用户名: 密码: 验证码:
利用脑电及光电联合检测分别研究注意中的定向和执行控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
注意是人类重要的认知功能之一。人的学习、生活和工作中会涉及多种认知功能,其中注意功能非常关键,注意功能的异常与多种疾病密切相关,因此对注意神经机制的研究具有很重要的意义。
     本文围绕注意的定向和执行控制两个组成成分展开研究。对于注意定向,采用脑电技术考察了视觉空间注意定向对刺激处理的影响和威胁情绪对注意定向的影响。对执行控制,采用近红外光谱术(NIRS)和脑电技术结合的光电联合手段考察了Stroop任务中执行控制的神经机制。主要的研究内容和结论如下:
     (1)在持续性注意条件下的线索-目标任务中,结合事件相关电位(ERP)和事件相关振荡(ERO)两种分析,考察视觉空间注意定向对刺激处理的影响。结果发现有效刺激P1幅度比无效刺激更正。有效刺激theta频段功率显著增加,且大于无效刺激,说明theta频段可能表征注意资源的多少。alpha频段在注意视野同侧后部脑区功率显著增加,体现了一种主动抑制机制。视觉空间注意对beta频段的调节与alpha频段相似,说明beta频段可能反映了与alpha频段类似的机制。结果说明视觉空间注意通过增强注意刺激的处理和抑制干扰刺激两种机制的结合影响刺激的处理。
     (2)情绪点探测任务中结合ERP和ERO两种分析,考察威胁情绪相对于愉悦情绪的注意偏向。情绪线索呈现500ms时,威胁线索诱发的N1成分比愉悦线索更负,该效应在额中区最大;威胁线索诱发的theta频段功率的增加大于愉悦线索,这一效应在后部脑区显著。N1结果表明对威胁情绪的处理偏向与早期注意处理相关,theta结果支持了后部脑区theta同步性反映对刺激情绪意义的评估。ERP和ERO结果从不同的方面说明了注意能够更多地定位到威胁情绪线索。
     (3)联合NIRS和脑电技术,同步测量颜色-字匹配Stroop任务中的血氧响应和电生理响应,以考察执行控制的神经机制。结果发现反应时和晚正复合波(LPC)的Stroop效应上存在性别差异。LPC的Stroop效应只对女性被试显著,且与女性被试较大的反应时Stroop效应正相关。说明LPC反映字义的额外处理,女性被试进行了更精细的语义分析,贡献于其更大的反应时Stroop效应。N450的Stroop效应出现在不一致刺激的行为反应之前,且它与前额叶氧合血和蛋白(HbO2)的Stroop效应负相关。具体为左侧前额叶HbO2的Stroop效应与N450前段(440-580ms)的Stroop效应负相关,而双侧前额叶HbO2的Stroop效应与N450后段(600-680ms)的Stroop效应负相关。这说明N450反映冲突探测和解决,左侧前额叶可能参与冲突探测,而双侧前额叶参与冲突解决。
     本研究加深了对注意定向和执行控制神经机制的理解,同时对研究疾病注意功能的异常有积极的指导意义。
Attention is an important cognitive function for humans. It is critical for study, life,work and any cognitive process of human beings. Abnormal attention is closely relatedwith many diseases. Thus, it has great significance to investigate the neural correlates ofattention.
     This study focused on two components of attention: orienting and executive control.As to orienting, the influence of visuospatial attention orienting on stimulus processingand the influence of threatening emotion on orienting were investigated with event-relatedelectroencephalography (EEG). Regarding executive control, the neural correlates ofexecutive control was investigated with a multi-modality optical-electrophysiologymethod combining near-infrared spectroscopy (NIRS) and event-related EEG in a Strooptask. The main research contents and innovation are as follows:
     (1) The influence of visuospatial attention orienting on stimulus processing wasinvestigated by combining event-related potential (ERP) and event-related oscillation(ERO) analyses. The mean amplitude of P1was more positive for valid stimuli thaninvalid stimuli. Valid stimuli led to significant power increase in theta, alpha and beta. Thepower increase in theta for valid stimuli was significantly larger than that for invalidstimuli, which indicates that theta might reflect how much visuospatial attention isallocated. Alpha power increase in the posterior region ipsilateral to the attended positionreflects an active suppression mechanism. The attention modulation on beta was similar toalpha, which indicates that beta might reflect a similar mechanism to alpha. These resultsindicate that visuospatial attention influences the stimulus processing by both facilitatingthe attended stimuli and inhibiting the unattended stimuli under sustained attention.
     (2) The attentional bias of threatening emotion relative to pleasant emotion wasinvestigated in an emotional dot probe task by using both ERP and ERO analyses.Emotional cues showed for500ms. The mean amplitude of N1was greater negative forthreatening cues than pleasant cues with the most significant effect in the fronto-central region, indicating a processing bias for threat related to the early attention processing. Thetheta synchronization was stronger for threatening cues than pleasant cues with significanteffect in posterior regions, suggesting that the posterior theta synchronization reflects theevaluation of emotional significance of stimuli. Taken together, these results indicate thatattention is more oriented toward threatening information and ERP and ERO analysesprovide some independent insights into the attentional bias for threatening emotion.
     (3) The hemodynamic and electrophysiological responses in a color-word matchingStroop task were simultaneously measured by combining NIRS and ERP to study theneural correlates of executive control. There were gender differences in the Stroop effectsof response time (Stroop_RT) and late positive complex (Stroop_LPC). The Stroop_LPCwas only significant in females. The results show that LPC is associated with additionalprocessing of word meaning, and females conduct more elaborate semantic processingwhich might contribute to their larger Stroop_RT. The significant N450Stroop effectoccurred before the behavioral response to incongruent stimuli, and it was negativelycorrelated with the oxy-hemoglobin (HbO2) Stroop effect. More specifically, the HbO2Stroop effect in the left prefrontal cortex (PFC) was negatively correlated with the N450Stroop effect during the early phase (440-580ms), while the HbO2Stroop effect in thebilateral PFC was negatively correlated with the N450Stroop effect during the later phase(600-680ms). The results indicate that:(1) there are two stages in N450: conflict detectionand resolution;(2) left PFC may be involved in conflict detection and bilateral PFC isengaged in conflict resolution.
     This study provides insights into the neural correlates of attention orienting andexecutive control, and gives practical guidance for studying the abnormal attention ofdiseases.
引文
[1] Attwell, D., Buchan, A. M., Charpak, S., Lauritzen, M., et al. Glial and neuronalcontrol of brain blood flow. Nature.2010,468(7321):232-243.
    [2] Jakovcevic, D., Harder, D. R. Role of astrocytes in matching blood flow to neuronalactivity. Curr Top Dev Biol.2007,79:75-97.
    [3] Buxton, R. B., Frank, L. R. A model for the coupling between cerebral blood flowand oxygen metabolism during neural stimulation. J Cereb Blood Flow Metab.1997,17(1):64-72.
    [4] Fox, P. T., Raichle, M. E. Focal physiological uncoupling of cerebral blood flow andoxidative metabolism during somatosensory stimulation in human subjects. ProcNatl Acad Sci U S A.1986,83(4):1140-1144.
    [5] Malonek, D., Grinvald, A. Interactions between electrical activity and corticalmicrocirculation revealed by imaging spectroscopy: implications for functional brainmapping. Science.1996,272(5261):551.
    [6] Mouraux, A., Iannetti, G. D. Across-trial averaging of event-related EEG responsesand beyond. Magn Reson Imaging.2008,26(7):1041-1054.
    [7] Nunez, P. L., Srinivasan, R. Electric fields of the brain: the neurophysics of EEG.(2th edition). New York: Oxford University Press,2005.
    [8] Heimer, L. The Human Brain and Spinal Cord: Functional Neuroanatomy andDissection Guide.(2nd edition). New York: Springer,1995.
    [9] Jasper, H. H. The ten twenty electrode system of the international federation.Electroencephalogr Clin Neurophysiol.1958,10:371-375.
    [10]刘树伟,尹岭,唐一源.功能神经影像学.济南:山东科学技术出版社,2011.
    [11]包尚联.脑功能成像物理学.郑州:郑州大学出版社,2006.
    [12] J bsis, F. F. Noninvasive, infrared monitoring of cerebral and myocardial oxygensufficiency and circulatory parameters. Science.1977,198(4323):1264.
    [13] Villringer, A., Chance, B. Non-invasive optical spectroscopy and imaging of humanbrain function. Trends Neurosci.1997,20(10):435-442.
    [14] Ferrari, M., Mottola, L., Quaresima, V. Principles, techniques, and limitations ofnear infrared spectroscopy. Can J Appl Physiol.2004,29(4):463-487.
    [15] Woodard, H. Q., White, D. R. The composition of body tissues. Br J Radiol.1986,59(708):1209-1218.
    [16] Hale, G. M., Querry, M. R. Optical Constants of Water in the200-nm to200-micromWavelength Region. Appl Opt.1973,12(3):555-563.
    [17] van Veen, R. L., Sterenborg, H., Pifferi, A., Torricelli, A., et al. Determination ofVIS-NIR absorption coefficients of mammalian fat, with time-and spatially resolveddiffuse reflectance and transmission spectroscopy. in: Biomedical Topical Meeting:Optical Society of America,2004.
    [18] Toronov, V., Webb, A., Choi, J. H., Wolf, M., et al. Investigation of human brainhemodynamics by simultaneous near-infrared spectroscopy and functional magneticresonance imaging. Med Phys.2001,28(4):521-527.
    [19] Maki, A., Yamashita, Y., Watanabe, E., Koizumi, H. Visualizing human motoractivity by using non-invasive optical topography. Front Med Biol Eng.1996,7(4):285-297.
    [20] Obrig, H., Hirth, C., Junge-Hulsing, J. G., Doge, C., et al. Cerebral oxygenationchanges in response to motor stimulation. J Appl Physiol.1996,81(3):1174-1183.
    [21] Obrig, H., Wenzel, R. u., Kohl, M., Horst, S., et al. Near-infrared spectroscopy: doesit function in functional activation studies of the adult brain? Int J Psychophysiol.2000,35(2-3):125-142.
    [22]罗跃嘉,魏景汉.注意的认知神经科学研究.北京:高等教育出版社,2004.
    [23] Posner, M. I., Boies, S. J. Components of attention. Psychol Rev.1971,78(5):391.
    [24] Raz, A., Buhle, J. Typologies of attentional networks. Nat Rev Neurosci.2006,7(5):367-379.
    [25] Posner, M. I., Snyder, C. R., Davidson, B. J. Attention and the detection of signals. JExp Psychol.1980,109(2):160-174.
    [26] O'Connor, D. H., Fukui, M. M., Pinsk, M. A., Kastner, S. Attention modulatesresponses in the human lateral geniculate nucleus. Nat Neurosci.2002,5(11):1203-1209.
    [27] Nobre, A. C., Sebestyen, G., Gitelman, D., Mesulam, M., et al. Functionallocalization of the system for visuospatial attention using positron emissiontomography. Brain.1997,120(3):515-533.
    [28] Foxe, J. J., Snyder, A. C. The role of alpha-band brain oscillations as a sensorysuppression mechanism during selective attention. Front Psychol.2011,2:154.
    [29] Rihs, T. A., Michel, C. M., Thut, G. A bias for posterior alpha-band powersuppression versus enhancement during shifting versus maintenance of spatialattention. Neuroimage.2009,44(1):190-199.
    [30] Martinez, A., Anllo-Vento, L., Sereno, M. I., Frank, L. R., et al. Involvement ofstriate and extrastriate visual cortical areas in spatial attention. Nat Neurosci.1999,2(4):364-369.
    [31] Fu, S. M., Zinni, M., Squire, P. N., Kumar, R., et al. When and where perceptualload interacts with voluntary visuospatial attention: An event-related potential anddipole modeling study. Neuroimage.2008,39(3):1345-1355.
    [32] Di Russo, F., Martinez, A., Hillyard, S. A. Source analysis of event-related corticalactivity during visuo-spatial attention. Cereb Cortex.2003,13(5):486-499.
    [33] Eimer, M."Sensory gating" as a mechanism for visuospatial orienting:electrophysiological evidence from trial-by-trial cuing experiments. PerceptPsychophys.1994,55(6):667-675.
    [34] Hillyard, S. A., Anllo-Vento, L. Event-related brain potentials in the study of visualselective attention. Proc Natl Acad Sci U S A.1998,95(3):781-787.
    [35] Clark, V. P., Hillyard, S. A. Spatial selective attention affects early extrastriate butnot striate components of the visual evoked potential. J Cogn Neurosci.1996,8(5):387-402.
    [36] Pourtois, G., Grandjean, D., Sander, D., Vuilleumier, P. Electrophysiologicalcorrelates of rapid spatial orienting towards fearful faces. Cereb Cortex.2004,14(6):619-633.
    [37] MacDonald, A. W., Cohen, J. D., Stenger, V. A., Carter, C. S. Dissociating the role ofthe dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science.2000,288(5472):1835-1838.
    [38] Schroeter, M. L., Zysset, S., Kupka, T., Kruggel, F., et al. Near-infrared spectroscopycan detect brain activity during a color-word matching Stroop task in anevent-related design. Hum Brain Mapp.2002,17(1):61-71.
    [39] Botvinick, M. M., Cohen, J. D., Carter, C. S. Conflict monitoring and anteriorcingulate cortex: an update. Trends Cogn Sci.2004,8(12):539-546.
    [40] Kerns, J. G., Cohen, J. D., MacDonald, A. W.,3rd, Cho, R. Y., et al. Anteriorcingulate conflict monitoring and adjustments in control. Science.2004,303(5660):1023-1026.
    [41] Mansouri, F. A., Tanaka, K., Buckley, M. J. Conflict-induced behavioural adjustment:a clue to the executive functions of the prefrontal cortex. Nat Rev Neurosci.2009,10(2):141-152.
    [42] Stuss, D. T., Knight, R. T. Principles of Frontal Lobe Function.(2nd edition). NewYork: Oxford University Press,2002.
    [43] Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., et al. Conflictmonitoring and cognitive control. Psychol Rev.2001,108(3):624-652.
    [44] Liotti, M., Woldorff, M. G., Perez, R., Mayberg, H. S. An ERP study of the temporalcourse of the Stroop color-word interference effect. Neuropsychologia.2000,38(5):701-711.
    [45] Appelbaum, L. G., Meyerhoff, K. L., Woldorff, M. G. Priming and backwardinfluences in the human brain: processing interactions during the stroop interferenceeffect. Cereb Cortex.2009,19(11):2508-2521.
    [46] Coderre, E., Conklin, K., van Heuven, W. J. Electrophysiological measures ofconflict detection and resolution in the Stroop task. Brain Res.2011,1413:51-59.
    [47] West, R. Neural correlates of cognitive control and conflict detection in the Stroopand digit-location tasks. Neuropsychologia.2003,41(8):1122-1135.
    [48] Hanslmayr, S., Pastotter, B., Bauml, K. H., Gruber, S., et al. Theelectrophysiological dynamics of interference during the Stroop task. J CognNeurosci.2008,20(2):215-225.
    [49] Forster, S. E., Carter, C. S., Cohen, J. D., Cho, R. Y. Parametric manipulation of theconflict signal and control-state adaptation. J Cogn Neurosci.2011,23(4):923-935.
    [50] Tillman, C. M., Wiens, S. Behavioral and ERP indices of response conflict in Stroopand flanker tasks. Psychophysiology.2011,48(10):1405-1411.
    [51] Yeung, N., Botvinick, M. M., Cohen, J. D. The neural basis of error detection:conflict monitoring and the error-related negativity. Psychol Rev.2004,111(4):931-959.
    [52] Di Russo, F., Stella, A., Spitoni, G., Strappini, F., et al. Spatiotemporal brainmapping of spatial attention effects on pattern-reversal ERPs. Hum Brain Mapp.2012,33(6):1334-1351.
    [53] Vazquez Marrufo, M., Vaquero, E., Cardoso, M. J., Gomez, C. M. Temporalevolution of alpha and beta bands during visual spatial attention. Brain Res CognBrain Res.2001,12(2):315-320.
    [54] Kelly, S. P., Lalor, E. C., Reilly, R. B., Foxe, J. J. Increases in alpha oscillatorypower reflect an active retinotopic mechanism for distracter suppression duringsustained visuospatial attention. J Neurophysiol.2006,95(6):3844-3851.
    [55] Qiu, J., Luo, Y., Wang, Q., Zhang, F., et al. Brain mechanism of Stroop interferenceeffect in Chinese characters. Brain Res.2006,1072(1):186-193.
    [56] Zysset, S., Muller, K., Lohmann, G., von Cramon, D. Y. Color-word matching strooptask: Separating interference and response conflict. Neuroimage.2001,13(1):29-36.
    [57]寿天德.视觉信息处理的脑机制.(第二版).合肥:中国科学技术大学出版社,2010.
    [58] Pessoa, L., Adolphs, R. Emotion processing and the amygdala: from a 'low road' to'many roads' of evaluating biological significance. Nat Rev Neurosci.2010,11(11):773-783.
    [59] Mangun, G. R., Hillyard, S. A. Modulations of sensory-evoked brain potentialsindicate changes in perceptual processing during visual-spatial priming. J ExpPsychol Hum Percept Perform.1991,17(4):1057-1074.
    [60] Pfurtscheller, G., da Silva, F. H. L. Event-related EEG/MEG synchronization anddesynchronization: basic principles. Clin Neurophysiol.1999,110(11):1842-1857.
    [61] Makeig, S., Debener, S., Onton, J., Delorme, A. Mining event-related braindynamics. Trends Cogn Sci.2004,8(5):204-210.
    [62] Tallon-Baudry, C., Bertrand, O. Oscillatory gamma activity in humans and its role inobject representation. Trends Cogn Sci.1999,3(4):151-162.
    [63] Sauseng, P., Klimesch, W., Stadler, W., Schabus, M., et al. A shift of visual spatialattention is selectively associated with human EEG alpha activity. Eur J Neurosci.2005,22(11):2917-2926.
    [64] Thut, G., Nietzel, A., Brandt, S. A., Pascual-Leone, A. Alpha-bandelectroencephalographic activity over occipital cortex indexes visuospatial attentionbias and predicts visual target detection. J Neurosci.2006,26(37):9494-9502.
    [65] Rihs, T. A., Michel, C. M., Thut, G. Mechanisms of selective inhibition in visualspatial attention are indexed by alpha-band EEG synchronization. Eur J Neurosci.2007,25(2):603-610.
    [66] Hillyard, S. A., Vogel, E. K., Luck, S. J. Sensory gain control (amplification) as amechanism of selective attention: electrophysiological and neuroimaging evidence.Philos Trans R Soc Lond B Biol Sci.1998,353(1373):1257-1270.
    [67] Freunberger, R., Holler, Y., Griesmayr, B., Gruber, W., et al. Functional similaritiesbetween the P1component and alpha oscillations. Eur J Neurosci.2008,27(9):2330-2340.
    [68] Fu, S., Greenwood, P. M., Parasuraman, R. Brain mechanisms of involuntaryvisuospatial attention: an event-related potential study. Hum Brain Mapp.2005,25(4):378-390.
    [69] Fu, S., Huang, Y., Luo, Y., Wang, Y., et al. Perceptual load interacts with involuntaryattention at early processing stages: Event-related potential studies. Neuroimage.2009,48(1):191-199.
    [70] Semlitsch, H. V., Anderer, P., Schuster, P., Presslich, O. A solution for reliable andvalid reduction of ocular artifacts, applied to the P300ERP. Psychophysiology.1986,23(6):695-703.
    [71] Fu, S., Caggiano, D. M., Greenwood, P. M., Parasuraman, R. Event-relatedpotentials reveal dissociable mechanisms for orienting and focusing visuospatialattention. Brain Res Cogn Brain Res.2005,23(2-3):341-353.
    [72] Chica, A. B., Lupianez, J. Effects of endogenous and exogenous attention on visualprocessing: an Inhibition of Return study. Brain Res.2009,1278:75-85.
    [73] Kawasaki, M., Yamaguchi, Y. Effects of subjective preference of colors onattention-related occipital theta oscillations. Neuroimage.2012,59(1):808-814.
    [74] Motter, B. C. Focal attention produces spatially selective processing in visualcortical areas V1, V2, and V4in the presence of competing stimuli. J Neurophysiol.1993,70(3):909-919.
    [75] Brosch, T., Pourtois, G., Sander, D. The perception and categorisation of emotionalstimuli: A review. Cogn Emot.2010,24(3):377-400.
    [76] Ohman, A., Mineka, S. Fears, phobias, and preparedness: toward an evolved moduleof fear and fear learning. Psychol Rev.2001,108(3):483-522.
    [77] Schupp, H. T., Ohman, A., Junghofer, M., Weike, A. I., et al. The facilitatedprocessing of threatening faces: an ERP analysis. Emotion.2004,4(2):189-200.
    [78] Olofsson, J. K., Nordin, S., Sequeira, H., Polich, J. Affective picture processing: anintegrative review of ERP findings. Biol Psychol.2008,77(3):247-265.
    [79] Carretie, L., Albert, J., Lopez-Martin, S., Tapia, M. Negative brain: an integrativereview on the neural processes activated by unpleasant stimuli. Int J Psychophysiol.2009,71(1):57-63.
    [80] Carretie, L., Hinojosa, J. A., Martin-Loeches, M., Mercado, F., et al. Automaticattention to emotional stimuli: neural correlates. Hum Brain Mapp.2004,22(4):290-299.
    [81] Smith, N. K., Cacioppo, J. T., Larsen, J. T., Chartrand, T. L. May I have yourattention, please: Electrocortical responses to positive and negative stimuli.Neuropsychologia.2003,41(2):171-183.
    [82] Delplanque, S., Lavoie, M. E., Hot, P., Silvert, L., et al. Modulation of cognitiveprocessing by emotional valence studied through event-related potentials in humans.Neurosci Lett.2004,356(1):1-4.
    [83] Smith, D. P., Hillman, C. H., Duley, A. R. Influences of age on emotional reactivityduring picture processing. J Gerontol B Psychol Sci Soc Sci.2005,60(1): P49-P56.
    [84] Huang, Y. X., Luo, Y. J. Temporal course of emotional negativity bias: an ERP study.Neurosci Lett.2006,398(1-2):91-96.
    [85] Carretie, L., Mercado, F., Tapia, M., Hinojosa, J. A. Emotion, attention, and the'negativity bias', studied through event-related potentials. Int J Psychophysiol.2001,41(1):75-85.
    [86] Delplanque, S., Silvert, L., Hot, P., Rigoulot, S., et al. Arousal and valence effects onevent-related P3a and P3b during emotional categorization. Int J Psychophysiol.2006,60(3):315-322.
    [87] Feldmann-Wustefeld, T., Schmidt-Daffy, M., Schubo, A. Neural evidence for thethreat detection advantage: differential attention allocation to angry and happy faces.Psychophysiology.2011,48(5):697-707.
    [88] Ito, T. A., Larsen, J. T., Smith, N. K., Cacioppo, J. T. Negative information weighsmore heavily on the brain: the negativity bias in evaluative categorizations. J PersSoc Psychol.1998,75(4):887-900.
    [89] Schupp, H. T., Cuthbert, B. N., Bradley, M. M., Cacioppo, J. T., et al. Affectivepicture processing: The late positive potential is modulated by motivationalrelevance. Psychophysiology.2000,37:257-261.
    [90] Schupp, H. T., Junghofer, M., Weike, A. I., Hamm, A. O. The selective processing ofbriefly presented affective pictures: an ERP analysis. Psychophysiology.2004,41(3):441-449.
    [91] Franken, I. H. A., Muris, P., Nijs, I., van Strien, J. W. Processing of pleasantinformation can be as fast and strong as unpleasant information: implications for thenegativity bias. Neth J Psychol.2008,64(4):168-176.
    [92]黄宇霞,罗跃嘉.负性情绪刺激是否总是优先得到加工: ERP研究.心理学报.2009,41(9):822-831.
    [93] Fox, E., Lester, V., Russo, R., Bowles, R. J., et al. Facial expressions of emotion: areangry faces detected more efficiently? Cogn Emot.2000,14(1):61-92.
    [94] Ohman, A., Lundqvist, D., Esteves, F. The face in the crowd revisited: a threatadvantage with schematic stimuli. J Pers Soc Psychol.2001,80(3):381-396.
    [95] Mogg, K., Bradley, B. P. Orienting of attention to threatening facial expressionspresented under conditions of restricted awareness. Cogn Emot.1999,13(6):713-740.
    [96] Bar-Haim, Y., Lamy, D., Pergamin, L., Bakermans-Kranenburg, M. J., et al.Threat-related attentional bias in anxious and nonanxious individuals: Ameta-analytic study. Psychol Bull.2007,133(1):1-24.
    [97] Santesso, D. L., Meuret, A. E., Hofmann, S. G., Mueller, E. M., et al.Electrophysiological correlates of spatial orienting towards angry faces: a sourcelocalization study. Neuropsychologia.2008,46(5):1338-1348.
    [98] Eldar, S., Yankelevitch, R., Lamy, D., Bar-Haim, Y. Enhanced neural reactivity andselective attention to threat in anxiety. Biol Psychol.2010,85(2):252-257.
    [99] Cooper, R. M., Langton, S. R. H. Attentional bias to angry faces using the dot-probetask? It depends when you look for it. Behav Res Ther.2006,44(9):1321-1329.
    [100] Mueller, E. M., Hofmann, S. G., Santesso, D. L., Meuret, A. E., et al.Electrophysiological evidence of attentional biases in social anxiety disorder.Psychol Med.2009,39(7):1141-1152.
    [101] Knyazev, G. G. Motivation, emotion, and their inhibitory control mirrored in brainoscillations. Neurosci Biobehav Rev.2007,31(3):377-395.
    [102] Mitchell, D. J., McNaughton, N., Flanagan, D., Kirk, I. J. Frontal-midline theta fromthe perspective of hippocampal "theta". Prog Neurobiol.2008,86(3):156-185.
    [103] Aftanas, L. I., Varlamov, A. A., Pavlov, S. V., Makhnev, V. P., et al. Affective pictureprocessing: event-related synchronization within individually defined human thetaband is modulated by valence dimension. Neurosci Lett.2001,303(2):115-118.
    [104] Aftanas, L. I., Reva, N. V., Varlamov, A. A., Pavlov, S. V., et al. Analysis of evokedEEG synchronization and desynchronization in conditions of emotional activation inhumans: temporal and topographic characteristics. Neurosci Behav Physiol.2004,34(8):859-867.
    [105] Balconi, M., Pozzoli, U. Arousal effect on emotional face comprehension: frequencyband changes in different time intervals. Physiol Behav.2009,97(3-4):455-462.
    [106] Knyazev, G. G., Slobodskoj-Plusnin, J. Y., Bocharov, A. V. Event-Related Delta andTheta Synchronization during Explicit and Implicit Emotion Processing.Neuroscience.2009,164(4):1588-1600.
    [107] Balconi, M., Lucchiari, C. EEG correlates (event-related desynchronization) ofemotional face elaboration: A temporal analysis. Neurosci Lett.2006,392(1-2):118-123.
    [108] Balconi, M., Brambilla, E., Falbo, L. Appetitive vs. defensive responses toemotional cues. Autonomic measures and brain oscillation modulation. Brain Res.2009,1296:72-84.
    [109] Aftanas, L., Varlamov, A., Pavlov, S., Makhnev, V., et al. Event-relatedsynchronization and desynchronization during affective processing: emergence ofvalence-related time-dependent hemispheric asymmetries in theta and upper alphaband. Int J Neurosci.2001,110(3-4):197-219.
    [110] Aftanas, L. I., Pavlov, S. V., Reva, N. V., Varlamov, A. A. Trait anxiety impact on theEEG theta band power changes during appraisal of threatening and pleasant visualstimuli. Int J Psychophysiol.2003,50(3):205-212.
    [111] De Cesarei, A., Codispoti, M. Affective modulation of the LPP and alpha-ERDduring picture viewing. Psychophysiology.2011,48(10):1397-1404.
    [112] Yuan, J., Luo, Y., Yan, J. H., Meng, X., et al. Neural correlates of the females'susceptibility to negative emotions: an insight into gender-related prevalence ofaffective disturbances. Hum Brain Mapp.2009,30(11):3676-3686.
    [113] Bai L, Ma H, Huang YX. The development of native Chinese affective picturesystem-A pretest in46college students. Chin Mental Health.2005,19:719-722.
    [114] Koster, E. H., Crombez, G., Verschuere, B., Van Damme, S., et al. Components ofattentional bias to threat in high trait anxiety: Facilitated engagement, impaireddisengagement, and attentional avoidance. Behav Res Ther.2006,44(12):1757-1771.
    [115] Delorme, A., Makeig, S. EEGLAB: an open source toolbox for analysis ofsingle-trial EEG dynamics including independent component analysis. J NeurosciMethods.2004,134(1):9-21.
    [116] Kawasaki, H., Kaufman, O., Damasio, H., Damasio, A. R., et al. Single-neuronresponses to emotional visual stimuli recorded in human ventral prefrontal cortex.Nat Neurosci.2001,4(1):15-16.
    [117] Carretie, L., Hinojosa, J. A., Albert, J., Mercado, F. Neural response to sustainedaffective visual stimulation using an indirect task. Exp Brain Res.2006,174(4):630-637.
    [118] Pessoa, L. Emotion and cognition and the amygdala: From "what is it?" to "what's tobe done?" Neuropsychologia.2011,49(4):681-694.
    [119] Basar, E., Schurmann, M., Sakowitz, O. The selectively distributed theta system:functions. Int J Psychophysiol.2001,39(2-3):197-212.
    [120] Aftanas, L. I., Varlamov, A. A., Pavlov, S. V., Makhnev, V. P., et al. Time-dependentcortical asymmetries induced by emotional arousal: EEG analysis of event-relatedsynchronization and desynchronization in individually defined frequency bands. IntJ Psychophysiol.2002,44(1):67-82.
    [121] Kropotov, J. Quantitative EEG, event-related potentials and neurotherapy.Amsterdam: Academic Press,2009.
    [122] Deiber, M. P., Missonnier, P., Bertrand, O., Gold, G., et al. Distinction betweenperceptual and attentional processing in working memory tasks: A study ofphase-locked and induced oscillatory brain dynamics. J Cogn Neurosci.2007,19(1):158-172.
    [123] Basar, E., Basar-Eroglu, C., Karakas, S., Schurmann, M. Oscillatory brain theory: anew trend in neuroscience. IEEE Eng Med Biol Mag.1999,18(3):56-66.
    [124] Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memoryperformance: a review and analysis. Brain Res Brain Res Rev.1999,29(2-3):169-195.
    [125] Balconi, M., Pozzoli, U. Event-related oscillations (EROs) and event-relatedpotentials (ERPs) comparison in facial expression recognition. J Neuropsychol.2007,1(Pt2):283-294.
    [126] Gothard, K. M., Battaglia, F. P., Erickson, C. A., Spitler, K. M., et al. Neuralresponses to facial expression and face identity in the monkey amygdala. JNeurophysiol.2007,97(2):1671-1683.
    [127] Pourtois, G., Spinelli, L., Seeck, M., Vuilleumier, P. Temporal precedence ofemotion over attention modulations in the lateral amygdala: Intracranial ERPevidence from a patient with temporal lobe epilepsy. Cogn Affect Behav Neurosci.2010,10(1):83-93.
    [128] Peckham, A. D., McHugh, R. K., Otto, M. W. A meta-analysis of the magnitude ofbiased attention in depression. Depress Anxiety.2010,27(12):1135-1142.
    [129] Brosch, T., Pourtois, G., Sander, D., Vuilleumier, P. Additive effects of emotional,endogenous, and exogenous attention: Behavioral and electrophysiological evidence.Neuropsychologia.2011,49(7):1779-1787.
    [130] Stroop, J. R. Studies of interference in serial verbal reactions. J Exp Psychol.1935,18:643-662.
    [131] Luo, C. R. Semantic competition as the basis of Stroop interference: Evidence fromcolor-word matching tasks. Psychol Sci.1999,10(1):35-40.
    [132] Goldfarb, L., Henik, A. New data analysis of the stroop matching task calls for areevaluation of theory. Psychol Sci.2006,17(2):96-100.
    [133] Zhai, J., Li, T., Zhang, Z., Gong, H. Hemodynamic and electrophysiological signalsof conflict processing in the Chinese-character Stroop task: a simultaneousnear-infrared spectroscopy and event-related potential study. J Biomed Opt.2009,14(5):054022.
    [134] Holmes, A. J., Pizzagalli, D. A. Response conflict and frontocingulate dysfunction inunmedicated participants with major depression. Neuropsychologia.2008,46(12):2904-2913.
    [135] Pompei, F., Dima, D., Rubia, K., Kumari, V., et al. Dissociable functionalconnectivity changes during the Stroop task relating to risk, resilience and diseaseexpression in bipolar disorder. Neuroimage.2011,57(2):576-582.
    [136] Jourdan Moser, S., Cutini, S., Weber, P., Schroeter, M. L. Right prefrontal brainactivation due to Stroop interference is altered in attention-deficit hyperactivitydisorder-A functional near-infrared spectroscopy study. Psychiatry Res.2009,173(3):190-195.
    [137] Harrison, B. J., Yucel, M., Shaw, M., Brewer, W. J., et al. Dysfunction ofdorsolateral prefrontal cortex in antipsychotic-naive schizophreniform psychosis.Psychiatry Res.2006,148(1):23-31.
    [138] MacLeod, C. M. Half a century of research on the Stroop effect: an integrativereview. Psychol Bull.1991,109(2):163-203.
    [139] Milham, M. P., Banich, M. T., Claus, E. D., Cohen, N. J. Practice-related effectsdemonstrate complementary roles of anterior cingulate and prefrontal cortices inattentional control. Neuroimage.2003,18(2):483-493.
    [140] Norris, D. G., Zysset, S., Mildner, T., Wiggins, C. J. An investigation of the value ofspin-echo-based fMRI using a Stroop color-word matching task and EPI at3T.Neuroimage.2002,15(3):719-726.
    [141] Poser, B. A., Norris, D. G. Application of whole-brain CBV-weighted fMRI to acognitive stimulation paradigm: robust activation detection in a stroop taskexperiment using3D GRASE VASO. Hum Brain Mapp.2011,32(6):974-981.
    [142]Morishima, Y., Okuda, J., Sakai, K. Reactive mechanism of cognitive control system.Cereb Cortex.2010,20(11):2675-2683.
    [143] Mansouri, F. A., Buckley, M. J., Tanaka, K. Mnemonic function of the dorsolateralprefrontal cortex in conflict-induced behavioral adjustment. Science.2007,318(5852):987-990.
    [144] Sadeh, B., Podlipsky, I., Zhdanov, A., Yovel, G. Event-related potential andfunctional MRI measures of face-selectivity are highly correlated: a simultaneousERP-fMRI investigation. Hum Brain Mapp.2010,31(10):1490-1501.
    [145] Eichele, T., Specht, K., Moosmann, M., Jongsma, M. L., et al. Assessing thespatiotemporal evolution of neuronal activation with single-trial event-relatedpotentials and functional MRI. Proc Natl Acad Sci U S A.2005,102(49):17798-17803.
    [146] Gore, J. C., Horovitz, S. G., Cannistraci, C. J., Skudlarski, P. Integration of fMRI,NIROT and ERP for studies of human brain function. Magn Reson Imaging.2006,24(4):507-513.
    [147] Hoshi, Y. Functional near-infrared spectroscopy: current status and future prospects.J Biomed Opt.2007,12(6):062106.
    [148] Cahill, L. Why sex matters for neuroscience. Nat Rev Neurosci.2006,7(6):477-484.
    [149] Halpern, D. F. Sex differences in cognitive abilities.(3rd edition). Mahwah:Lawrence Erlbaum Associates Inc.,2000.
    [150] Li, T., Luo, Q., Gong, H. Gender-specific hemodynamics in prefrontal cortex duringa verbal working memory task by near-infrared spectroscopy. Behav Brain Res.2010,209(1):148-153.
    [151] Daniel, D. B., Pelotte, M., Lewis, J. Lack of sex differences on the StroopColor-Word Test across three age groups. Percept Mot Skills.2000,90(2):483-484.
    [152] Palmer, D. L., Folds-Bennett, T. Performance on two attention tasks as a function ofsex and competition. Percept Mot Skills.1998,86(2):363-370.
    [153] Mohammed, B. Gender differences in performance on the Stroop Test. Soc BehavPers.2006,34(3):309-318.
    [154] Van der Elst, W., Van Boxtel, M. P., Van Breukelen, G. J., Jolles, J. The Stroopcolor-word test: influence of age, sex, and education; and normative data for a largesample across the adult age range. Assessment.2006,13(1):62-79.
    [155] Laeng, B., Lag, T., Brennen, T. Reduced Stroop interference for opponent colorsmay be due to input factors: evidence from individual differences and a neuralnetwork simulation. J Exp Psychol Hum Percept Perform.2005,31(3):438-452.
    [156] Shen, X. Sex differences in perceptual processing: performance on the color-Kanjistroop task of visual stimuli. Int J Neurosci.2005,115(12):1631-1641.
    [157] Zhang, Z., Sun, B., Gong, H., Zhang, L., et al. A fast neuronal signal-sensitivecontinuous-wave near-infrared imaging system. Rev Sci Instrum.2012,83(9):094301.
    [158] Oostenveld, R., Praamstra, P. The five percent electrode system for high-resolutionEEG and ERP measurements. Clin Neurophysiol.2001,112(4):713-719.
    [159] Singh, A. K., Okamoto, M., Dan, H., Jurcak, V., et al. Spatial registration ofmultichannel multi-subject fNIRS data to MNI space without MRI. Neuroimage.2005,27(4):842-851.
    [160] Huppert, T. J., Diamond, S. G., Franceschini, M. A., Boas, D. A. HomER: a reviewof time-series analysis methods for near-infrared spectroscopy of the brain. Appl Opt.2009,48(10): D280-298.
    [161] Duncan, A., Meek, J. H., Clemence, M., Elwell, C. E., et al. Measurement of cranialoptical path length as a function of age using phase resolved near infraredspectroscopy. Pediatr Res.1996,39(5):889-894.
    [162] Jang, K. E., Tak, S., Jung, J., Jang, J., et al. Wavelet minimum description lengthdetrending for near-infrared spectroscopy. J Biomed Opt.2009,14(3):034004.
    [163] Strangman, G., Culver, J. P., Thompson, J. H., Boas, D. A. A quantitativecomparison of simultaneous BOLD fMRI and NIRS recordings during functionalbrain activation. Neuroimage.2002,17(2):719-731.
    [164] Herrmann, M. J., Woidich, E., Schreppel, T., Pauli, P., et al. Brain activation foralertness measured with functional near infrared spectroscopy (fNIRS).Psychophysiology.2008,45(3):480-486.
    [165] Abla, D., Okanoya, K. Statistical segmentation of tone sequences activates the leftinferior frontal cortex: a near-infrared spectroscopy study. Neuropsychologia.2008,46(11):2787-2795.
    [166] Obrig, H., Israel, H., Kohl-Bareis, M., Uludag, K., et al. Habituation of the visuallyevoked potential and its vascular response: implications for neurovascular couplingin the healthy adult. Neuroimage.2002,17(1):1-18.
    [167] Singh, A. K., Dan, I. Exploring the false discovery rate in multichannel NIRS.Neuroimage.2006,33(2):542-549.
    [168] Schroeter, M. L., Zysset, S., Kruggel, F., von Cramon, D. Y. Age dependency of thehemodynamic response as measured by functional near-infrared spectroscopy.Neuroimage.2003,19(3):555-564.
    [169] Yanagisawa, H., Dan, I., Tsuzuki, D., Kato, M., et al. Acute moderate exercise elicitsincreased dorsolateral prefrontal activation and improves cognitive performancewith Stroop test. Neuroimage.2010,50(4):1702-1710.
    [170] Caldas, A., Machado‐Pinheiro, W., Souza, L., Motta‐Ribeiro, G., et al. TheStroop matching task presents conflict at both the response and nonresponse levels:An event‐related potential and electromyography study. Psychophysiology.2012,49(9):1215-1224.
    [171] Wirth, M., Horn, H., Koenig, T., Stein, M., et al. Sex differences in semanticprocessing: event-related brain potentials distinguish between lower and higherorder semantic analysis during word reading. Cereb Cortex.2007,17(9):1987-1997.
    [172] Yuan, J., Xu, S., Li, C., Yang, J., et al. The enhanced processing of visual novelevents in females: ERP correlates from two modified three-stimulus oddball tasks.Brain Res.2012,1437:77-88.
    [173] Golden, C. J. Sex differences in performance on the Stroop Color and Word Test.Percept Mot Skills.1974.
    [174] Banich, M. T., Milham, M. P., Atchley, R., Cohen, N. J., et al. fMri studies of Strooptasks reveal unique roles of anterior and posterior brain systems in attentionalselection. J Cogn Neurosci.2000,12(6):988-1000.
    [175] Egner, T., Etkin, A., Gale, S., Hirsch, J. Dissociable neural systems resolve conflictfrom emotional versus nonemotional distracters. Cereb Cortex.2008,18(6):1475-1484.
    [176] Milham, M. P., Banich, M. T., Barad, V. Competition for priority in processingincreases prefrontal cortex's involvement in top-down control: an event-relatedfMRI study of the stroop task. Brain Res Cogn Brain Res.2003,17(2):212-222.
    [177] David, I. A., Volchan, E., Vila, J., Keil, A., et al. Stroop matching task: role offeature selection and temporal modulation. Exp Brain Res.2011,208(4):595-605.
    [178] Liu, X., Banich, M. T., Jacobson, B. L., Tanabe, J. L. Functional dissociation ofattentional selection within PFC: response and non-response related aspects ofattentional selection as ascertained by fMRI. Cereb Cortex.2006,16(6):827-834.
    [179] Barbas, H. Connections underlying the synthesis of cognition, memory, and emotionin primate prefrontal cortices. Brain Res Bull.2000,52(5):319-330.
    [180] Wu, C. Y., Ho, M. H., Chen, S. H. A meta-analysis of fMRI studies on Chineseorthographic, phonological, and semantic processing. Neuroimage.2012,63(1):381-391.
    [181] Swick, D. Dissociation between conflict detection and error monitoring in thehuman anterior cingulate cortex. Proc Natl Acad Sci U S A.2002,99(25):16354.
    [182] Banich, M. T., Milham, M. P., Atchley, R. A., Cohen, N. J., et al. Prefrontal regionsplay a predominant role in imposing an attentional 'set': evidence from fMIRI. BrainRes Cogn Brain Res.2000,10(1-2):1-9.
    [183] Egner, T., Hirsch, J. Cognitive control mechanisms resolve conflict through corticalamplification of task-relevant information. Nat Neurosci.2005,8(12):1784-1790.
    [184] Egner, T., Delano, M., Hirsch, J. Separate conflict-specific cognitive controlmechanisms in the human brain. Neuroimage.2007,35(2):940-948.
    [185] van Veen, V., Carter, C. S. Separating semantic conflict and response conflict in theStroop task: a functional MRI study. Neuroimage.2005,27(3):497-504.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700