用户名: 密码: 验证码:
弹光调制傅里叶变换光谱复原高速数据处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弹光调制傅里叶变换光谱技术是一种高速、宽光谱、高灵敏度的傅里叶变换光谱技术,其在宇宙探测、环境监测、生物医学、工业生产等瞬态光谱探测领域具有潜在的应用价值。弹光调制器作为弹光调制傅里叶变换光谱仪的核心技术和部件,其调制频率高、光程差呈非线性,使得弹光调制数据处理技术存在难题。因此,如何实现弹光调制干涉信号的高速采样和存储、准确计算弹光调制傅里叶变换干涉仪的瞬态最大光程差,以及如何快速准确地进行光谱复原、标定,成为弹光调制傅里叶变换光谱仪需要解决的重要科学问题。
     论文基于傅里叶变换光谱复原数据处理技术和弹光调制傅里叶变换干涉仪的工作机理,对弹光调制傅里叶变换光谱复原高速数据处理技术进行研究,开发了弹光调制傅里叶变换高速数据处理平台。
     首先,研究了傅里叶变换光谱复原数据处理技术。基于傅里叶变换光谱理论,分析了时问调制型傅里叶变换干涉仪的工作机理、光谱分辨率和采样方式;为了抑制频谱泄露、减小相位歪曲,对傅里叶变换干涉图的切趾、相位校正技术进行了研究,基于Forman法和Mertz法的相关特性,提出了对称化相位校正方法。该方法采用高分辨率的干涉图对相移频谱进行估计,在频域内完成复原光谱的相位校正。实验表明,该方法使得复原光谱保持了比较高的准确度,同时降低了算法复杂度。
     其次,以弹光调制傅里叶变换干涉仪的工作机理为立足点,建立了弹光调制器的动态模型,针对弹光调制干涉信号的高速、相位非线性特性,采用高速等时间方式实现了干涉信号采样;以激光为参考光源,通过激光干涉信号过零计数的方法实现了瞬态最大光程差的检测,完成了光谱复原和波长标定。
     再次,针对弹光调制干涉信号相位非线性特性,通过分析非均匀离散傅里叶变换算法、D-R算法和基于傅里叶变换矩阵的非均匀快速傅里叶变换算法,提出了加速的非均匀快速傅里叶变换算法。该算法通过核函数卷积运算对傅里叶系数进行估计,实现了均匀数据的插值。实验验证,该算法在合理选择高斯核函数和参数时,能快速准确地复原激光光谱和黑体光谱。
     最后,基于FPGA+DSP架构,设计了弹光调制高速数据处理平台。以高速ADS4245模数转换器和DDR3动态存储器实现了干涉信号的高速采集和存储,基于DSP实现了快数据处理算法,完成了光谱复原。为了验证该平台的性能,搭建了完整的光谱测试系统,以已知频谱的窄带激光和不同温度的红外黑体为辐射源对其光谱进行快速复原,验证了该系统的性能,达到了指标要求。
The technology of the photo-elastic modulation Fourier transform spectrometer (PEM-FTS) with high speed, wide spectrum and high sensitivity has potential application in the transient spectral detecting fields such as aerospace detection, environmental monitoring, biological medicine, industrial production and so on. As the core technology and unit the elasto-optical modulator has high modulation frequency and its modulated optical path difference is nonlinear,which result in the problem in the data processing technology of photo-elastic modulation.Wherefore, how to realize high-speed sampling and storage of elasto-optical modulation interference signal, to caculate accurately transient maximum optical path difference of elasto-optical modulation Fourier transform interferometer and how to make spectral reconstruction, calibration fast and accurate are the important science problems need to be solved.
     Based on the technology of spectral reconstruction data processing in the Fourier transform spectrometer and the principle of the photo-elastic modulation Fourier transform interferometer, the paper makes research to high speed data processing technology of PEM-FTS, develops the high-speed data processing platform of PEM-FTS.
     First, the study on the data processing technology in the Fourier transform spectral recovery is researched. Based on the Fourier transform spectral theory, the operating principle, the resolution and the sampling method in the time modulation Fourier transform spectrometer are analyzed; In order to suppression the spectral leakage, decrease the phase distort, the technology of truncation and phase correction are studied, and based on Forman and Mertz methods the interferogram symmetrization phase correction method is put forward. In the method the phase shift spectrum is estimated by the high resolution interferogram, and the phase-corrected technology of the rebuilt spectrum is realized in the frequency domain. It shows from experiment that the method decreased the complexity of the algorithm and has the comparativity high accuracy in rebuilt spectrum.
     Second, based on the principle of photo-elastic modulator Fourier transform interferometer, the dynamic model is built. In view of high speed and the nonlinearity of interference signal in the photo-elastic interferometer, the interference signal is high-speed sampled by the equal time intervals, and the transient maximum optial path difference is calculated by zero-crossing counting of laser's interference signal when the laser is used as reference source, to accomplish the spectral reconstruction and the wavelength calibration of rebuilt spectrum.
     Third, according to the phase nonlinearity of the photo-elastic modulator interference signal, the nonuniform discrete Fourier transform algorithm, the D-R algorithm and the nonuniform fast Fourier transform algorithm based on Fourier transform matrix are analyzed, the accelerated nonuniform fast Fourier transform algorithm is put forward. In the method the Fourier coefficient is estimated by convolution arithmetic of kernel function to realize the uniform data interpolation. It is verified that the algorithm can rebuild the laser spectrum and blackbody spectrum fast and accurately when choose Gaussian kernel function and set parameters reasonablely.
     Last, based on FPGA+DSP framework, it sets up an elasto-optical modulation high-speed data process platform. Using high speed ADS4245ADC and DDR3dynamic RAM to realize the high speed sampling and storage of interference signal, it realizes the data processing in the spectral reconstruction based on DSP. In order to verify the performance of the platform, the complete spectrum test system is set up, using the known narrow-band laser and infrared blackbody with different temperature as radiation source to rebuild their spectrum, and the expected result is obtained.
引文
[1]Wadsworth.W, Dybwad.J.P. Rugged high speed rotary imaging fourier transform spectrometer for industrial use[J]. SPIE,2002,4577:83-88.
    [2]Wadsworth.W. Dybwad.J.P. Ultra high speed chemical imaging spectrometer[J]. SPIE,1997,3082:148-194.
    [3]Simon. A, Gast J, Keens.A. Fourier spectrometer. US 5,309,217[P],1994.03.03.
    [4]Griffiths.P.R, Hirsche.B.L, Christopher.J.M. Ultra-rapid-scanning Fourier transform infrared spectrometry,Vibrational spectroscopy,1999.19,165-176.
    [5]Zheng.Malin Su. Weijian. Study on infrared imaging spectrometer with large aperture static interferometer[C].2009 international conference on optical instruments and technology. SPIE,2009,7506-9
    [6]Gao Zhan. Static fourier. transform spectrometer with spherical reflectors [J]. Applied Optics,2002,41(3):560-563.
    [7]田二明,张记龙,李晓等.激光告警系统中小型静态傅里叶变换光谱仪的研究[J].光谱学与光谱分析,2009,29(3):853-857.
    [8]余本国,王建中.基于非扫描式干涉仪的光谱探测研究[J].光学学报,2010,30(7):2001-2005.
    [9]刘智超,张记龙,王志斌等.静态傅里叶变换干涉具在大视场探测中的应用[J].光子学报,2009,38(11):2839-3843.
    [10]李晓,张记龙,薛尚峰等.基于马赫.泽德干涉具的激光光谱探测技术研究[J],光谱学与光谱分析,2009,29(1):62-65.
    [11]Li.Xiao, Zhang.Jilong, Tian.Er.ming, et al. Passive laser spectrum detection technology based on static interferometer[C],2008 international conference on optical instruments and technology:Optoelectronic measurement technology and applications, SPIE, 2008,7160:716011.1.
    [12]Lacan.A, Breon.F.M, Rosak.A, et al. A static Fourier transform spectrometer for atmospheric sounding:concept and experimental implementation[J]. Optics express, 2010,18(8):8311-8331.
    [13]Hebert.P.J, Cansot.E. a static Fourier transform spectroscopy breadboards for atmospheric chemistry and climate[C].2008 optical design and engineering Ⅲ, SPIE, 2008,7100:710019.1.
    [14]Komisarek.D, Reichard.K, Merdes.D. et al. High-performance nonscanning Fourier transform spectrometer that uses a wollaston prism array[J]. Applied optics,2004, 43(20):3983-3988.
    [15]Harvey.A.R, William.D, Holmes.F. Birefringent Fourier-transform imaging spectrometer [J]. Optics express,2004,12(22):53-68.
    [16]Craven.J, Kudenov.M.W, Stapelbroek.M.G, et al. Compact infrared hyperspectral imaging polarimeter[C]. Algorithms and technologies for multispectral hyperspectral and ultraspectral imagery XVI, SPIE,2010,7695:769509.1.
    [17]张跃国,张记龙,王志斌等.Wollaston棱镜阵列中子棱镜结构角误差分析[J].应用光学,2011,32(1):80.84.
    [18]Zhang.Chunmin, Jian.Xiaohua.Wide-spectrum reconstruction method for a birefringence interference imaging spectrometer[J]. optic letters,2010,35(3):366-368.
    [19]Gao Zhan, Oka.K, Ishigaki.T. Static Fourier transform spectrometer based on savart polariscope[C]. Imaging spectrometry VII, SPIE,2002,4480:198-203.
    [20]Zhang.Chunmin, Zhao.Baochang, Xiang.libin. Wide-field of view polarization interference imaging spectrometer [J]. Applied optics,2004,43(33):366-368.
    [21]Lu.Yanqing, du.Fang, Wu.YungHsun,et al. Liquid-crystal-based Fourier optical spectrum analyzer without moving parts[J], Jpn. J. Appl. Phys.,2005,44,(1 A):291-293.
    [22]Boer.G, Scharf.T, Da ndliker.R. Compact static Fourier transform spectrometer with a large field of view based on liquid.crystal technology [J]. Applied optics,2002, 14(71):1400-1407.
    [23]Chao.T.H, Lu.T.T. Compact liquid crystal waveguide based Fourier transform spectrometer for in-situ and remote gas and chemical sensing[C]. Optical pattern recognition XIX, SPIE,2008,6977:69770P.1.
    [24]Canit.J.C, Badoz.J. New design for a photoelastic modulator[J]. Appl. Opt.,1983,22(4), 592-594.
    [25]Wang.Baoliang, List.J. Basic optical properties of the photoelastic modulator part I: useful aperture and acceptance angle, Polarization science and remote sensing II, SPIE, 2005,5888,588811-1.
    [26]Buican.T.N, Carrieri.A.H. Ultra-high speed solid-state FTIR spectroscopy and applications for chemical defense[C]. Proceedings for the army science conference (24th),2004.12.
    [27]Buican.T.N. Real-time Fourier transform spectrometry for fluorescence imaging and flow cytometry[C]. Bio-imaging and two-dimensional spectroscopy, SPIE,1990,1205: 126-133.
    [28]Buican.T.N. Birefringence interferometers for ultra-high-speed FT spectrometry and hyperspectral imaging:I. Dynamic model of the resonant photoelastic modulator[J]. Vibrational spectroscopy,2006,42(1):51-58.
    [29]Buican.T.N. High retardation-amplitude photoelastic modulator. US 7,764,415B2[P]. 2010.7.27.
    [30]曾爱军,王向朝,董作人等.光弹调制器在偏振方向调制中的应用[J].中国激光,2005,32(8):1063-1067.
    [31]Hu.C.G, Sun.L.D, Li.Y.N, et al.. Retardation correction for photoelastic modulator-based multi-channel reflectance difference spectroscopy [J]. Opt. Soc.2008,25(6):1240.1245.
    [32]胡春光,孙立东,李艳宁等.光弹调制式反射差分光谱仪的理论分析[J].纳米技术与精密工程,2007,5(1):1-5.
    [33]胡淼,王太勇,乔志峰等.基于弹光调制的红外光谱吸收法在室内VOC检测中的研究[J].光谱学与光谱分析,2012,31(12):3232-3235.
    [34]陈友华,王召巴,王志斌等.弹光调制型成像光谱偏振仪中的高精度偏振信息探测研究[J].物理学报,2013,62(6):060702.1-8.
    [35]陈友华.遥测用多次反射式弹光调制傅里叶变换光谱技术研究[D].中北大学,2013.
    [36]王志斌,张瑞,赵冬娥等.光弹调制差频偏振测量及误差分析[J].光学精密工程,2013,21(4):876-883.
    [37]张瑞,王志斌,赵冬娥等.双光弹差频调制型偏振光谱测量技术[J].光电工程,2013,40(4):120-126.
    [38]吴瑾光主编.近代傅里叶变换红外光谱技术及应用[M].北京:科学文献出版社,1994:24-29
    [39]翁诗甫编著.傅里叶变换红外光谱仪[M].北京:化学工业出版社,2005:46.54.
    [40]Yang.H.S, Griffiths.P.R, Manning. C.J. Improved data processing by an application of brault's method to ultra-rapid-scan FTIR spectrometry[J]. Applied spectroscopy,2002, 56(10):1281-1288
    [41]杨晓许,周泗忠,相里斌.转镜式傅里叶变换光谱仪光程差非线性的拟合法补偿[J].光子学报,2005,34(11):1647-1649.
    [42]杨晓许,周泗忠,相里斌等.转镜式傅里叶变换光谱仪光程差非线性的研究[J].光子学报,2004,24(10):1388-1392.
    [43]Song.J.Y, Liu.Q.H, Kim.K, et al. High.resolution 3-D radar imaging through nonuniform fast Fourier transform (NUFFT)[J]. Commun Comput Phys,2006,1(1):176-191.
    [44]Sarty.G.E, Bennett. R, Cox.R.W. Direct reconstruction of non-Cartesian k-space data using a nonuniform fast Fourier transform[J], Magn Reson Med,2001,45(5):908-915.
    [45]Bronstein.M.M, Bronstein.A.M, Zibulevsky.M, et al. Reconstruction in diffraction ultrasound tomography using nonuniform FFT[J]. IEEE Trans Med Imag,2002,21(11): 1395-1401.
    [46]孟小红,郭良辉,张致付等.基于非均匀快速傅里叶变换的最小二乘反演地震数据重建[J].地球物理学报,2008,51(1):235.241.
    [47]Brouw.W.N. "Aperture synthesis"in methods in computational physics[J].1975, 14:131-175.
    [48]Jackson.J.I, Meyer. C.H, Nishimura.D.G. Section of a convolution function for Fourier inversion using gridding[J].IEEE transaction on medical imaging,1991,10(3):473-478.
    [49]O'Sullivan.J.D. A fast sinc function gridding algorithm for Fourier inversion in computer tomography[J]. IEEE transactions on medical imaging,1985, MI.4(4),200-207.
    [50]S.Hermann, T.Jan. The gridding method for image reconstruction by Fourier transformation[J]. IEEE Transaction on Medical imaging,1995,14(3):596.478.
    [51]Dutt.A, Rokhlin.V. Fast fourier transforms for noneequispaced data[J].SIAM J.SCI.Comput,1993,14(6):1363-1398.
    [52]Dutt.A, Rokhlin.V. Fast fourier transforms for noneequispaced data II [J]. Applied and computational harmonic analysis,1995,2:85-100.
    [53]Ware.A.F. Fast approximate Fourier transforms for irregularly spaced data[J]. SIAM REV, 1998,40(4):838-856.
    [54]liu.Q.H, Nguyen.N. An accurate algorithm for nonuniform fast Fourier transfoms (NUFFT's)[J]. IEEE microwave and guided wave letter,1998,8(l):18-20.
    [55]Nguyen.N. liu.Q.H.The regular Fourier matrices and nonuniform fast Fourier transfoms[J].SIAM J.SCI. Comput,1999,21(1):283-293.
    [56]liu.Q.H, Tang.X.Y. Iterative algorithm for nonuniform inverse fast Fourier transfom[J]. Electronic letters,1998,34(20):1913-1914.
    [57]liu.Q.H, Nguyen.N. Nonuniform fast Fourier transfom(NUFFT) algorithm and its application[J]. IEEE,1998,1782-1785.
    [58]Fourmont.K. Non. equispaced fast Fourier transforms with applications to tomography [J]. the journal of Fourier analysis and application,2003,9(5):431.449.
    [59]Beylkin.G. On the fast Fourier transform of functions with singularities [J]. Appl.Comp.Harm.Anal.,1995,2:363-381.
    [60]Fessler.J.A, Sutton.B.P. Nonuniform fast Fourier transforms using Max-Min interporation[J]. IEEE T.SP,2003,51(2):560-574.
    [61]Fessler.J.A. On NUFFT.based gridding for non-Cartesian MRI[J]. Journal of magnetic resonance,2007,188:191-195.
    [62]Greenguard.L, Lee.J.Y. Accelerating the nonuniform fast fourier transform[J]. SIAM.REVIEW,2004,46(3):443-454.
    [63]Lee.J.Y, Greenguard.L. The type 3 nonuniform FFT and its application[J]. Journal of computional physics,2005,206:1-5.
    [64]刘红霞,吕东辉.基于窗函数的NUFFT在衍射超声CT中的应用[J],微计算机信息,2004,20(8):82-84.
    [65]方杰,韦穗,霍修坤.超声衍射层析成像的高精度核卷积的差值重建算法[J].西安交通大学学报,2009,43(10):94-98.
    [66]甘露,魏平,李万春.一种计算非均匀傅里叶变换的新方法[J].现代雷达,2008,30(12):52-54.
    [67]薛会,张丽,刘以农.非标准快速傅里叶变换算法综述[J].CT理论与应用研究,2010,19(3):33-46.
    [68]Benz. A.O, Grigis. P.C, HungerbUhler.V. A broadband FFT spectrometer for radio and millimeter astronomy[J]. Astronomy & Astrophysics,2005,442:767-773.
    [69]Hotan.A.W. A new signal processing platform for radio astronomy[J]. A&A,2008, 485:615-622.
    [70]Pingree. P.J, Blavier.J.F.L, Bekker.D.L. An FPGA/SoC approach to on.board data processing enabling new mars science with smart payloads[J]. IEEEAC,2006,6:1232.
    [71]Werne. T.A, Bekker.D.L, Pingree.P.J, Real-time data processing for an advanced imaging system using the Xilinx Virtex-5 FPGA[J].IEEEAC,2009,1:1233.
    [72]Norton.C.D, Werne.T.A, Pingree.P.J. An evaluation of the Xilinx Virtex-4 FPGA for on-board processing in an advanced imaging system[J]. IEEEAC,3:1030.
    [73]Pingree. P.J, Scharenbroich.L.J, Werne. T.A. Implementing legacy.C algorithms in FPGA co-processors for performance accelerated smart payloads[J]. IEEEAC,2007,2:1230.
    [74]Stanko.S, Klein.B, Kerp.J. A field programmable gate array spectrometer for radio astronomy[J]. astronomy&Astrophysics,2008,2227.
    [75]Klein.B, Philipp.S.D, Kramer.I, Kasemann.C, et al.. The APEX digital fast Fourier transform spectrometer [J]. Astronomy&Astrophysics,2006,5415.06.
    [76]Klein.B, Kramer.I, Hochgurtel.S, et al.. The next generation of fast Fourier transform spectrometer[C].19th international symposium on space terahertz technology,2008, 28-30.
    [77]Kestur.S, Park.S, Irick.K.M, et al. Accelerating the nonuniform fast Fourier transform using FPGAs[C].18 IEEE annual international symposium on Field programmable custom computing machines,2010.
    [78]殷世民,相里斌,周锦松等.基于FPGA的干涉式成像光谱仪实时数据处理系统研究[J].红外与毫米波学报,2007,26(4):274-278.
    [79]董大明,方勇华,熊伟等.基于DSP和CPLD的实时光谱信息处理系统的设计[J].仪表技术与传感器,2007,(2):18-20.
    [80]林振辉,姚骑均,杨戟.用于射电天文频谱仪的进展[J].天文学进展,2008,26(2):175-182.
    [81]杨庆华.高光谱分辨率时间调制傅氏变换成像光谱技术研究[D].博士学位论文.西安:中国科学院西安光学精密机械研究所,2009.
    [82]张淳民.干涉成像光谱技术研究[D].博士学位论文.西安:中国科学院西安光学精密机械研究所,2000.
    [83]金锡哲.干涉成像光谱技术研究[D].博士学位论文.西安:中国科学院长春光学精密机械与物理研究所,2000.
    [84]刘慧志,张记龙,李晓等.基于FPGA的光谱探测实时数据处理系统研究[J].电光与控制,2010,17(8):78-82.
    [85]张敏娟,张记龙,王志斌等.单边干涉数据光谱复原的关键问题分析[J].压电与声光,2012,34(2):180-184.
    [86]李苏宁,朱日宏,李建欣,王琰.傅里叶干涉成像光谱技术中的重构方法[J].应用光学,2009,30(2):268-272
    [87]殷纯永.现在干涉测量技术[M].天津:天津大学出版社,1999.
    [88]Zhang.Z.L, Zheng.P, lin.Z. A Fourier transform visible spectrometer[J]. Mikrochimica Acta,1988,11,329-333.
    [89]Filler.A.S. Apodization and interpolation in Fourier.transform spectroscopy[J]. Journal of the optical society of America,1964,54(6):762.767.
    [90]Fan. S.F, Xu.X.C. Research on the apodizing function for FTS[J]. Mikrochim. Acta,1988, I,239-242.
    [91]Naylor.D.A, Tahic.M.K. Apodizing functions for Fourier transform spectroscopy[J].J. Opt.Soc. Am,2007,24(11):3644-3648.
    [92]张文娟,张兵等.干涉成像光谱仪切趾函数对复原光谱的影响分析[J].红外与毫米波学报,2008,27(3):227-240.
    [93]黄旻,相里斌等.空间调制型干涉光谱成像仪数据处理方法[J].光谱学与光谱分析,2010,30(3):855-858.
    [94]吕群波.干涉光谱成像数据处理技术[D].博士学位论文.西安:中国科学院西安光学精密机械研究所博士论文.2007.
    [95]胡广书.数字信号处理-理论、算法与实现[M].北京:清华大学出版社.2008.
    [96]郑君里,应启珩,杨为理.信号与系统(第二版)[M].北京:高等教育出版社.2008.
    [97]Forman.M.L, Steel.W.H, Vanasse.G.A. Correction of asymmetric interferograms obtained in Fourier spectroscopy[J]. Journal of the optical socity of Amercia,1966, 56(1):59.63.
    [98]Sakai.H, Vanasse.G.A, Forman.M.L.. Spectral recovery in Fourier spectroscopy[J]. Journal of the optical socity of Amercia,1967,58(1):84-89.
    [99]Mertz.L. Auxiliary computation for Fourier spectrometry[J]. Infrared physics,1967, 7(1):17-23.
    [100]Walmsley.D.A, Clark.T.A, Jennings.R.E. Correction of off-center sampled interferograms by a change of origin in the Fourier transform:the important effect of overlapping aliases[J]. Applied optics,1972,11 (5):1148-1151.
    [101]Englert.C.R, Harlander.J.M, Cardon.J.G. et al.. Correction of phase distortion in spatial heterodyne spectroscopy[J]. Applied optics,2004,43(36):6680-6687.
    [102]Learner.R.C.M, Thorne.A.P, Jones.I.W. Phase correction of emission line Fourier transform spectra[J]. J.Opt.Soc.Am,1995,12(10):2165-2171.
    [103]Rahmelow.K, Hubner.W. Phase correctionin Fourier transform spectroscopy: subsequent displacement correction and error limit[J]. Applied optics,1997, 36(26):6678-6686.
    [104]Michaelian. K.H. Signal average of photoacoustic FTIR data—computation of spectra from double-sided low resolution interferograms.Infrared Phys.,1987,27(5):287-296.
    [105]Michaelian.K.H. Interferogram symmetrization and multiplicative phase correction of rapid.scan and step-scan photocoustic FTIR data[J].Infrared Phys.,1989,29(1):87-100.
    [106]孙雅敏,殷德奎.基于Forman法对遥感干涉图像进行相位校正的改进[J].信号处理,2008,24(6):1048-1051.
    [107]Avishai.B.D, Agustin.I. Computation of a spectrum from a single-beam Fourier transform infrared interferogram[J]. Applied optics,2002,41(6):1181-1189.
    [108]张敏娟,张记龙,王志斌等.FTIR单边干涉图相位校正技术的研究与改进[J].光谱学与光谱分析,2012,32(5):1203-1208.
    [109]张维屏.机械振动.机械振动学[M].北京:冶金工业出版社,1983.
    [110]胡寿松.自动控制原理.(第5版)[M].北京:科学出版社,2012.
    [111]Buican.T.N. Birefringence interferometers for ultra.high.speed FT spectrometry and hyper spectral imaging.Dynamic model of theresonant photoelastic modulator[J]. Vibrational Spectroscopy,2006,42(1):51-58.
    [112]王艳超,王志斌,张记龙等.大光程差弹光调制干涉仪的温度补偿策略及实现[J]光谱学与光谱分析,2013,33(5):1429-1432.
    [113]魏海潮,王志斌,李晓等.弹光调制干涉具热动态模型及频率漂移的研究[J].激光技术,2013,37(3):390-393.
    [114]IT1715. http://www.alldatasheet.com.
    [115]DSP嵌入式系统开发典型案例.非均匀采样理论及其实现http://www.farsight.com.cn.
    [116]汪安民,陈良福.非均匀采样信号的频谱分析及信号处理系统[J].电子技术与应用,2006,(11):118-120.
    [117]李庆扬,王能超,易大义.数值分析[M].北京:清华大学出版社,2002.
    [118]Sarty.G,Bennett.R, Cox.R. Direct reconstruction of non-Cartesian k-space data using a non.uniform fastFourier transform[J]. Magn. Reson. Med.2001,45:908-915.
    [119]景宁.基于弹光效应的高速红外光谱获取方法[D].硕士学位论文.太原:中北大学,2012.
    [120]张敏娟,王召巴,王志斌等.PEM-FTS非线性干涉信号的快速光谱反演算法[J].中 国激光,2013,40(5):0515001:1-6.
    [121]ADS4245. http://www.alldatasheet.com.
    [122]霍华德·约翰逊.高速数字设计[M].北京:电子工业出版社,2012.
    [123]田广锟,范如东.高速电路PCB设计与EMC技术分析[M].北京:电子工业出版社,2011.
    [124]于博士.http://www.sig007.com/.
    [125]顾菁.干涉成像光谱技术研究[D].硕士学位论文.南京:南京理工大学.2006.
    [126]薛彬.CE.1干涉成像光谱仪信息处理及应用研究[D].硕士学位论文.西安:中国科学院西安光学精密机械研究所.2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700