz, C.,Gonzalez-Angulo, A. M. Targeting the PI3K signalingpathway in cancer therapy. Expert opinion on therapeutic targets, Jan,2012,16(1):121-30.
    [46] Cairns, R. A.,Harris, I.,McCracken, S., et al. Cancer cell metabolism. ColdSpring Harbor symposia on quantitative biology,2011,76299-311.
    [47] Deprez, J.,Vertommen, D.,Alessi, D. R., et al. Phosphorylation and activationof heart6-phosphofructo-2-kinase by protein kinase B and other proteinkinases of the insulin signaling cascades. The Journal of biological chemistry,Jul11,1997,272(28):17269-75.
    [48] Gottlob, K.,Majewski, N.,Kennedy, S., et al. Inhibition of early apoptoticevents by Akt/PKB is dependent on the first committed step of glycolysis andmitochondrial hexokinase. Genes&development, Jun1,2001,15(11):1406-18.
    [49] Mathupala, S. P.,Ko, Y. H.,Pedersen, P. L. Hexokinase II: cancer'sdouble-edged sword acting as both facilitator and gatekeeper of malignancywhen bound to mitochondria. Oncogene, Aug7,2006,25(34):4777-86.
    [50] Miyamoto, S.,Murphy, A. N.,Brown, J. H. Akt mediates mitochondrialprotection in cardiomyocytes through phosphorylation of mitochondrialhexokinase-II. Cell death and differentiation, Mar,2008,15(3):521-9.
    [51] Rathmell, J. C.,Fox, C. J.,Plas, D. R., et al. Akt-directed glucose metabolismcan prevent Bax conformation change and promote growth factor-independentsurvival. Molecular and cellular biology, Oct,2003,23(20):7315-28.
    [52] Buller, C. L.,Loberg, R. D.,Fan, M. H., et al. A GSK-3/TSC2/mTOR pathwayregulates glucose uptake and GLUT1glucose transporter expression.American journal of physiology. Cell physiology, Sep,2008,295(3):C836-43.
    [53] Duvel, K.,Yecies, J. L.,Menon, S., et al. Activation of a metabolic generegulatory network downstream of mTOR complex1. Molecular cell, Jul30,2010,39(2):171-83.
    [54] Sun, Q.,Chen, X.,Ma, J., et al. Mammalian target of rapamycin up-regulationof pyruvate kinase isoenzyme type M2is critical for aerobic glycolysis andtumor growth. Proceedings of the National Academy of Sciences of the UnitedStates of America, Mar8,2011,108(10):4129-34.
    [55] Zha, X.,Wang, F.,Wang, Y., et al. Lactate dehydrogenase B is critical forhyperactive mTOR-mediated tumorigenesis. Cancer research, Jan1,2011,71(1):13-8.
    [56] Laplante, M.,Sabatini, D. M. An emerging role of mTOR in lipid biosynthesis.Current biology: CB, Dec1,2009,19(22): R1046-52.
    [57] Sengupta, S.,Peterson, T. R.,Sabatini, D. M. Regulation of the mTOR complex1pathway by nutrients, growth factors, and stress. Molecular cell, Oct22,2010,40(2):310-22.
    [58] Gordan, J. D.,Bertout, J. A.,Hu, C. J., et al. HIF-2alpha promotes hypoxic cellproliferation by enhancing c-myc transcriptional activity. Cancer cell, Apr,2007,11(4):335-47.
    [59] Gordan, J. D.,Thompson, C. B.,Simon, M. C. HIF and c-Myc: sibling rivalsfor control of cancer cell metabolism and proliferation. Cancer cell, Aug,2007,12(2):108-13.
    [60] Koshiji, M.,Kageyama, Y.,Pete, E. A., et al. HIF-1alpha induces cell cyclearrest by functionally counteracting Myc. The EMBO journal, May5,2004,23(9):1949-56.
    [61] Menssen, A.,Hydbring, P.,Kapelle, K., et al. The c-MYC oncoprotein, theNAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1deacetylase forma positive feedback loop. Proceedings of the National Academy of Sciences ofthe United States of America, Jan24,2012,109(4): E187-96.
    [62] Bensaad, K.,Tsuruta, A.,Selak, M. A., et al. TIGAR, a p53-inducible regulatorof glycolysis and apoptosis. Cell, Jul14,2006,126(1):107-20.
    [63] Ma, W.,Sung, H. J.,Park, J. Y., et al. A pivotal role for p53: balancing aerobicrespiration and glycolysis. Journal of bioenergetics and biomembranes, Jun,2007,39(3):243-6.
    [64] Jones, R. G.,Thompson, C. B. Tumor suppressors and cell metabolism: arecipe for cancer growth. Genes&development, Mar1,2009,23(5):537-48.
    [65] Kondoh, H.,Lleonart, M. E.,Gil, J., et al. Glycolytic enzymes can modulatecellular life span. Cancer research, Jan1,2005,65(1):177-85.
    [66] Hu, W.,Zhang, C.,Wu, R., et al. Glutaminase2, a novel p53target generegulating energy metabolism and antioxidant function. Proceedings of theNational Academy of Sciences of the United States of America, Apr20,2010,107(16):7455-60.
    [67] Chen, W.,Sun, Z.,Wang, X. J., et al. Direct interaction between Nrf2andp21(Cip1/WAF1) upregulates the Nrf2-mediated antioxidant response.Molecular cell, Jun26,2009,34(6):663-73.
    [68] Zhang, C.,Lin, M.,Wu, R., et al. Parkin, a p53target gene, mediates the role ofp53in glucose metabolism and the Warburg effect. Proceedings of theNational Academy of Sciences of the United States of America, Sep27,2011,108(39):16259-64.
    [69] Gottlieb, E.,Tomlinson, I. P. Mitochondrial tumour suppressors: a genetic andbiochemical update. Nature reviews. Cancer, Nov,2005,5(11):857-66.
    [70] Selak, M. A.,Armour, S. M.,MacKenzie, E. D., et al. Succinate links TCAcycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase.Cancer cell, Jan,2005,7(1):77-85.
    [71] Kim, J. W.,Dang, C. V. Cancer's molecular sweet tooth and the Warburg effect.Cancer research, Sep15,2006,66(18):8927-30.
    [72] Pelicano, H.,Martin, D. S.,Xu, R. H., et al. Glycolysis inhibition for anticancertreatment. Oncogene, Aug7,2006,25(34):4633-46.
    [73] Gogvadze, V.,Orrenius, S.,Zhivotovsky, B. Mitochondria in cancer cells: whatis so special about them? Trends in cell biology, Apr,2008,18(4):165-73.
    [74] Isidoro, A.,Martinez, M.,Fernandez, P. L., et al. Alteration of the bioenergeticphenotype of mitochondria is a hallmark of breast, gastric, lung andoesophageal cancer. The Biochemical journal, Feb15,2004,378(Pt1):17-20.
    [75] Cuezva, J. M.,Sanchez-Arago, M.,Sala, S., et al. A message emerging fromdevelopment: the repression of mitochondrial beta-F1-ATPase expression incancer. Journal of bioenergetics and biomembranes, Jun,2007,39(3):259-65.
    [76] Samudio, I.,Fiegl, M.,McQueen, T., et al. The warburg effect inleukemia-stroma cocultures is mediated by mitochondrial uncouplingassociated with uncoupling protein2activation. Cancer research, Jul1,2008,68(13):5198-205.
    [77] Samudio, I.,Fiegl, M.,Andreeff, M. Mitochondrial uncoupling and theWarburg effect: molecular basis for the reprogramming of cancer cellmetabolism. Cancer research, Mar15,2009,69(6):2163-6.
    [78] Matoba, S.,Kang, J. G.,Patino, W. D., et al. p53regulates mitochondrialrespiration. Science, Jun16,2006,312(5780):1650-3.
    [79] Weinberg, F.,Hamanaka, R.,Wheaton, W. W., et al. Mitochondrial metabolismand ROS generation are essential for Kras-mediated tumorigenicity.Proceedings of the National Academy of Sciences of the United States ofAmerica, May11,2010,107(19):8788-93.
    [80] Rho, M.,Kim, J.,Jee, C. D., et al. Expression of type2hexokinase andmitochondria-related genes in gastric carcinoma tissues and cell lines.Anticancer research, Jan-Feb,2007,27(1A):251-8.
    [81] Wolf, A.,Agnihotri, S.,Micallef, J., et al. Hexokinase2is a key mediator ofaerobic glycolysis and promotes tumor growth in human glioblastomamultiforme. The Journal of experimental medicine, Feb14,2011,208(2):313-26.
    [82] Mathupala, S. P.,Pedersen, P. L. Voltage dependent anion channel-1(VDAC-1)as an anti-cancer target. Cancer biology&therapy, Jun15,2010,9(12):1053-6.
    [83] Lu, W.,Hu, Y.,Chen, G., et al. Novel role of NOX in supporting aerobicglycolysis in cancer cells with mitochondrial dysfunction and as a potentialtarget for cancer therapy. PLoS biology,2012,10(5): e1001326.
    [84] Paravicini, T. M.,Touyz, R. M. NADPH oxidases, reactive oxygen species, andhypertension: clinical implications and therapeutic possibilities. Diabetes care,Feb,2008,31Suppl2S170-80.
    [85] Baysal, B. E.,Ferrell, R. E.,Willett-Brozick, J. E., et al. Mutations in SDHD, amitochondrial complex II gene, in hereditary paraganglioma. Science, Feb4,2000,287(5454):848-51.
    [86] Niemann, S.,Muller, U. Mutations in SDHC cause autosomal dominantparaganglioma, type3. Nature genetics, Nov,2000,26(3):268-70.
    [87] Astuti, D.,Latif, F.,Dallol, A., et al. Gene mutations in the succinatedehydrogenase subunit SDHB cause susceptibility to familialpheochromocytoma and to familial paraganglioma. American journal ofhuman genetics, Jul,2001,69(1):49-54.
    [88] Pollard, P. J.,Briere, J. J.,Alam, N. A., et al. Accumulation of Krebs cycleintermediates and over-expression of HIF1alpha in tumours which result fromgermline FH and SDH mutations. Human molecular genetics, Aug1,2005,14(15):2231-9.
    [89] Isaacs, J. S.,Jung, Y. J.,Mimnaugh, E. G., et al. Hsp90regulates a von HippelLindau-independent hypoxia-inducible factor-1alpha-degradative pathway.The Journal of biological chemistry, Aug16,2002,277(33):29936-44.
    [90] Liu, X.,Wang, X.,Zhang, J., et al. Warburg effect revisited: an epigenetic linkbetween glycolysis and gastric carcinogenesis. Oncogene, Jan21,2010,29(3):442-50.
    [91] Ashburner, B. P.,Westerheide, S. D.,Baldwin, A. S., Jr. The p65(RelA) subunitof NF-kappaB interacts with the histone deacetylase (HDAC) corepressorsHDAC1and HDAC2to negatively regulate gene expression. Molecular andcellular biology, Oct,2001,21(20):7065-77.
    [92] Chen, M.,Zhang, J.,Li, N., et al. Promoter hypermethylation mediateddownregulation of FBP1in human hepatocellular carcinoma and colon cancer.PloS one,2011,6(10): e25564.
    [93] Goel, A.,Mathupala, S. P.,Pedersen, P. L. Glucose metabolism in cancer.Evidence that demethylation events play a role in activating type II hexokinasegene expression. The Journal of biological chemistry, Apr25,2003,278(17):15333-40.
    [94] Palmieri, D.,Fitzgerald, D.,Shreeve, S. M., et al. Analyses of resected humanbrain metastases of breast cancer reveal the association between up-regulationof hexokinase2and poor prognosis. Molecular cancer research: MCR, Sep,2009,7(9):1438-45.
    [95] Yasuda, S.,Arii, S.,Mori, A., et al. Hexokinase II and VEGF expression in livertumors: correlation with hypoxia-inducible factor1alpha and its significance.Journal of hepatology, Jan,2004,40(1):117-23.
    [96] Wolf, A.,Agnihotri, S.,Munoz, D., et al. Developmental profile and regulationof the glycolytic enzyme hexokinase2in normal brain and glioblastomamultiforme. Neurobiology of disease, Oct,2011,44(1):84-91.
    [97] Brown, R. S.,Wahl, R. L. Overexpression of Glut-1glucose transporter inhuman breast cancer. An immunohistochemical study. Cancer, Nov15,1993,72(10):2979-85.
    [98] Parente, P.,Coli, A.,Massi, G., et al. Immunohistochemical expression of theglucose transporters Glut-1and Glut-3in human malignant melanomas andbenign melanocytic lesions. Journal of experimental&clinical cancerresearch: CR,2008,2734.
    [99] Dang, C. V.,Kim, J. W.,Gao, P., et al. The interplay between MYC and HIF incancer. Nature reviews. Cancer, Jan,2008,8(1):51-6.
    [100] Hwang, D. Y.,Ismail-Beigi, F. Control of Glut1promoter activity under basalconditions and in response to hyperosmolarity: role of Sp1. American journalof physiology. Cell physiology, Feb,2006,290(2): C337-44.
    [101] Finley, L. W.,Carracedo, A.,Lee, J., et al. SIRT3opposes reprogramming ofcancer cell metabolism through HIF1alpha destabilization. Cancer cell, Mar8,2011,19(3):416-28.
    [102] Hitchler, M. J.,Domann, F. E. Metabolic defects provide a spark for theepigenetic switch in cancer. Free radical biology&medicine, Jul15,2009,47(2):115-27.
    [103] Bosch-Presegue, L.,Vaquero, A. The dual role of sirtuins in cancer. Genes&cancer, Jun,2011,2(6):648-62.
    [104] Lu, H.,Buchan, R. J.,Cook, S. A. MicroRNA-223regulates Glut4expressionand cardiomyocyte glucose metabolism. Cardiovascular research, Jun1,2010,86(3):410-20.
    [105] Horie, T.,Ono, K.,Nishi, H., et al. MicroRNA-133regulates the expression ofGLUT4by targeting KLF15and is involved in metabolic control in cardiacmyocytes. Biochemical and biophysical research communications, Nov13,2009,389(2):315-20.
    [106] Ahmad, A.,Aboukameel, A.,Kong, D., et al. Phosphoglucoseisomerase/autocrine motility factor mediates epithelial-mesenchymaltransition regulated by miR-200in breast cancer cells. Cancer research, May1,2011,71(9):3400-9.
    [107] Kefas, B.,Comeau, L.,Erdle, N., et al. Pyruvate kinase M2is a target of thetumor-suppressive microRNA-326and regulates the survival of glioma cells.Neuro-oncology, Nov,2010,12(11):1102-12.
    [108] Fang, R.,Xiao, T.,Fang, Z., et al. MicroRNA-143(miR-143) regulates cancerglycolysis via targeting hexokinase2gene. The Journal of biologicalchemistry, Jun29,2012,287(27):23227-35.
    [109] Gregersen, L. H.,Jacobsen, A.,Frankel, L. B., et al. MicroRNA-143down-regulates Hexokinase2in colon cancer cells. BMC cancer,2012,12232.
    [110] Jiang, S.,Zhang, L. F.,Zhang, H. W., et al. A novel miR-155/miR-143cascadecontrols glycolysis by regulating hexokinase2in breast cancer cells. TheEMBO journal, Apr18,2012,31(8):1985-98.
    [111] Peschiaroli, A.,Giacobbe, A.,Formosa, A., et al. miR-143regulates hexokinase2expression in cancer cells. Oncogene, Feb7,2013,32(6):797-802.
    [112] Hirschhaeuser, F.,Sattler, U. G.,Mueller-Klieser, W. Lactate: a metabolic keyplayer in cancer. Cancer research, Nov15,2011,71(22):6921-5.
    [113] Pullen, T. J.,da Silva Xavier, G.,Kelsey, G., et al. miR-29a and miR-29bcontribute to pancreatic beta-cell-specific silencing of monocarboxylatetransporter1(Mct1). Molecular and cellular biology, Aug,2011,31(15):3182-94.
    [114] Dang, C. V. Glutaminolysis: supplying carbon or nitrogen or both for cancercells? Cell cycle, Oct1,2010,9(19):3884-6.
    [115] DeBerardinis, R. J.,Lum, J. J.,Hatzivassiliou, G., et al. The biology of cancer:metabolic reprogramming fuels cell growth and proliferation. Cell metabolism,Jan,2008,7(1):11-20.
    [116] Smerc, A.,Sodja, E.,Legisa, M. Posttranslational modification of6-phosphofructo-1-kinase as an important feature of cancer metabolism. PloSone,2011,6(5): e19645.
    [117] Hitosugi, T.,Kang, S.,Vander Heiden, M. G., et al. Tyrosine phosphorylationinhibits PKM2to promote the Warburg effect and tumor growth. Sciencesignaling,2009,2(97): ra73.
    [118] Lv, L.,Li, D.,Zhao, D., et al. Acetylation targets the M2isoform of pyruvatekinase for degradation through chaperone-mediated autophagy and promotestumor growth. Molecular cell, Jun24,2011,42(6):719-30.
    [119] Fan, J.,Hitosugi, T.,Chung, T. W., et al. Tyrosine phosphorylation of lactatedehydrogenase A is important for NADH/NAD(+) redox homeostasis incancer cells. Molecular and cellular biology, Dec,2011,31(24):4938-50.
    [120] Cheng, J.,Kang, X.,Zhang, S., et al. SUMO-specific protease1is essential forstabilization of HIF1alpha during hypoxia. Cell, Nov2,2007,131(3):584-95.
    [121] Yeh, E. T. SUMOylation and De-SUMOylation: wrestling with life's processes.The Journal of biological chemistry, Mar27,2009,284(13):8223-7.
    [122] Jones, R. G.,Plas, D. R.,Kubek, S., et al. AMP-activated protein kinase inducesa p53-dependent metabolic checkpoint. Molecular cell, Apr29,2005,18(3):283-93.
    [123] Barnes, K.,McIntosh, E.,Whetton, A. D., et al. Chronic myeloid leukaemia: aninvestigation into the role of Bcr-Abl-induced abnormalities in glucosetransport regulation. Oncogene, May5,2005,24(20):3257-67.
    [124] Cao, X.,Fang, L.,Gibbs, S., et al. Glucose uptake inhibitor sensitizes cancercells to daunorubicin and overcomes drug resistance in hypoxia. Cancerchemotherapy and pharmacology, Mar,2007,59(4):495-505.
    [125] Wood, T. E.,Dalili, S.,Simpson, C. D., et al. A novel inhibitor of glucoseuptake sensitizes cells to FAS-induced cell death. Molecular cancertherapeutics, Nov,2008,7(11):3546-55.
    [126] Russell, R. R.,3rd,Mrus, J. M.,Mommessin, J. I., et al. Compartmentation ofhexokinase in rat heart. A critical factor for tracer kinetic analysis ofmyocardial glucose metabolism. The Journal of clinical investigation, Nov,1992,90(5):1972-7.
    [127] Nirenberg, M. W.,Hogg, J. F. Inhibition of anaerobic glycolysis in Ehrlichascites tumor cells by2-deoxy-D-glucose. Cancer research, Jun,1958,18(5):518-21.
    [128] Chen, W.,Gueron, M. The inhibition of bovine heart hexokinase by2-deoxy-D-glucose-6-phosphate: characterization by31P NMR and metabolicimplications. Biochimie, Sep-Oct,1992,74(9-10):867-73.
    [129] Maher, J. C.,Savaraj, N.,Priebe, W., et al. Differential sensitivity to2-deoxy-D-glucose between two pancreatic cell lines correlates with GLUT-1expression. Pancreas, Mar,2005,30(2): e34-9.
    [130] Maschek, G.,Savaraj, N.,Priebe, W., et al.2-deoxy-D-glucose increases theefficacy of adriamycin and paclitaxel in human osteosarcoma and non-smallcell lung cancers in vivo. Cancer research, Jan1,2004,64(1):31-4.
    [131] Cheng, G.,Zielonka, J.,Dranka, B. P., et al. Mitochondria-targeted drugssynergize with2-deoxyglucose to trigger breast cancer cell death. Cancerresearch, May15,2012,72(10):2634-44.
    [132] Chen, Z.,Lu, W.,Garcia-Prieto, C., et al. The Warburg effect and its cancertherapeutic implications. Journal of bioenergetics and biomembranes, Jun,2007,39(3):267-74.
    [133] Zhang, Q.,Pan, J.,North, P. E., et al. Aerosolized3-bromopyruvate inhibitslung tumorigenesis without causing liver toxicity. Cancer prevention research,May,2012,5(5):717-25.
    [134] Ganapathy-Kanniappan, S.,Geschwind, J. F.,Kunjithapatham, R., et al.Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is pyruvylated during3-bromopyruvate mediated cancer cell death. Anticancer research, Dec,2009,29(12):4909-18.
    [135] Scatena, R.,Bottoni, P.,Pontoglio, A., et al. Glycolytic enzyme inhibitors incancer treatment. Expert opinion on investigational drugs, Oct,2008,17(10):1533-45.
    [136] Pathania, D.,Millard, M.,Neamati, N. Opportunities in discovery and deliveryof anticancer drugs targeting mitochondria and cancer cell metabolism.Advanced drug delivery reviews, Nov30,2009,61(14):1250-75.
    [137] Madhok, B. M.,Yeluri, S.,Perry, S. L., et al. Targeting glucose metabolism: anemerging concept for anticancer therapy. American journal of clinicaloncology, Dec,2011,34(6):628-35.
    [138] Clem, B.,Telang, S.,Clem, A., et al. Small-molecule inhibition of6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumorgrowth. Molecular cancer therapeutics, Jan,2008,7(1):110-20.
    [139] Szokoloczi, O.,Schwab, R.,Petak, I., et al. TT232, a novel signal transductioninhibitory compound in the therapy of cancer and inflammatory diseases.Journal of receptor and signal transduction research,2005,25(4-6):217-35.
    [140] Pelicano, H.,Xu, R. H.,Du, M., et al. Mitochondrial respiration defects incancer cells cause activation of Akt survival pathway through aredox-mediated mechanism. The Journal of cell biology, Dec18,2006,175(6):913-23.
    [141] Rais, B.,Comin, B.,Puigjaner, J., et al. Oxythiamine anddehydroepiandrosterone induce a G1phase cycle arrest in Ehrlich's tumorcells through inhibition of the pentose cycle. FEBS letters, Jul30,1999,456(1):113-8.
    [142] Tylicki, A.,Czerniecki, J.,Dobrzyn, P., et al. Modification of thiaminepyrophosphate dependent enzyme activity by oxythiamine in Saccharomycescerevisiae cells. Canadian journal of microbiology, Oct,2005,51(10):833-9.
    [143] Kohler, E.,Barrach, H.,Neubert, D. Inhibition of NADP dependentoxidoreductases by the6-aminonicotinamide analogue of NADP. FEBS letters,Feb16,1970,6(3):225-228.
    [144] Varshney, R.,Dwarakanath, B.,Jain, V. Radiosensitization by6-aminonicotinamide and2-deoxy-D-glucose in human cancer cells.International journal of radiation biology, May,2005,81(5):397-408.
    [145] Herter, F. P.,Weissman, S. G.,Thompson, H. G., Jr., et al. Clinical experiencewith6-aminonicotinamide. Cancer research, Jan,1961,2131-7.
    [146] Kim, S. H.,Lee, G. M. Down-regulation of lactate dehydrogenase-A bysiRNAs for reduced lactic acid formation of Chinese hamster ovary cellsproducing thrombopoietin. Applied microbiology and biotechnology, Feb,2007,74(1):152-9.
    [147] Rapisarda, A.,Uranchimeg, B.,Scudiero, D. A., et al. Identification of smallmolecule inhibitors of hypoxia-inducible factor1transcriptional activationpathway. Cancer research, Aug1,2002,62(15):4316-24.
    [148] Rapisarda, A.,Uranchimeg, B.,Sordet, O., et al. Topoisomerase I-mediatedinhibition of hypoxia-inducible factor1: mechanism and therapeuticimplications. Cancer research, Feb15,2004,64(4):1475-82.
    [149] Semenza, G. L. Targeting HIF-1for cancer therapy. Nature reviews. Cancer,Oct,2003,3(10):721-32.
    [150] Welsh, S.,Williams, R.,Kirkpatrick, L., et al. Antitumor activity andpharmacodynamic properties of PX-478, an inhibitor of hypoxia-induciblefactor-1alpha. Molecular cancer therapeutics, Mar,2004,3(3):233-44.
    [151] Dagher, R.,Cohen, M.,Williams, G., et al. Approval summary: imatinibmesylate in the treatment of metastatic and/or unresectable malignantgastrointestinal stromal tumors. Clinical cancer research: an official journal ofthe American Association for Cancer Research, Oct,2002,8(10):3034-8.
    [152] Clinical status and optimal use of topotecan.Ditonno, P.,Battaglia,M.,Selvaggio, O., et al. Clinical Evidence Supporting the Role of Lonidaminefor the Treatment of BPH. Reviews in urology,2005,7Suppl7S27-33.
    [153] Takimoto, C. H.,Arbuck, S. G. Clinical status and optimal use of topotecan.Oncology, Nov,1997,11(11):1635-46; discussion1649-51,1655-7.