用户名: 密码: 验证码:
一种海洋的弧菌胞外多糖A101的抗生物膜作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人们一直认为细菌是以单细胞形式存在,传统的抗菌药物研发也是以浮游细菌为靶点。然而近年来,研究发现自然界和宿主体内的细菌绝大多数以生物膜(biofilm)形式存在。生物膜是由细菌和其分泌的胞外基质在物体表面形成的高度组织化的多细胞结构,是细菌产生抗生素耐药和逃避机体免疫系统攻击的主要原因。细菌生物膜无处不在,在很多方面给人类生活带来严重的影响,如细菌的耐药性、生物腐蚀、食品污染等,已成为全球关注的重大科学难题。根据美国健康研究院的调查公告,80%以上的细菌性感染与生物膜有关。因此,细菌生物膜的防治已成为目前医药、材料等多领域研究与开发的前沿和热点。
     本论文旨在从海洋微生物中筛选能够抑制生物膜形成和/或破坏已形成的生物膜的活性物质,并探讨其结构特征、作用机制以及在生物膜防治方面的应用前景。
     以铜绿假单胞菌FRD1为试验菌株,用微量离心管生物膜体外模型筛选,发现一株来自海洋的弧菌QY101,其发酵液可以抑制FRD1的生物膜形成,并在一定浓度范围内具有量效关系。进一步试验表明,QY101发酵液中的活性成分与核酸、蛋白类物质无关,而与糖类物质有关。
     经过丙酮沉淀、透析、离子交换等方法分级纯化后,从QY101发酵液中得到了一种多糖,命名为A101。气相色谱分析结果表明,弧菌胞外多糖A101至少含有4种单糖残基,从光散射结果计算得出该多糖重均分子量约为1000 kD,红外光谱结果显示A101含有硫酸基,乙酰基,氨基等多种活性基团,其溶液有胶体性质并对波长为220nm的紫外光有强烈吸收。该多糖具有广谱的抗生物膜作用,对铜绿假单胞菌、金黄色葡萄球菌和表皮葡萄球菌三种病原菌的20个菌株中的17株有显著生物膜形成抑制作用。
     为了更加直观和实时地观察A101对生物膜形成的抑制作用,建立了Flow-cell生物膜体外模型。利用该模型,发现A101对FRD1生物膜形成的抑制效果达到95%以上。此外,A101对已形成的FRD1生物膜也具有破坏作用,破坏效果达到85%。最低生物膜消除浓度MBEC试验结果表明, A101可以提高生物膜对抗生素的敏感性,使阿米卡星对生物膜细菌的杀灭作用提高16倍以上。
     A101并不抑制游离铜绿假单胞菌FRD1的生长,相反地能够促进其生长。唯一碳源实验结果表明A101不能作为碳源被FRD1利用。进一步研究发现,A101可以防止FRD1菌体簇集,使其分散生长,从而能够更好地利用环境营养。这种分散作用也正是A101抗生物膜作用的机制。结合相关研究报道,推测A101可能是封闭了FRD1细胞表面某些菌体赖以相互结合的位点,阻碍了菌体之间的相互作用,从而抑制了生物膜形成;而且,由于A101对菌体表面位点的结合力强于细菌间的结合力,故可以破坏已经形成的生物膜。
     本文发现了一种弧菌胞外多糖A101,该多糖不仅抑制生物膜的形成,还能破坏已经形成的生物膜;并且其作用具有广谱性,对多种细菌,尤其是临床常见的铜绿假单胞菌、金黄色葡萄球菌、表皮葡萄球菌的生物膜均有作用;A101可以增强抗生素对生物膜细菌的杀灭效果,具有这种作用的多糖在国际上尚属首次报道。A101有望开发成为高效、广谱、安全的抗生物膜制剂,不但在临床细菌生物膜相关慢性感染的治疗、抗细菌生物膜新材料的研发等方面具有重要的应用前景,而且在生物膜形成与放散、细菌细胞间的识别和相互作用等多个领域具有重要的研究价值。
In the past, bacterial cells were regarded as individual organisms growing in planktonic populations. However, it is now recognized that many or perhaps most bacteria have a strong propensity to form multicellular, matrix-enclosed assemblies, or biofilms, which are found on surfaces throughout the biological world. Cells within a biofilm have a number of advantages over their planktonic counterparts, including protection against the immune system and predation by protozoa, enhanced ability to transfer genetic information, and enhanced resistance to antimicrobial agents and other stresses. Thus, biofilm formation complicates a variety of chronic infections, including the devastating pulmonary infections that are caused by Pseudomonas aeruginosa in cystic fibrosis patients and other opportunistic infections by this organism. According to a public announcement by US National Institute of Health,“biofilms are medically important, accounting for over 80% of microbial infections in the body”. These problems of sessile organisms predominate in most of the environmental, industrial, and medical problems and cause the interest of microbiologists. Yet bacterial biofilms remain poorly understood and the strategies for their control remain underdeveloped. Therefore, anti-biofilm substances have become the hotspots in medicine, material and other research fields.
     The aim of this study was to screen active substance from marine bacteria, which can inhibit biofilm formation and/or disrupt established biofilm; and to explore its structural character and anti-biofilm mechanism.
     Using micro tube bacterial biofilm model, we found that the supernatant of marine Vibrio sp QY101 significantly inhibited the biofilm formation of P. aeruginosa FRD1, and the inhibiting effect was dose-dependent in a certain concentration range. Further study showed that the active ingredient in supernatant did not relate to nucleic acid and protein, but to carbohydrate.
     A polysaccharide, namely A101, was purified from QY101 supernatant by acetone precipitation, dialysis and ion exchange chromatography. In order to characterize the polysaccharide structurally, many modern techniques were used which include elemental analysis, gas chromatography, infrared spectroscopy, light scattering and so on. As a result, exopolysaccharide A101 contains at lest 4 monosaccharide residues and sulfuric acid, amino and acetyl group. The average molecular weight of A101 is determined to be 1000 kD. A101 solution has colloidal character and strong absorption at 220nm. It significantly inhibited the biofilm formation of P. aeruginosa, Staphylococcus aureus and S. epidermidis.
     In order to monitor biofilm more directly and in real-time manner, the flow cell model was established. The development of flow cell-grown biofilm of P. aeruginosa FRD1 was investigated by confocal laser scanning microscopy and the structural development of the biofilms was quantified by the computer program COMSTAT. The exopolysaccharide A101 inhibited P. aeruginosa FRD1 biofilm formation by more than 90% and disrupted its established biofilm by 85%. In contrast to amikacin alone, the combination of amikacin and A101 increased the susceptibility of FRD1 biofilm by more than 16 times in minimum biofilm elimination concentration (MBEC) test. Our result suggested that A101 could significantly enhance the activities of antibiotics against biofilms.
     A101 did not inhibit planktonic FRD1 cell growth. On the contrary, it promoted cell growth without being used as carbon source. In addition, A101 prevent bacterial cells from aggregating, made them grow dispersedly, and bettered utilizing the environmental nutrition. This function of A101 may explain its anti-biofilm effect. Based on our results, we hypothesized that the mechanism of A101 anti-biofilm is mediated by blocking interaction between the cells.
     We demonstrated here an exopolysaccharide extract from marine Vibrio sp QY101 which can inhibit the biofilm formation and disrupt the established biofilm. This exopolysaccharide A101 prevented the formation of biofilms by a wide range of bacteria, particularly clinical infective P. aeruginosa, S. aureus, and S. epidermidis. Combined with exopolysaccharide A101, antibiotic was strengthened in killing bacterial cells in biofilm. This is the first report about a polysaccharide having these functions. A101 is expected to develop as an effective, broad-spectrum and safe anti-biofilm agent. It not only has wide application in the treatment of clinical biofilm-related infections and development of novel anti-biofilm materials, but also has important value in biofilm research fields, such as the formation and detachment of biofilm, the recognition and interaction among bacterial cells.
引文
1. Costerton JW, Lewandowski Z, DeBeer D, Caldwell D, Korber D, James G. Biofilms, the customized microniche. J Bacteriol, 1994,176: 2137–2142
    2. Wren, B. Bacterial biofilms. Trends Microbiol, 1998, 6: 6
    3. Coserton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. Microbial biofilms. Annu Rev Microbiol, 1995, 49: 711-745
    4. Stoodley P, Sauer K, Davies DG, Costerton JW. Biofilms as complex differentiated communities. Annu Rev Microbiol, 2002, 56: 187-209
    5. Stickler D. Biofilms. Curr Opin Microbiol, 1999, 2: 270-275
    6. Costerton JW, Geesey GG, Cheng GK. How bacteria stick. Sci Am, 238: 86-95
    7. Costerton JW, Stewart PS, Greenberg EP. Bacterial Biofilms: A common cause of persistent infections. Science, 1999, 284: 1318-1322
    8. Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ. Bacterial biofilms in nature and disease. Annu Rev Microbiol, 1987, 41: 435-464
    9. Parsek MR, Singh PK. Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol, 2003, 57: 677-701
    10.Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev, 2002, 15: 167-193
    11.Paschoal IA, de Oliveira Villalba W, Bertuzzo CS, Cerqueira EM, Pereira MC. Cystic fibrosis in adults. Lung, 2007 Feb 9
    12.Jeffrey BL, Carolyn LC, Gerald BP. Lung infections associated with cystic fibrosis. Clin Microbiol Rev, 2002, 15:194-222
    13.Nick JA, Rodman DM. Manifestations of cystic fibrosis diagnosed in adulthood. Curr Opin Pulm Med, 2005, 11: 513-518
    14.Samuel MM, Jessica MF, Julia E Jane LB. Clinically feasible biofilm susceptibility assay forisolates of Pseudomonas aeruginosa from patients with cystic fibrosis. J Clin Microbiol, 2004, 42: 3052-3058
    15.Hill D, Rose B, Pajkos A, Robinson M, Bye P, Bell S, Elkins M, Thompson B, Macleod C, Aaron SD, Harbour C. Antibiotic susceptibilities of Pseudomonas aeruginosa isolates derived from patients with cystic fibrosis under aerobic, anaerobic, and biofilm conditions. J Clin Microbiol, 2005, 43: 5085-5090
    16.Bragonzi A, Worlitzsch D, Pier GB, Timpert P, Ulrich M, Hentzer M, Andersen JB, Givskov M, Conese M, Doring G. Nonmucoid Pseudomonas aeruginosa expresses alginate in the lungs of patients with cystic fibrosis and in a mouse model. J Infect Dis, 2005, 192: 410-419
    17.Mathee K, Ciofu O, Sternberg C, Lindum PW, Campbell JI, Jensen P, Johnsen AH, Givskov M, Ohman DE, Molin S, Hoiby N, Kharazmi A. Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology, 1999, 145: 1349-1357
    18.Matsui H, Wagner VE, Hill DB, Schwab UE, Rogers TD, Button B, Taylor RM 2nd, Superfine R, Rubinstein M, Iglewski BH, Boucher RC. A physical linkage between cystic fibrosis airway surface dehydration and Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci U S A, 2006, 103: 18131-18136
    19.Oliver A, Canton R, Campo P, Baquero F, Blazquez J. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science, 1999, 284: 1318-1322.
    20.Costerton, JW. Cystic fibrosis pathogenesis and the role of biofilms in persistent infection. Trends Microbiol, 2001,9: 2
    21.Ciofu O, Fussing V, Bagge N, Koch C, Hoiby N. Characterization of paired mucoid/non-mucoid Pseudomonas aeruginasa isolates from Danish cystic fibrosis patients: antibiotic resistance, Beta-lactamase activity and RiboPrinting. Antimicrob Agents Ch, 2001, 48: 391-396
    22.Arciola CR, Alvi FI, An YH, Campoccia D, Montanaro L. Implant infection and infection resistant materials: a mini review. Int J Artif Organs, 2005, 28: 1119-1125
    23.Arciola CR, Campoccia D, Baldassarri L, Donati ME, Pirini V, Gamberini S, Montanaro L. Detection of biofilm formation in Staphylococcus epidermidis from implant infections. Comparison of a PCR-method that recognizes the presence of ica genes with two classic phenotypic methods. J Biomed Mater Res A, 2005, 76: 425-430
    24.Vinh DC, Embil JM. Device-related infections: a review. J Long Term Eff Med Implants. 2005, 15: 467-488.
    25.Saginur R, Stdenis M, Ferris W, Aaron SD, Chan F, Lee C, Ramotar K. Multiple combination bactericidal testing of staphylococcal biofilms from implant-associated infections, Antimicrob Agents Chemother, 2006; 50: 55-61
    26.Dunlop P, Oliver L, Byrne T, McAdams E. Detection and removal of pathogenic biofilms on medical implant surfaces. Stud Health Technol Inform, 2005, 117: 213-217
    27.Presterl E, Lassnigg A, Parschalk B, Yassin F, Adametz H, Graninger W. Clinical behavior of implant infections due to Staphylococcus epidermidis. Int J Artif Organs, 2005, 28: 1110-1118
    28.Costerton JW, Montanaro L, Arciola CR. Biofilm in implant infections: its production and regulation. Int J Artif Organs, 2005, 28: 1062-1068
    29.Trampuz A, Widmer AF. Infections associated with orthopedic implants. Curr Opin Infect Dis, 2005, 15: 467-488.
    30.Tunney MM, Dunne N, Einarsson G, McDowell A, Kerr A, Patrick S. Biofilm formation by bacteria isolated from retrieved failed prosthetic hip implants in an in vitro model of hip arthroplasty antibiotic prophylaxis. J Orthop Res, 2006, 25: 2-10
    31.Ozturk O, Sudagidan M, Turkan U. Biofilm formation by Staphylococcus epidermidis on nitrogen ion implanted CoCrMo alloy material. J Biomed Mater Res A, 2006 Dec 22, 10.1002/jbm.a.31037
    32.Soboh F, Khoury AE, Zamboni AC, Davidson D, Mittelman MW. Effects of ciprofloxacin and protamine sulfate combinations against catheter-associated Pseudomonas aeruginosa biofilms. Antimicrob Agents Ch, 1995, 39: 1281-1286
    33.Suman E, Varghese S, Jose J. Gentamicin resistance in biofilm producing pseudomonas aeruginosa causing catheter associated urinary tract infections. Indian J Med Sci, 2005, 59: 214-216.
    34.Camargo GMPA, Pizzolitto CAC, Pizzolitto EL. Biofilm formation on catheters used after cesarean section as observed by scanning electron microscopy. Int J Gynecol Obstet, 2005, 90: 148-149
    35.Okajima Y, Kobayakawa S, Tsuji A, Tochikubo T. Biofilm formation by Staphylococcus epidermidis on intraocular lens material. Invest Ophthalmol Vis Sci, 2006, 47: 2971-2975
    36.Shimizu K, Kobayakawa S, Tsuji A, Tochikubo T. Biofilm formation on hydrophilic intraocular lens material. Curr Eye Res. 2006, 31: 989-997
    37.Wagenlehner FM, Naber KG. Current challenges in the treatment of complicated urinary tract infections and prostatitis. Clin Microbiol Infect, 2006, 3: 67-80
    38.Anderson GG, Palermo JJ, Schilling JD, Roth R, Heuser J, Hultgren SJ. Intracellular bacterial biofilm-like pods in urinary tract infections. Science, 2003, 301: 105-107.
    39.Gupta A, Dwivedi M, Gowda GA, Mahdi AA, Jain A, Ayyagari A, Roy R, Bhandari M, Khetrapal CL. 1H NMR spectroscopy in the diagnosis of Klebsiella pneumoniae-induced urinary tract infection. NMR Biomed, 2006, 19: 1055-1061
    40.Soto SM, Smithson A, Horcajada JP, Martinez JA, Mensa JP, Vila J. Implication of biofilm formation in the persistence of urinary tract infection caused by uropathogenic Escherichia coli. Clin Microbiol Infect, 2006, 12: 1034-1036
    41.Simoes M, Pereira MO, Vieira MJ. Effect of mechanical stress on biofilms challenged by different chemicals. Water Res, 2005, 39: 5142-5152
    42.Langmark J, Storey MV, Ashbolt NJ, Stenstrom TA. Biofilms in an urban water distribution system: measurement of biofilm biomass, pathogens and pathogen persistence within the Greater Stockholm Area, Sweden. Water Sci Technol, 2005,52: 181-189
    43.Schwarts T, Kalmbach S, Hoffman S, Szewzyk U, Obst U. PCR-based detection ofmycobacteria in biofilms from a drinking water distribution system. J Microbiol Meth, 1998, 34: 113-123
    44.Bergmans DC, Bonten MJ, Stobberingh EE, van Tiel FH, van der Geest S, de Leeuw PW, Gaillard CA. Colonization with Pseudomonas aeruginosa in patients developing ventilator-associated pneumonia. Infect Control Hosp Epidemiol, 1998, 19: 853-835
    45.Adair CG, Gorman SP, Feron BM, Byers LM, Jones DS, Goldsmith CE, Moore JE, Kerr JR, Curran MD, Hogg G, Webb CH, McCarthy GJ, Milligan KR. Implications of endotracheal tube biofilm for ventilator-associated pneumonia. Intensive Care Med, 1999, 25:1072-1076
    46.Combes A, Luyt CE, Fagon JY, Wolff M, Trouillet JL, Chastre J. Impact of piperacillin resistance on the outcome of Pseudomonas ventilator-associated pneumonia. Intensive Care Med, 2006, 32: 1970-1978
    47.Van Houdt R, Aertsen A, Jansen A, Quintana AL, Michiels CW. Biofilm formation and cell-to-cell signalling in Gram-negative bacteria isolated from a food processing environment. J Appl Microbiol, 2004, 96: 177-184
    48.Giaouris E, Chorianopoulos N, Nychas GJ. Effect of temperature, pH, and water activity on biofilm formation by Salmonella enterica enteritidis PT4 on stainless steel surfaces as indicated by the bead vortexing method and conductance measurements. J Food Prot, 2005, 68: 2149-2154
    49.Lehner A, Riedel K, Eberl L, Breeuwer P, Diep B, Stephan R. Biofilm formation, extracellular polysaccharide production, and cell-to-cell signaling in various Enterobacter sakazakii strains: aspects promoting environmental persistence. J Food Prot, 2005, 68: 2287-2294
    50.Planchon S, Gaillard-Martinie B, Dordet-Frisoni E, Bellon-Fontaine MN, Leroy S, Labadie J, Hebraud M, Talon R. Formation of biofilm by Staphylococcus xylosus. Int J Food Microbiol, 2006, 109: 88-96
    51.Sutherland IW. The biofilm matrix--an immobilized but dynamic microbial environment. Trends Microbiol, 2001, 9:222-227
    52.Branda SS, Vik A, Lisa F, Roberto K. Biofilms: the matrix revisited. Trends Microbiol, 2005, 13: 20-26
    53.Lawrence JR, Swerhone GD, Leppard GG, Araki T, Zhang X, West MM, Hitchcock AP. Scanning transmission X-Ray, laser scanning, and transmission electron microscopy Mapping of the exopolymeric matrix of microbial biofilms. Appl Environ Microbiol, 2003, 69: 5543-5554
    54.Friedman L, Kolter R. Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J Bacteriol, 2004, 186: 4457-4465
    55.O'Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development. Annu Rev Microbiol, 2000, 54: 49-79
    56.Stoodley P, Wilson S, Hall-Stoodley L, Boyle JD, Lappin-Scott HM, Costerton JW. Growth and detachment of cell clusters from mature mixed-species biofilms. Appl Environ Microbiol, 2001, 67:5608-5613
    57.Hunt SM, Werner EM, Huang B, Hamilton MA, Stewart PS. Hypothesis for the role of nutrient starvation in biofilm detachment. Appl Environ Microbiol, 2004, 70: 7418-7425
    58.Picioreanu C, van Loosdrecht MC, Heijnen JJ. Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechnol Bioeng, 2001, 72: 205-218
    59.Xavier JD, Picioreanu C, van Loosdrecht MC. A general description of detachment for multidimensional modelling of biofilms. Biotechnol Bioeng, 2005, 91: 651-669
    60.Allison DG, Ruiz B, SanJose C, Jaspe A, Gilbert P. Extracellular products as mediators of the formation and detachment of Pseudomonas fluorescens biofilms. FEMS Microbiol Lett, 1998, 167: 179-184
    61.Lee SF, Li YH, Bowden GH. Detachment of Streptococcus mutans biofilm cells by an endogenous enzymatic activity. Infect Immun, 1996, 64: 1035-1038
    62.Stoodley P, Cargo R, Rupp CJ, Wilson S, Klapper I. Biofilm material properties as related toshear-induced deformation and detachment phenomena. J Ind Microbiol Biotechnol, 2002, 29: 361-367
    63.Parsek MR, Greenberg, EP. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol, 2005, 13: 27-33
    64.Kjelleberg S, Molin S. Is there a role for quorum sensing signals in bacterial biofilms? Curr Opin Microbiol, 2002, 5: 254-258
    65.Spoering AL, Gilmore MS. Quorum sensing and DNA release in bacterial biofilms. Curr Opin Microbiol 2005, 11: 513-518
    66.Teresa R. de Kievit, Barbara HI. Bacterial quorum sensing in pathogenic relationships. Infect Immun, 2000, 68: 4839-4849
    67.Labbate M, Queck SY, Koh KS, Rice SA, Givskov M, Kjelleberg S. Quorum sensing-controlled biofilm development in Serratia liquefaciens MG1. J Bacteriol, 2004, 186: 692-698
    68.Yarwood JM, Bartels DJ, Volper EM, Greenberg EP. Quorum sensing in Staphylococcus aureus Biofilms. J Bacteriol, 2004, 186: 1838-1850
    69.Marketon MM, Glenn SA, Eberhard A, Gonzalez JE. Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti. J Bacteriol, 2003, 185: 325-331
    70.Suntharalingam, Prashanth; Cvitkovitch, Dennis G. Quorum sensing in streptococcal biofilm formation. Trends Microbiol, 2005, 13: 3-6
    71.Dong YH, Gusti AR, Zhang Q, Xu JL, Zhang LH. Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol, 2002, 68: 1754-9175
    72.Tomlin KL, Malott RJ, Ramage G, Storey DG, Sokol PA, Ceri H. Quorum-Sensing Mutations Affect Attachment and Stability of Burkholderia cenocepacia Biofilms. Appl Environ Microbiol, 2005, 71: 5208-5218
    73.Juhas M, Eberl L, Tummler B. Quorum sensing: the power of cooperation in the world of Pseudomonas. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems incontrol of elastase and rhamnolipid biosynthesis genes. Environ Microbiol, 2005, 7: 459-471
    74.Glessner A, Smith RS, Iglewski BH, Robinson JB. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of twitching motility. J Bacteriol, 1999, 181: 1623-169
    75.Pearson JP, Pesci EC, Iglewski BH. J Bacteriol. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. 1997, 179: 5756-5767
    76.De Kievit TR, Gillis R, Marx S, Brown C, Iglewski BH. Quorum-Sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns. Appl Environ Microbiol, 2001, 67: 1865-1873
    77.Wall D, Kaiser D. Type IV pili and cell motility. Mol Microbiol, 1999, 32: 1-10
    78.Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol, 2003, 48: 1511-1524
    79.Deziel E, Comeau Y, Villemur R. Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J Bacteriol, 2001, 183: 1195-1204
    80.Sauer K, Cullen MC, Rickard AH, Zeef LA, Davies DG, Gilbert P. Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J Bacteriol, 2004, 186: 7312-7326
    81.Hunt SM, Werner EM, Huang B, Hamilton MA, Stewart PS. Hypothesis for the role of nutrient starvation in biofilm detachment. Appl Environ Microbiol, 2004, 70: 7418-7425
    82.Jonathan P, Andrews CS, Craig, DQM, Wilson M. Structural studies of microcosm dental plaques grown under different nutritional conditions. FEMS Microbiol Lett, 2000, 189: 215-218
    83.Christersson CE, Glantz PO, Baier RE. Role of temperature and shear forces on microbial detachment. Scand J Dent Res, 1988, 96: 91-98.
    84.Else TA, Pantle CR, Amy PS. Boundaries for biofilm formation: humidity and temperature. Appl Environ Microbiol, 2003, 69: 5006-5010.
    85.Budhani RK, Struthers JK. Interaction of Streptococcus pneumoniae and Moraxella catarrhalis: investigation of the indirect pathogenic role ofβ-lactamase-producing moraxellae by use of a continuous-culture biofilm system. Antimicrob Agents Ch, 1998, 42: 2521-2526.
    86.Hoyle BD, Alcantara J, Costerton JW. Pseudomonas aeruginosa biofilm as a diffusion barrier to piperacillin. Antimicrob Agents Ch, 1992, 36: 2054-2056
    87.Anderl JN, Franklin MJ, Stewart PS. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Ch, 2000, 44: 1818-1824.
    88.Zheng Z, Stewart PS. Penetration of rifampin through Staphylococcus epidermidis biofilms. Antimicrob Agents Ch, 2002, 46: 900-903
    89.Jefferson KK, Goldmann DA, Pier GB. Use of confocal microscopy to analyze the rate of vancomycin penetration through Staphylococcus aureus biofilms. Antimicrob Agents Ch, 2005, 49: 2467-2473
    90.Suci PA, Mittelman MW, Yu FP, Geesey GG. Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms. Antimicrob Agents Ch, 1994, 38: 2125-2133
    91.Van Delden C, Pesci EC, Pearson JP, Iglewski BH. Starvation selection restores elastase and rhamnolipid production in a Pseudomonas aeruginosa quorum-sensing mutant. Infect Immun, 1998, 66: 4499-4502
    92.Drenkard E. Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect, 2003, 5: 1213-1219
    93.Xu KD, McFeters GA, Stewart PS. Biofilm resistance to antimicrobial agents. Microbiology,2000, 146: 547-549.
    94.Pitt WG, McBride MO, Lunceford JK, Roper RJ, Sagers RD. Ultrasonic enhancement of antibiotic action on gram-negative bacteria. Antimicrob Agents Ch, 1994, 38: 2577-2582
    95.Rediske AM, Roeder BL, Brown MK, Nelson JL, Robison RL, Draper DO, Schaalje GB, Robison RA, Pitt WG. Ultrasonic enhancement of antibiotic action on Escherichia coli biofilms: an in vivo model. Antimicrob Agents Ch, 1999, 43: 1211-1214
    96.Rediske AM, Roeder BL, Brown MK, Nelson JL, Robison RL, Draper DO, Schaalje GB, Robison RA, Pitt WG. Pulsed ultrasound enhances the killing of Escherichia coli biofilms by aminoglycoside antibiotics in vivo. Antimicrob Agents Ch, 2000, 44: 771-772
    97.Carmen JC, Nelson JL, Beckstead BL, Runyan CM, Robison RA, Schaalje GB, Pitt WG, Ultrasonic-enhanced gentamicin transport through colony biofilms of Pseudomonas aeruginosa and Escherichia coli. J Infect Chemother, 2004, 10:193-199
    98.Carmen JC, Roeder BL, Nelson JL, Ogilvie RL, Robison RA, Schaalje GB, Pitt WG. Treatment of biofilm infections on implants with low-frequency ultrasound and antibiotics. Am J Infect Control, 2005, 33: 78- 82
    99.Ensing GT, Neut D, van Horn JR, van der Mei HC, Busscher HJ. The combination of ultrasound with antibiotics released from bone cement decreases the viability of planktonic and biofilm bacteria: an in vitro study with clinical strains. J Antimicrob Chemother, 2006, 58: 1278- 1290
    100. Rabinovitch C, Stewart PS. Removal and inactivation of Staphylococcus epidermidis biofilms by electrolysis. Appl Environ Microbiol, 2006, 72: 6364-6366
    101. Xavier JB, Picioreanu C, Rani SA, van Loosdrecht MC, Stewart PS. Biofilm-control strategies based on enzymic disruption of the extracellular polymeric substance matrix--a modelling study. Microbiology, 2005, 151:3817-3832
    102. Kaplan JB, Ragunath C, Ramasubbu N, Fine DH. Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenousβ-hexosaminidase activity. J Bacteriol, 2003,185: 4693-4698
    103. Kaplan JB, Ragunath C, Velliyagounder K, Fine DH. Ramasubbu N. Enzymatic detachment of Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother, 2004, 48: 2633-2636
    104. Kaplan JB, Velliyagounder K, Ragunath C, Rohde H, Mack D, Knobloch JK, Ramasubbu N. Genes involved in the synthesis and degradation of matrix polysaccharide in Actinobacillus actinomycetemcomitans and Actinobacillus pleuropneumoniae biofilms. J Bacteriol, 2004 186: 8213-8220
    105. Ramasubbu N, Thomas LM, Ragunath C, Kaplan JB. Structural analysis of dispersin B, a biofilm-releasing glycoside hydrolase from the periodontopathogen Actinobacillus actinomycetemcomitans. J Mol Biol, 2005, 349: 475-486
    106. Itoh Y, Wang X, Hinnebusch BJ, Preston JF 3rd, Romeo T. Depolymerization of ?-1, 6-N-Acetyl-D-Glucosamine disrupts the integrity of diverse bacterial biofilms. J Bacteriol, 2005, 187: 382-387
    107. Evans LR, Linker A. Production and characterization of the slime polysaccharide of Pseudomonas aeruginosa. J Bacteriol, 1973, 116: 915-924
    108. Hatch RA, Schiller NL. Alginate lyase promotes diffusion of aminoglycosides through the extracellular polysaccharide of mucoid Pseudomonas aeruginosa. Antimicrob Agents Chemother, 1998, 42: 974-977
    109. Alkawash M A, Soothill JS, Schiller NL. Alginate lyase enhances antibiotic killing of mucoid in biofilms. APMIS, 2006, 114:131-138
    110. Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS. Extracellular DNA required for bacterial biofilm formation. Science, 2002, 295: 1487
    111. Valle J, Da Re S, Henry N, Fontaine T, Balestrino D, Latour-Lambert P, Ghigo JM. Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide. Proc Natl Acad Sci U S A, 2006, 103: 12558-12663
    112. Howell AB. Cranberry proanthocyanidins and the maintenance of urinary tract health. Crit Rev Food Sci Nutr, 2002, 42: 273–278
    113. Burger O, Ofek I, Tabak M, Weiss EI, Sharon N, Neeman I. A high molecular mass constituent of cranberry juice inhibits Helicobacter pylori adhesion to human gastric mucus. FEMS Immunol Med Microbiol, 2000, 29: 295–301
    114. Weiss EI, Lev-Dor R, Kashamn Y, Goldhar J, Shron N, Ofek I. Inhibiting interspecies coaggregation of plaque bacteria with a cranberry juice constituent. J Am Dent Assoc, 1998, 129: 1719–1723
    115. Steinberg D, Feldman M, Ofek I, Weiss EI. Effect of a high-molecularweight component of cranberry on constituents of dental biofilm. J Antimicrob Chemother, 2004, 54: 86–89.
    116. Steinberg D, Feldman M, Ofek I, Weiss EI. Cranberry high molecular weight constituents promote Streptococcus sobrinus desorption from artificial biofilm. Int J Antimicrob Agents, 2005, 25: 247–251
    117. Yamanaka A, Kimizuka R, Kato T, Okuda K. Inhibitory effects of cranberry juice on attachment of oral streptococci and biofilm formation. Oral Microbiol Immunol, 2004, 19: 150–154
    118. Labrecque J, Bodet C, Chandad F, Grenier D. Effects of a high-molecular-weight cranberry fraction on growth, biofilm formation and adherence of Porphyromonas gingivalis. J Antimicrob Chemother, 2006, 58: 439–443
    119. Hu JF, Garo E, Goering MG, Pasmore M, Yoo HD, Esser T, Sestrich J, Cremin PA, Hough GW, Perrone P, Lee YS, Le NT, O'Neil-Johnson M, Costerton JW, Eldridge GR. Bacterial biofilm inhibitors from Diospyros dendo. J Nat Prod, 2006, 69: 118-120
    120. Musk DJ, Banko DA, Hergenrother PJ. Iron salts perturb biofilm formation and disrupt existing biofilms of Pseudomonas aeruginosa. Chem Biol, 2005, 12: 789-796
    121. Gray G,Wilkinson SG. The effect of ethylenediaminetetraacetic acid on the cell walls of some gram-negative bacateria. J Gen Microbiol, 1965, 39: 385-399
    122. Raad I, Hachem R, Tcholakian RK, Sherertz R. Efficacy of minocycline and EDTA lock solution in preventing catheter-related bacteremia, septic phlebitis, and endocarditis in rabbits. Antimicrob Agents Ch, 2002, 46: 327-332
    123. Kite P, Eastwood K, Sugden S, Percival SL. Use of in vivo-generated biofilms from hemodialysis catheters to test the efficacy of a novel antimicrobial catheter lock for biofilm eradication in vitro. J Clin Microbiol, 2004, 42: 3073-3076
    124. Banin E, Brady KM, Greenberg EP. Chelator-Induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm. Appl Environ Microbiol, 2006, 72: 2064-2069
    125. Borriello G., Werner E, Roe F, Kim AM, Ehrlich GD, Stewart PS. Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms, Antimicrob. Agents Chemother. 2004, 48: 2659–2664
    126. Cunin, R, Glansdorff N, Pie′rard A, Stalon V. Biosynthesis and metabolism of arginine in bacteria. Microbiol. Rev, 1986, 50: 314–352.
    127. Borriello G, Richards L, Ehrlich GD, Stewart PS. Arginine or nitrate enhances antibiotic susceptibility of Pseudomonas aeruginosa in biofilms. Antimicrob Agents Ch. 2006, 50: 382-384
    128. Nitschke M, Costa SG, Contiero J. Rhamnolipid surfactants: an update on the general aspects of these remarkable biomolecules. Biotechnol Prog, 2005, 21: 1593-1600
    129. Zulianello L, Canard C, Kohler T, Caille D, Lacroix JS, Meda P. Rhamnolipids are virulence factors that promote early infiltration of primary human airway epithelia by Pseudomonas aeruginosa. Infect Immun, 2006, 74: 3134-3147
    130. Boles BR, Thoendel M, Singh PK. Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol, 2005, 57: 1210-1223
    131. Irie Y, O’Toole GA, Yuk MH. Pseudomonas aeruginosa rhamnolipids disperse Bordetella bronchiseptica biofilms. FEMS Microbiol Lett, 2005, 250: 237-243
    132. Curtin JJ, Donlan RM. Using phage to reduce formation of catheter-associated biofilms by Staphylococcus epidermidis. Antimicrob Agents Chemother, 2006, 50: 1268-1275
    133. Wang J, Hu B, Xu M, Yan Q, Liu S, Zhu X, Sun Z, Reed E, Ding L, Gong J, Li QQ, Hu J. Use of bacteriophage in the treatment of experimental animal bacteremia fromimipenem-resistant Pseudomonas aeruginosa. Int J Mol Med, 2006, 17: 309-317
    134. Packroff G, Lawrence JR, Neu TR. In situ confocal laser scanning microscopy of protozoans in cultures and complex biofilm communities. Acta protozool, 2002, 41: 245-253
    135. O'Toole GA, Kolter R. Innitiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathway: a genetic analysis. Mol Microbiol, 1998, 28: 449-461
    136. Burton E, Yakandawala N, Lovetri K, Madhyastha MS. A microplate spectrofluorometric assay for bacterial biofilms. J Ind Microbiol Biotechnol, 2006, 7: 1-4
    137. Head NE, Yu H. Cross-sectional analysis of clinical and environmental isolates of Pseudomonas aeruginosa: biofilm formation, virulence, and genome diversity. Infect Immun, 2004, 72: 133-144
    138. Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A. The Calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol, 1999, 37: 1771-1776
    139. Parahitiyawa NB, Samaranayake YH, Samaranayake LP, Ye J, Tsang PW, Cheung BP, Yau JY, Yeung SK. terspecies variation in Candida biofilm formation studied using the calgary biofilm device. APMIS, 2006, 114: 298-306
    140. Ghigo JM. Natural conjugative plasmids induce bacterial biofilm development. Nature, 2001, 412: 422-445
    141. Kadurugamuwa JL, Sin LV, Yu SJ, Francis KP, Kimura R, Purchio T, Contag PR. Rapid direct method for monitoring antibiotics in a mouse model of bacterial biofilm Infection. Antimicrob Agents Ch, 2003, 47: 3130-3137
    142. Carmen JC, Nelson JL, Beckstead BL, Runyan CM, Robison RA, Schaalje GB, Pitt WG.. Ultrasonic-enhanced gentamicin transport through colony biofilms of Pseudomonas aeruginosa and Escherichia coli. J Infect Chemother, 2004, 10: 193-199
    143. Hatch RA, Schiller NL. Alginate lyase promotes diffusion of aminoglycosides through theextracellular polysaccharide of mucoid Pseudomonas aeruginosa. Antimicrob Agents Ch, 1998, 42: 974-977
    144. Tsai YP, Pai TY, Qiu JM. The impacts of the AOC concentration on biofilm formation under higher shear force condition. J Bacteriol, 2004, 11: 155-167
    145. Bagge N, Schuster M, Hentzer M, Ciofu O, Givskov M, Greenberg EP, Hoiby N. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression andβ-Lactamase and alginate production. Antimicrob Agents Ch, 2004, 48: 1175-1187
    146. Stoodley P, deBeer D, Lewandowski Z. Liquid flow in biofilm systems. Appl Environ Microbiol, 1994, 60: 2711-2716
    147. Stapper AP, Narasimhan G, Ohman DE, Barakat J, Hentzer M, Molin S, Kharazmi A, Hoiby N, Mathee K. Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation. J Med Microbiol, 2004, 53: 679-690
    148. Teitzel GM, Parsek MR. Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol, 2003, 69: 2313-2320
    149. Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS, O'Toole GA. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature, 2003, 426: 306-310.
    150. Webb JS, Thompson LS, James S, Charlton T, Tolker-Nielsen T, Koch B, Givskov M, Kjelleberg S. Cell death in Pseudomonas aeruginosa biofilm development. J Bacteriol, 2003, 185: 4585-4592
    151. Thurnheer T, Gmur R, Guggenheim B. Multiplex FISH analysis of a six-species bacterial biofilm. J Microbiol Meth, 2004, 56: 37-47
    152. Bloemberg GV, O'Toole G, Lugtenberg BJ, Kolter R. Green fluorescent protein as a marker for Pseudomonas spp. Appl Environ Microbiol, 1997, 63: 4543-4551
    153. Neu TR, Woelfl S, Lawrence JR. Three-dimensional differentiation of photo-autotrophic biofilm constituents by multi-channel laser scanning microscopy (single-photon andtwo-photon excitation). J Microbiol Meth, 2004, 56: 161-172
    154. Daims H, Lucker S, Wagner M. Daime, a novel image analysis program for microbial ecology and biofilm research. Environ Microbiol, 2006, 8: 200-213
    155. Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersboll BK, Molin S. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology, 2000, 146: 2395-2407
    156. Kaplan JB, Meyenhofer MF, Fine DH. Biofilm growth and detachment of Actinobacillus actinomycetemcomitans. J Bacteriol, 2003, 185: 1399-1404
    157. Stickler D, Morris N, Moreno MC, Sabbuba N. Studies on the formation of crystalline bacterial biofilms on urethral catheters. Eur J Clin Microbiol Infect Dis, 1998, 17: 649-652
    158. Dufrene YF. Recent progress in the application of atomic force microscopy imaging and force spectroscopy to microbiology. Curr Opin Microbiol, 2003, 6: 317-323
    159. Steinberger RE, Allen AR, Hansa HG, Holden PA. Elongation correlates with nutrient deprivation in Pseudomonas aeruginosa-unsaturates biofilms. Microb Ecol, 2002, 43: 416-4123
    160. Landry RM, An D, Hupp JT, Singh PK, Parsek MR. Mucin-Pseudomonas aeruginosa interactions promote biofilm formation and antibiotic resistance. Mol Microbiol, 2006, 59: 142-151
    161. Ahimou F, Semmens MJ, Novak PJ, Haugstad G. Biofilm cohesiveness measurement using a novel AFM methodology. Appl Environ Microbiol, 2007, 73: 2036-2039
    162. Arciola CR, Alvi FI, An YH, Campoccia D, Montanaro L. Implant infection and infection resistant materials: a mini review. Int J Artif Organs, 2005, 28: 1119-1125
    163. Teughels W, Van Assche N, Sliepen I, Quirynen M. Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res. 2006, 2: 68-81
    164. Raad I, Chatzinikolaou I, Chaiban G, Hanna H, Hachem R, Dvorak T, Cook G, Costerton W. In vitro and ex vivo activities of minocycline and EDTA against microorganisms embeddedin biofilm on catheter surfaces. Antimicrob Agents Ch, 2003, 47: 3580-3585
    165. Danese PN. Antibiofilm approaches: prevention of catheter colonization. Chem Biol, 2002, 9: 873-880
    166. Boles BR, Thoendel M, Singh PK. Self-generated diversity produces‘‘insurance effects’’in biofilm communities. Proc Natl Acad Sci U S A, 2004, 101: 16630-16635
    167. Kirisits MJ, Prost L, Starkey M, Parsek MR. Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms. Appl Environ Microbiol, 2005, 71: 4809-4821
    168. Bill Costerton. Microbial ecology comes of age and joins the general ecology community. Proc Natl Acad Sci U S A, 2004, 101: 16983
    169. Ohman DE, Chakrabarty AM. Genetic mapping of chromosomal determinants for the production of the exopolysaccharide alginate in a Pseudomonas aeruginosa cystic fibrosis isolate. Infect Immun, 1981, 33: 142-148.
    170. Ohman DE, Chakrabarty AM. Utilization of human respiratory secretions by mucoid Pseudomonas aeruginosa of cystic fibrosis origin. Infect Immun, 1982, 37: 662-669
    171.张惟杰.糖复合物生化研究技术.第二版.浙江:浙江大学出版社, 1999:140
    172. Nivens DE, Ohman DE, Williams J, Franklin MJ. Role of alginate and Its O acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. J Bacteriol, 2001, 183: 6746-6751.
    173. Bollinger N, Hassett DJ, Iglewski BH, Costerton JW, McDermott TR. Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol, 2001, 183: 5395-5401.
    174. Stapper AP, Narasimhan G, Ohman DE, Barakat J, Hentzer M, Molin S, Kharazmi A, Hoiby N, Mathee K. Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation. J Med Microbiol, 2004, 53: 679-690.
    175. Boyd A, Chakrabarty AM. Pseudomonas aeruginosa biofilms: role of the alginateexopolysaccharide. J Ind Microbiol, 1995, 15: 162-168
    176. O'Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development Mol Microbiol, 1998, 30: 295-304
    177. Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol, 2003, 8:1511-1124
    178. Beloin C, Da Re S, Ghigo JM. (2005) In Escherichia coli and Salmonella. Cellular and Molecular Biology, Eds. Curtiss R, Bock A., Ingraham JL, Kaper JB, Neidhardt FC, Riley M, Squires, CL (Am Soc Microbiol, Washington, DC), Chapter 8.3.1.3.
    179. Sherlock O, Dobrindt U, Jensen JB, Munk Vejborg R, Klemm P. Glycosylation of the self-recognizing Escherichia coli Ag43 autotransporter protein. J Bacteriol, 2006, 188:1798-1807
    180. Ross P, Mayer R, Benziman M. Cellulose biosynthesis and function in bacteria. Microbiol Rev, 1991, 55:35-58
    181. Da Re S, Ghigo JM. A CsgD-independent pathway for cellulose production and biofilm formation in Escherichia coli. J Bacteriol, 2006, 188: 3073-3087
    182. Hanna A, Berg M, Stout V, Razatos A. Role of capsular colanic acid in adhesion of uropathogenic Escherichia coli. Appl Environ Microbiol, 2003, 69: 4474-4481
    183. Wang X, Dubey AK, Suzuki K, Baker CS, Babitzke P, Romeo T. CsrA post-transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesin of Escherichia coli. Mol Microbiol, 2005, 56: 1648-1663
    184. White AP, Gibson DL, Collinson SK, Banser PA, Kay WW. Extracellular polysaccharides associated with thin aggregative fimbriae of Salmonella enterica serovar enteritidis. J Bacteriol, 2003, 185: 5398-5407
    185. Karlsson KA. Microbial recognition of target-cell glycoconjugates. Curr Opin Struct Biol, 1995, 5: 622-635
    186. Bucior I, Scheuring S, Engel A, Burger MM. Carbohydrate-carbohydrate interaction provides adhesion force and specificity for cellular recognition. J Cell Biol, 2004, 165: 529-537
    187. Rademacher T N, Dwek R A. Glycobiology. Annu Rev Biochem, 1998, 57: 785-838
    188.金城.糖生物学与糖工程的兴起与前景.生物工程进展, 1995, 15:12-17
    189.王克夷.糖类研究的进展和前沿.生命的化学, 1994, 14: 4-8
    190. Ajit V, Richard C, Jeffrey E,Hudson F, Gerald H,Jamey M. Essentials of Glycobiology.北京:清华大学出版社.2002第1版
    191. Feizi T,Mulloy B. Carbohydrates and glycoconjugates Glycomics: the new era of carbohydrate biology. Curr Opin Struc Biol, 2003, 13: 602-604
    192. Stella H,Robert S,Phil S. Cinderella’s coach is ready. Science, 2001, 291: 2337
    193. Wbitfield C. Biosynthesis and assembly of capsular polysaccharides in Escbericbia coli. Annu Rev Biochem, 2006, 75: 39-68
    194. Joseph LA, Wright AC. Expression of Vibrio vulnificus capsular polysaccharide inhibits biofilm formation. J Bacteriol, 2004, 186: 889-893
    195. Kierek K, Watnick PI. The Vibrio cholerae O139 O-antigen polysaccharide is essential for Ca2 -dependent biofilm development in sea water. Proc Natl Acad Sci U S A, 2003, 100: 7907-7912

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700