用户名: 密码: 验证码:
海洋微生物中细菌群体感应抑制因子的筛选与作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着抗菌药物的广泛应用,细菌的耐药性变得越来越严重,已成为全球关注的危害人类健康的重大难题。目前临床上使用的抗生素都是以细菌的蛋白质合成、细胞壁合成、DNA超螺旋等为靶点,通过干扰这些重要生命过程直接杀死微生物或抑制微生物生长来实现抗感染目的的。在这种生存压力下,细菌很容易产生耐药性。显然以传统的靶点和筛选方法获得的抗生素无法从根本上解决细菌的耐药问题。因此,寻找治疗细菌感染的新途径已成为当今生命科学研究的前沿和热点。近几年来,细菌群体感应(Quorum-Sensing,QS)研究的发展,给我们带来了新的机遇和挑战。群体感应是细菌根据细胞密度变化进行基因表达调控的一种群体行为。研究发现,细菌通过群体感应系统调控致病过程的一些重要环节,如致病因子产生、生物膜(Biofilm)形成等。根据美国NIH的调查报告,80%以上的细菌性感染与生物膜有关,而生物膜的形成是细菌产生抗生素耐药性和免疫逃逸的主要原因之一。因此,细菌群体感应系统干扰的研究对于新型抗菌药物的研究与开发具有重要意义。
     本文以革兰氏阴性菌的酰基高丝氨酸内酯(N-acyl- homoserine lactones, AHL)介导的群体感应系统为靶标,从海洋微生物中筛选群体感应抑制因子,并对其活性和作用机理进行研究。
     综合利用唯一能源法和报告菌株法,建立了一种从环境微生物中快速、高效地筛选能产生AHL群体感应抑制因子菌株的方法;利用该方法从海洋微生物中筛选得到多株具有AHL降解能力和竞争性抑制AHL群体感应能力的细菌,并对其中活性最高的一株进行了菌种鉴定,命名为Stenotrophomonas sp.A8。
     构建了菌株A8基因组DNA文库,利用AHL唯一能源培养基从文库中筛选得到一个具有AHL降解活性的克隆,并利用亚克隆试验确定了具有AHL降解酶活性基因的部分读码框;进一步通过反向PCR克隆得到该基因全长序列,最终得到的降解酶AQ1基因序列全长747bp,编码248个氨基酸,分子量为31.2kD。与Pseudomonas aeruginosa中的AHL降解酶PvdQ同源性为12%,与QuiP同源性为13%,可能属于酰氨酶家族。该酶对多种不同碳链长度的AHL分子均具有降解活性,尤其对3OC6HSL降解活性最强。
     采用层析技术结合多种AHL报告菌株,从A8的发酵液上清中分离纯化了三个具有AHL竞争性抑制作用的化合物,NMR和MS分析表明这三个化合物均为环肽,命名为:CP1、CP2和CP3。这三个化合物都能竞争性抑制AHL分子与其受体的结合;其中,CP2还能够抑制革兰氏阳性菌金黄色葡萄球菌、表皮葡萄球菌生物膜的形成;同时S.aureus RN4220中QS调控基因agrA、SarA、Hld的定量PCR结果表明,其mRNA转录水平均受到CP2的抑制。因此,CP2的抗细菌生物膜形成作用可能是通过抑制S.aureus RN4220的QS系统来实现的。
     综上所述,我们建立了一种高效的从环境微生物中筛选产生AHL群体感应抑制因子菌株的方法;从活性菌株Stenotrophomonas sp.A8中克隆了一个AHL降解酶基因,其重组酶具有降解多种不同碳链长度AHL分子的活性,该类型的酶在Stenotrophomonas属细菌中还未见报道;同时还从A8菌株发酵液上清中分离得到三个具有AHL竞争性抑制作用的环肽CP1、2和3,首次发现环肽化合物CP2对革兰氏阳性菌表皮葡萄球菌、金黄色葡萄球菌生物膜的形成具有显著抑制作用,并初步证明CP2的抗生物膜作用与QS系统有关。
     与传统的抗生素的作用机制完全不同,细菌群体感应抑制因子通过干扰细菌的群体感应系统实现抗感染的目的,而不影响细菌的生长,因此不会产生细菌耐药性。群体感应抑制因子作为新一代抗生素,在多个领域具有广泛的应用前景。本研究工作为开发海洋微生物资源和寻找以QS为靶点的新型抗生素奠定了一定基础。
With the widespread appearance of antibiotic-resistant bacteria, there is an increasing demand for novel strategies to control infectious diseases. Conventional antibiotics possess broad-spectrum toxic or growth-inhibitory effects on organisms. Therefore, an increased frequency of bacterial mutations has resulted in a significantly increased incidence of antibiotic resistance. Obviously, the problem of the increasing bacterial antibiotic-resistance could not be resolved absolutely by antibiotics against traditional targets. Hence, the development of new approaches to the treatment of bacterial infections constitutes a focal point of research. The discovery of bacterial communication systems (Quorum-Sensing, QS), which orchestrate important temporal events in the infection process, have afforded a novel opportunity to ameliorate bacterial infection by means of methods other than growth inhibition. Recent research showed that Quorum-Sensing system is widespread and involves complex networks that serve as fine-tuner of the performance of diverse behaviors, such as pathogenic factor production, biofilm formation, and so on. According to the estimation of National Institutes of Health (NIH), biofilms may be involved in up to 80 percent of human infections. Studies showed that biofilms play important roles in drug resistance and many chronic infectious diseases relapse repeatedly due to the biofilm formation. Therefore, the interference with QS is of great significance for the research and development of new antimicrobial drugs.
     In the present study, an effective method was developed for screening of marine bacteria isolates capable of inhibiting the N-acyl- homoserine lactones (AHL) mediated quorum-sensing process of many gram-negative bacteria. The action mechanism of such inhibition was also investigated.
     Our protocol is based on sole source of energy method and AHL reporter strains method, which was used for the rapid and sensitive screening of quorum-sensing inhibitor from marine bacteria. Many bacterial strains with QS inhibiting activities were isolated, and one of them, which showed the highest activity, was identified as Stenotrophomonas sp.A8.
     The partial sequence of an AHL quenching enzyme AQ1 was cloned by screening A8 genomic library with AHL sole source of energy method. The complete AQ1 gene was cloned by inverse PCR. The gene is 747bp in length, and is predicated to encode a protein of 248 amino acids with a molecular mass of 31.2 kDa, which is 12% and 13% amino acid sequence similar with those of Pseudomonas aeruginosa AHL-quenching enzyme PvdQ and QuiP, respectively. The AQ1 showed quenching activities to many AHL molecules with different side chain lengths, especially to the 3OC6HSL.
     Interestingly, from the bioactive partition of A8 fermentation broth, three compounds, CP1, CP2 and CP3, was isolated by reverse-phase high performance liquid chromatography and their activities were assayed by AHL reporter strains. By means of spectroscopic methods (MS, 1H NMR, 13C NMR), the structures of compounds CP1, CP2 and CP3 were elucidated. All these three compounds showed activities of inhibiting the binding of AHLs to their receptors. CP2 can also inhibit biofilm formation of gram-positive bacteria, Staphylococcus aureus and Staphylococcus epidermidis. The mRNAs of agrA, SarA and Hld gene were analyzed with real-time quantitative polymerase chain reaction. All of them were regulated by QS system in S.aureus RN4220. The results showed that mRNAs of these three genes decreased by CP1, so the effect of attenuating biofilm formation can be attributed to the depression of QS system.
     In conclusion, an effective method was developed for screening of environmental bacterial isolates capable of inhibiting the AHL-mediated quorum-sensing system. The AHL-quenching enzyme AQ1 gene was cloned from strain Stenotrophomonas sp.A8. Recombinant AQ1 showed activities to many AHL molecules with different side chain lengths. Meanwhile, three Antagonistic cyclic peptides of Quorum-Sensing were isolated from the bioactive partition of fermentation broth of A8. And it was reported for the first time that the cyclic peptide CP2 can inhibit biofilm formation of gram-positive bacteria, S.aureus and S.epidermidis. Analysis of three QS regulated genes demonstrated that the reduction of biofilm formation is related to the depression of QS system.
     Research into quorum sensing and its inhibition, may provide a mean of treating many common and damaging chronic infections without the use of growth-inhibitory agents, such as antibiotics, preservatives and disinfectants which unavoidably select for resistant organisms. To the large number of bacteria that employ quorum-sensing communication systems, attenuation of unwanted bacterial activities rather than bactericidal or bacteriostatic strategies may find application in many different fields, e.g., medicine, agriculture and food technology.
引文
1. Lewis, K. Riddle of biofilm resistance. Antimicrob. Agents Chemother, 2001, 45: 999-1007.
    2. Hancock, R.E. Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative gram-negative bacteria. Clin. Infect. Dis, 1998, 27: S93–S99.
    3. Costerton, J.W., Stewart, P.S., and Greenberg, E.P. Bacterial biofilms: a common cause of persistent infections. Science, 1999, 284: 1318-1322.
    4. Eberl, L. N-acyl homoserine-lactone-mediated gene regulation in gram-negative bacteria. Syst. Appl. Microbiol, 1999, 22: 493–506.
    5. Fuqua W C,et a1.Quorum sensing in bacteria:The LuxR-LuxI family of cell density-responsive transcriptional regulators.J Bacteriol, 1994,176:269
    6. Nealson K H.et a1.Cellular control of the synthesis and activity of the bacterial luminescent system.J Bacteriol,1970,104:313
    7. Sitnikov D M ,et a1.Transcriptional regulation of bioluminescence genes from Vibrio fischeri.Mo1 Microbiol, 1995,17:801
    8. Swift S.et a1. Quorum sensing as flpopulation-density-dependent determinant of bacterial physiology.Adv Micro Physiol,2001,45:199
    9. Greenberg E P. Quorum sensing in gram-negative bacteria.ASM News,1997, 63:371
    10. Hastings J W .et a1. Quorum sensing:The explanation of a curious phenomenon reveals a common characteristic of bacteria.J Bacteriol, 1999,181:2667
    11. Nealson K H.et a1.Cellular control of the synthesis and activity of the bacterial luminescent system.J Bacteriol,1970,104:313
    12 Eberhard A.Inhibition and activation of bacterial luciferase synthesis. J Bacteriol,1972,109:1101
    13.Fuqua C,Winans S C,Greenberg E P.Annu Rev Microbiol,1996,50:727—751
    14.Eber L,Molin S,Givskov M.J Bacteriol,1999,181:1703—1712.
    15. Latifi, A., et al. Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol. Microbiol, 1995, 17: 333–343.
    16. Eberl, L. N-acyl homoserine lactone-mediated gene regulation in gram-negative bacteria. Syst. Appl. Microbiol, 1999, 22: 493–506.
    17.Schauder S,Bassler B L. Genes & Development,2001,15:1468—1480
    18. Chemical communication among bacteria. Michiko E. Taga, Bonnie L. Bassler PNAS . 2003, 100, suppl. 2: 14549–14554
    19.Zavilgelsky G B,Manukhov I V. Molecular Biology,2001,35(2):224—232
    20.Kaplan H B.et a1.Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system.J Bacteriol, 1985,163:1210
    21.Fuqua C,et a1. Census and consensus in bacterial ecosystems:the LuxR-LuxI family of quorum-sensing transcriptional regulators.Annu Rev M icrobiol, 1996, 50:727
    22.Pearson J P,et a1.Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol,1999,181:1203
    23.Freeman J A,Bassler B L, J Bacteriol,1999,181:899—9O6.
    24.DeLisa M P,Bentley W E.Microb Cell Fact. 2OO2,1(1):5~9.
    25.McNab R,Ford S K,E1-Sabaeny.A, et a1.LuxS-based signaling in Streptococcus gordonii: autoinducer-2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis.J Bacteriol,2003,185(1):274—278
    26.Miller M B,Bassler B L.Annu Rev Microbiol,2001,55:165—199.
    27.Xavier K B,Bassler B L.LuxS quorum sensing:more than just a numbers games.Curr Opin Microbiol ,2003,6:191~197
    28.Schauder S,Shokat K,Surette M G,et a1.The LuxS family of bacterial autoinducers:biosynthesis of a novel quorum-sensing signal molecule. Mol Microbiol,2001,41:463~476
    29.Sporandio V,Tortes A G,Jarvis B,et a1.Bacteria-host communication:the language of hormones.Proc Natl Acad Sci USA,2003,100(15):8951~8956
    30.Chen X,Schauder S,Pofier N,et a1.Structural identification of a bacterial quorum-sensing signal containing boron. Nature,2002,415(6871):545—549
    31.Winzer K,Hardee K R,Burgess N,et a1.LuxS:its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone. Microbiology,2002,148:909-922
    32.Sun J,Daniel R,Wagner-Dobler I,et a1.Is autoinducer-2 a universal signal forinterspecies communication:a comparative genomic an phylogenetic analysis of the synthesis and signal transduction pathways.BMC Evolutionary Biology,2004,4:36
    33.Bassler B L,Wright M,Showalter R E,et a1.Intercellular signaling in Vibrio harveyi:sequence and function of genes regulating expression of luminescence. Mol Microbiol, 1993,9(4):773~786
    34. Bassler B L,Wright M,Silverman M R.Multiple signaling systems controling expression of luminescence in Vibrio harveyi sequence and function of genes encoding a second sensory pathway.Mol Microbiol,1994,13(2):273—286
    35.Miler M B,Skorupski K,Lenz D H.et a1.Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell,2002,110(3):303~314
    36.Ohtanik,Hayashi H, Shimizu T.The luxS gene is involved in cell-cell signaling for toxin production in Clostridium perfringens.Mol Microbiol,2002,44(1):171—179
    37.Derzele S,Duchaud E,Kunst F,et a1. Identification.characterization,and regulation of a cluster of genes involved in carbapenem biosynthesis in Photorhabdus luminescens. Appl Environ Microbiol,2002,68(8):3780—3789
    38.Hentzer M,Wu H,Andersen J B, et a1.Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors.EMBO J,2003,22(15):3803~3815
    39.Parsek M R,Greenberg E P.Acyl-homoserine lactone quorum sensing in gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc Natl Acad Sci USA,2O0O, 97:8789—8793.
    40.Sturme M H,Kleerebezem M,Nakayama J.Cell to cell communication by autoinducing peptides in gram-positive bacteria. Antonnie van leeuwenhoek,2O02,81:233—243
    41. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science, 1999, 284(5418): 1318-1322
    42. Costerton JW, Lewandowski Z, Caldwell DE, et al. Microbial biofilms. Annu Rev Microbiol , 1995, 49: 711-745
    43. Sauer K, Camper AK, Ehrlich GD , et al. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol, 2002, 184(4): 1140-1154
    44.Davies D G, Parsek MR, Pearson J P, et al. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 1998, 280(5361): 295-298
    45.Rashid M H , Rumbaugh K, Passador L , et al. Polyphosphate kinase is essential for biofilm development, quorum sensing, and virulence of Pseudomonas aeruginosa. Proc Natl Acad Sci USA, 2000, 97( 17): 9636-9641
    46.Parkins M D, Ceri H, Storey DG. Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation. Mol Microbiol, 2001, 40(5): 1215-1226
    47.Hassett D J, Cuppoletti J, Trapnell B, et al. Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: rethinking antibiotic treatment strategies and drug targets. Adv Drug Deliv Rev, 2002, 54(11): 1425-1443
    48. Parsek, M.R., Val, D.L., Hanzelka, B.L., Cronan, J.E., Jr., and Greenberg, E.P. Acyl homoserine-lactone quorum-sensing signal generation. Proc. Natl. Acad. Sci. U. S. A, 1999, 96: 4360–4365.
    49. Tateda, K., et al. Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob. Agents Chemother, 2001, 45: 1930–1933.
    50. Pechere, J.C. Azithromycin reduces the production of virulence factors in Pseudomonas aeruginosa by inhibiting quorum sensing. Jpn. J. Antibiot, 2001, 54: 87–89.
    51. Sofer, D., Gilboa-Garber, N., Belz, A., and Garber, N.C.‘Subinhibitory’erythromycin represses production of Pseudomonas aeruginosa lectins, autoinducer and virulence factors. Chemotherapy, 1999, 45:335–341.
    52. Yates, E.A., et al. N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect. Immun, 2002, 70: 5635–5646.
    53.Byers, J. T., Lucas, C., Salmond, G. P. & Welch, M. Nonenzymatic turnover of an Erwinia carotovora quorum-sensing signaling molecule. J Bacteriol, 2002, 184: 1163–1171.
    54.Dong, Y. H., Xu, J. L., Li, X. Z. & Zhang, L. H. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci U S A, 2000, 97: 3526–3531.
    55.Dong, Y. H., Wang, L. H., Xu, J. L., Zhang, H. B., Zhang, X. F. &Zhang, L. H. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature, 2001, 411: 813–817.
    56.Wang, L. H., Weng, L. X., Dong, Y. H. & Zhang, L. H. Specificity and enzyme kinetics of the quorum-quenching N-acyl homoserine lactone lactonase (AHL-lactonase). J Biol Chem, 2004, 279: 13645–13651
    57.Lee, S. J., Park, S. Y., Lee, J. J., Yum, D. Y., Koo, B. T. & Lee, J. K. Genes encoding the N-acyl homoserine lactone-degrading enzyme are widespread in many subspecies of Bacillus thuringiensis. Appl Environ Microbiol, 2002, 68: 3919–3924.
    58. Dong, Y. H., Zhang, X. F., Xu, J. L. & Zhang, L. H. Insecticidal Bacillus thuringiensis silences Erwinia carotovora virulence by a new form of microbial antagonism, signal interference. Appl Environ Microbiol, 2004, 70: 954–960.
    59.Molina, L., Constantinescu, F., Michel, L., Reimmann, C., Duffy, B. &Defago, G. Degradation of pathogen quorum-sensing molecules by soil bacteria: a preventive and curative biological control mechanism. FEMS Microbiol Ecol, 2003, 45: 71–81.
    60.Uroz, S., D’Angelo-Picard, C., Carlier, A., Elasri, M., Sicot, C., Petit, A., Oger, P., Faure, D. & Dessaux, Y. Novel bacteria degrading N-acylhomoserine lactones and their use as quenchers of quorum-sensing -regulated functions of plant-pathogenic bacteria. Microbiology, 2003, 149: 1981–1989.
    61. Carlier, A., Uroz, S., Smadja, B., Fray, R., Latour, X., Dessaux, Y. & Faure, D. The Ti plasmid of Agrobacterium tumefaciens harbors an attM-paralogous gene, aiiB, also encoding N-acyl homoserine lactonase activity. Appl Environ Microbiol, 2003, 69: 4989–4993.
    62. Park, S. Y., Lee, S. J., Oh, T. K., Oh, J. W., Koo, B. T., Yum, D. Y. &Lee, J. K. AhlD, an N-acylhomoserine lactonase in Arthrobacter sp., and predicted homologues in other bacteria. Microbiology, 2003, 149: 1541–1550.
    63.Huang, J. J., Han, J. I., Zhang, L. H. & Leadbetter, J. R. Utilization of acyl-homoserine lactone quorum signals for growth by a soil Pseudomonad and Pseudomonas aeruginosa PAO1. Appl Environ Microbiol, 2003, 69: 5941–5949.
    64. Camara, M., Williams, P. & Hardman, A. Controlling infection by tuning in and turning down the volume of bacterial small-talk. Lancet Infect Dis, 2002, 2: 667–676.
    65. Borchardt, S. A., Allain, E. J., Michels, J. J., Stearns, G. W., Kelly, R. F.& Mc Coy, W. F. Reaction of acylated homoserine lactone bacterial signaling molecules with oxidized halogen antimicrobials. Appl Environ Microbiol, 2001, 67: 3174–3179.
    66.Leadbetter, J. R. & Greenberg, E. P. Metabolism of acylhomoserine lactone quorum-sensing signals by Variovorax paradoxus. J Bacteriol, 2000, 182: 6921–6926.
    67. Chun, C. K., Ozer, E. A., Welsh, M. J., Zabner, J. & Greenberg, E. P. Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. Proc Natl Acad Sci U S A, 2004, 101: 3587–3590.
    68. Hastings, J. W. Bacterial quorum-sensing signals are inactivated by mammalian cells. Proc Natl Acad Sci U S A, 2004, 101: 3993–3994.
    69.Dong YH,Zhang LH.Quorum sensing an Quorum-Quenching Enzymes. J. Microbiology, 2005: 101-109
    70.Declan M.R,Joseph T.B,Debra S.,et al. Communications blackout? Do N-acylhomoserinelactone-degradingenzymes have any role in quorum sensing? Microbiology, 2004, 150: 000-006
    71. Passador, L., et al. Functional analysis of the Pseudomonas aeruginosa autoinducer PAI. J. Bacteriol, 1996, 178: 5995–6000.
    72. Schaefer, A.L., Hanzelka, B.L., Eberhard, A., and Greenberg, E.P. Quorum sensing in Vibrio fischeri: probing autoinducer-LuxR interactions with autoinducer analogs. J. Bacteriol, 1996, 178: 2897–2901.
    73. Swift, S., et al. 1997. Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acylhomoserine lactone signal molecules. J. Bacteriol. 179: 5271–5281.
    74. Swift, S., et al. 1999. Quorum sensing-dependent regulation and blockade of exoprotease production in Aeromonas hydrophila. Infect. Immun. 67: 5192–5199
    75. Zhu, J., et al. 1998. Analogs of the autoinducer 3-oxo-octanoyl-homoserine lactone strongly inhibit activity of the TraR protein of Agrobacterium tumefaciens. J. Bacteriol. 180: 5398–5405.
    76. Chhabra, S.R., et al. Autoregulation of carbapenem biosynthesis in Erwinia carotovora by analogues of N-(3-oxohexanoyl)-L-homoserine lactone. J. Antibiot. 1993, 46: 441–454.
    77. McClean, K.H., et al. Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology, 1997, 143: 3703–3711.
    78. Kline, T., et al.. Novel synthetic analogs of the Pseudomonas autoinducer. Bioorg. Med. Chem. Lett, 1999, 9: 3447–3452.
    79. Smith, K.M., Bu, Y., and Suga, H. Induction Pseudomonas aeruginosa quorum sensing by synthetic autoinducer analogs. Chem. Biol, 2003, 10: 81–89.
    80.Rasmussen, T. B., Skindersoe, M. E., Bjarnsholt, T. & 10 other authors (). Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology, 2005, 151: 1325–1340.
    81. Koch, B., Liljefors, T., Persson, T., Nielsen, J., Kjelleberg, S. & Givskov, M. The LuxR receptor: the sites of interaction with quorum sensing signals and inhibitors. Microbiology, 2005, 151: 3589–3602.
    82. Manefield, M. & Turner, S. L. Quorum sensing in context: out of molecular biology and into microbial ecology. Microbiology, 2002, 148: 3762–3764.
    83. Rasmussen, T. B., Bjarnsholt, T., Skindersoe, M. E., Hentzer, M., Kristoffersen,P., Kote, M., Nielsen, J., Eberl, L. & Givskov, M. Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol, 2005, 187: 1799–1814.
    84. Teplitski, M., Robinson, J. B. & Bauer, W. D. Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant Microbe Interact , 2000, 13: 637–648.
    85..Schaefer, A. L., Hanzelka,B. L., Eberhard, A. &Greenberg, E. P. Quorum sensing in Vibrio fischeri: probing autoinducer-LuxR interactionswith autoinducer analogs. J Bacteriol, 1996, 178: 2897–2901.
    86.Persson, T., Hansen, T. H., Rasmussen, T. B., Skinderso, M. E.,Givskov, M. & Nielsen, J. Rational design and synthesis of new quorum-sensing inhibitors derived from acylated homoserine lactones and natural products from garlic. Org Biomol Chem, 2005, 3: 253–262.
    87.Reverchon, S., Chantegrel, B., Deshayes, C., Doutheau, A. & Cotte-Pattat, N. New synthetic analogues of N-acyl homoserine lactones as agonists or antagonists of transcriptional regulators involved in bacterial quorum sensing. Bioorg Med Chem Lett, 2002, 12: 1153–1157.
    88. Olsen, J. A., Severinsen, R., Rasmussen, T. B., Hentzer, M., Givskov,M. & Nielsen, J. Synthesis of new 3- and 4-substituted analogues of acyl homoserine lactone quorum sensing autoinducers. Bioorg Med Chem Lett, 2002, 12: 325–328.
    89. Smith, K. M., Bu, Y. & Suga, H. Induction and inhibition of Pseudomonas aeruginosa quorum sensing by synthetic autoinducer analogs. Chem Biol, 2003, 10: 81–89.
    90.Hentzer, M., Eberl, L. & Givskov, M.Transcriptome analysis of Pseudomonas aeruginosa biofilm development: anaerobic respiration and iron limitation. Biofilms ,2005, 2: 37–61.
    91.Schuster, M., Lostroh, C. P., Ogi, T. & Greenberg, E. P. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol, 2003, 185: 2066–2079.
    92. Teplitski, M., Robinson, J.B., and Bauer, W.D.. Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol. Plant Microbe Interact , 2000, 13: 637–648.
    93. Cha, C., Gao, P., Chen, Y.C., Shaw, P.D., and Farrand, S.K. Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Mol. Plant Microbe Interact, 1998, 11: 1119–1129.
    94. Kushmaro, A., Loya, Y., Fine, E., and Rosenberg, E. Bacterial infection and coral bleaching. Nature, 1996, 380: 396.
    95. Littler, M.M., and Littler, D.S. Impact of CLOD pathogen on Pacific coral reefs. Science, 1995, 267: 1356–1360.
    96. Correa, J.A. Diseases in seaweeds: an introduction. Hydrobiologia, 1996, 326: 87–88.
    97. Fenical, W. New pharmaceuticals from marine organisms. Trends Biotechnol, 1997, 15: 339–341.
    98. de Nys, R., Wright, A.D., K?nig, G.M., and Sticher,. New halogenated furanones from the marine alga Delisea pulchra. Tetrahedron, 1993, 49: 11213–11220.
    99. de Nys, R., Steinberg, P., Rogers, C.N., Charlton, T.S., and Duncan, M.W. Quantitative variation of secondary metabolites in the sea hare Apylsia parvula and its host plant, Delisea pulchra. Mar. Ecol. Prog. Ser, 1996, 130: 135–146.
    100. de Nys, R., et al.Broad spectrum effects of secondary metabolites from the red alga Delisea pulchra in antifouling assays. Biofouling, 1995, 8: 259–271.
    101. Reichelt, J.L., and Borowitzka, M.A. Antimicrobial activity from marine algae: results of a large-scale screening programme. Hydrobiology, 1984, 116/117: 158–168.
    102. Rice, S.A., Givskov, M., Steinberg, P., and Kjelleberg, S. Bacterial signals and antagonists: the interaction between bacteria and higher organisms. J. Mol. Microbiol. Biotechnol, 1999, 1: 23–31.
    103. Belas, M.R. The swarming phenomenon of Proteus mirabilis. ASM News, 2003, 58: 15–22.
    104. Henschel, J.R., and Cook, P.A. The development of a marine fouling community in relation to the primary film of microorganisms. Biofouling, 1990, 2:1–11.
    105. Davis, A.R., et al. Epibiosis of marine algae and benthic invertebrates: natural products chemistry and other mechanisms inhibiting settlement and overgrowth. Bioorganic Marine Chemistry, 1989, 3: 86–114.
    106. Wahl, M. Marine epibiosis. Fouling and antifouling: some basic aspects. Mar. Ecol. Prog. Ser, 2003, 58: 175–189.
    107. Kjelleberg, S., et al. Do marine natural products interfere with prokaryotic AHL regulatory systems? Aquat. Microb. Ecol, 1997, 13: 85–93.
    108. Maximilien, R.R., et al. Chemical mediation of bacterial surface colonisation by secondary metabolites from the red alga Delisea pulchra. Aquat. Microb. Ecol, 1998,15: 233–246.
    109. Slattery, M., McClintoch, J.B., and Heine, J.N.. Chemical defences in Antarctic soft corals: evidence for antifouling compounds. J. Exp. Mar. Biol. Ecol, 1995, 190: 61–77.
    110. de Nys, R., et al.. Broad spectrum effects of secondary metabolites from the red alga Delisea pulchra in antifouling assays. Biofouling, 1995, 8: 259–271.
    111. Givskov, M., et al. Eukaryotic interference with homoserine lactone- mediated prokaryotic signalling. J. Bacteriol, 1996, 178: 6618–6622.
    112. Manefield, M., et al. Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology, 1999, 145: 283–291.
    113. Hentzer, M., et al. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology, 2002, 148: 87–102.
    114.Hentzer, M., et al. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J, 2003, 22: 3803–3815.
    115. Manefield, M., Harris, L., Rice, S.A., de Nys, R., and Kjelleberg, S..Inhibition of luminescence and virulence in the black tiger prawn (Penaeus monodon) pathogen Vibrio harveyi by intercellular signal antagonists. Appl. Environ. Microbiol, 2000, 66: 2079–2084.
    116. Manefield, M., Welch, M., Givskov, M., Salmond, G.P., and Kjelleberg, S. Halogenated furanones from the red alga, Delisea pulchra, inhibit carbapenem antibiotic synthesis and exoenzyme virulence factor production in the phytopathogen Erwinia carotovora. FEMS Microbiol. Lett, 2001, 205: 131–138.
    117. Gallagher, L.A., McKnight, S.L., Kuznetsova, M.S., Pesci, E.C., and Manoil, C.. Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J. Bacteriol, 2002, 184: 6472–6480.
    118. D’Argenio, D.A., Calfee, M.W., Rainey, P.B., and Pesci, E.C. Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants. J. Bacteriol,2002,184:6481–6489.
    119. Guina, T., et al. Quantitative proteomic analysis indicates increased synthesis of a quinolone by Pseudomonas aeruginosa isolates from cystic fibrosis airways. Proc. Natl. Acad. Sci. U. S. A, 2003, 100: 2771–2776.
    120. Wu, H., et al. Detection of N-acyl-homoserine lactones in lung tissues of mice infected with Pseudomonas aeruginosa. Microbiology, 2000, 146: 2481–2493.
    121. Winson M K, Camara M , Latifi A , et al . Multiple N-acyl-L2homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA , 1995 , 92 : 9427~9431.
    122. Winson M K, Swift S , Fish L , Throup J P , et al . Construction and analysis of l uxCDAB E 2based plasmid sensors for investigating N-acyl-homoserine lactone-mediated quorum sensing[J ]. FEMS Microbiol. Lett, 1998, 163: 185-192.
    123. Swift S , Karlyshev A V , Durant E L , et al . Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: identification of the LuxRI homologues AhyRI and Asy RI and their cognate signal molecule. J. Bacteriol, l997, 179: 5271-5281.
    124. Pearson J P , Gray K M , Passador L , et al .The structure of the autoinducer molecule required for expression of Pseudomonas aeruginosa virulence genes. Proc. Natl. Acad. Sci. USA, 1994 , 91: 197-201.
    125. Shaw P D , Ping G, Daly S , et al . Detecting and characterizing acyl-homoserine lactone signal molecules by thin layer chromatography. Proc. Natl. Acad. Sci. USA , 1997 , 94: 6036-6041.
    126. McClean K H , Winson M K, Fish L , et al . Quorum sensing and Chromobacterler violaceum: exploitation of violacein production and inhibition for the detection of N-acyl-homoserine lactones. Microbiol, 1997, 143: 3703-3771.
    127. Givskov M, Eberl L, Molin S. Control of exoenzyme production, motility and cell differentiation in Serratia liquefaciens. FEMS Microbiol. Lett, l997, 148: 115-122.
    128. Eberl L, Molin S, Givskov M. Surface motility of Serratia liquefaciens MGI. J. Bacteriol, 1999, 181: 1703-1712.
    129. Lindum P W, Anthoni U , Christophersen C , et al . N-acyl-L-homoserine lactone autoinducers control production of an extracellular lipopeptide biosurfactant required for swarming motility of Serratia liquefaciens MGI. J. Bacteriol, 1998, 180: 6384-6388. 1302. Huang JJ, Han JI, Zhang LH, Leadbetter JR. Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1. Appl Environ Microbiol, 2003, Oct, 69(10): 5941-9.
    131. McLean RJ, Pierson LS 3rd, Fuqua C. A simple screening protocol for the identification of quorum signal antagonists. J Microbiol Methods, 2004, 58(3): 351-60.
    132. Blosser, R.S., Gray, K.M. Extraction of violacein from Chromobacterium violaceum provides a new quantitative bioassay for N-acyl homoserine lactone autoinducers. J. Microbiol Methods, 2000, 40: 47– 55.
    133. Zhu, J., Beaber, J.W., More, M.I., Fuqua, C., Eberhard, A., Winans, S.C., Analogs of the autoinducer 3-oxooctanoyl-homoserine lactone strongly inhibit activity of the TraR protein of Agrobacterium tumefaciens. J. Bacteriol, 1998, 180: 5398– 5405.
    134.奥斯伯F,布伦特R,金斯顿R E,等.精编分子生物学实验指南[M].北京:科学出版社,1998. 39.
    135. AU Xiao, Gaoping; Deziel, Eric; MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR-class regulatory protein, has dual ligands. Molecular Microbiology, 2006, 62 : 1689-1699.
    136. Henriques, M.; Martins, M.; Azeredo, J.; Oliveira, R.. Effect of farnesol on Candida dubliniensis morphogenesis. L etters in Applied Microbiology. 2007, 44: 199-205.
    137. AU Li, Xiaojing; Fekete, Agnes; Englmann, Matthias. Development and application of a method for the analysis of N-acylhomoserine lactones by solid-phase extraction and ultra high pressure liquid chromatography. Journal of Chromatography A. 2006, 1134: 186-193
    138. Kacmar, James; Gilbert, Alan; Cockrell, Janelle. The cytostat: A new way to study cell physiology in a precisely defined environment. Journal of Biotechnology. 2006, 126: 163-172
    139. Tu, Kimberly C.; Bassler, Bonnie L. Multiple small RNAs act additively to integrate sensory information and control quorum sensing in Vibrio harveyi. Genes & Development, 2007, 21: 221-233
    140. Brumbach, Kevin C.; Eason, Bryan D.; Anderson, Lamont K. The Serratia-type hemolysin of Chromobacterium violaceum. FEMS Microbiology Letters. 2007, 267: 243-250
    141. Muh, Ute; Schuster, Martin; Heim, Roger. Novel Pseudomonas aeruginosa quorum-sensing inhibitors identified in an ultra-high-throughput screen. Antimicrobial Agents and Chemotherapy. 2006, 50: 3674-3679
    142. Kumari, A.; Pasini, P.; Flomenhoft, D.; Shashidhar, H.. Non-invasive biosensors for the evaluation of bacterial quorum sensing in GI disorders. Luminescence, 2006, 21: 1522-7235.
    143. Gandhi, Megha; Chikindas, Michael L. Listeria: A foodborne pathogen that knows how to survive. International Journal of Food Microbiology, 2007, JAN 1: 1-15.
    144. Anonymous.Quorum sensing system lactones do not increase invasiveness of a MexAB-OprM efflux mutant but do play a partial role in Pseudomonas aeruginosa invasion. Nagasaki Igakkai Zasshi. 2006, 81: 109-110.
    145. Liu, Zhi; Stirling, Fiona R.; Zhu, Jun. Temporal quorum-sensing induction regulates Vibrio cholerae biofilm architecture. Infection and Immunity. 2007, 75: 122-126.
    146. Poritsanos, N.; Nakkeeran, S.; Fernando, W. G. D.. Biocontrol activity of Pseudomonas chlororaphis strain PA23, and GacS-mediated regulation of metabolite production. Canadian Journal of Plant Pathology. 2006, 28: 324-325.
    147. Laurans, M.; Arion, A.; Fines-Guyon, M.; Regeasse, A. Pseudomonas aeruginosa and cystic fibrosis: first colonization to chronic infection FT Pseudomonas aeruginosa et mucoviscidose: "dela primocolonisation a l'infection chronique". Archives de Pediatrie, 2006, 13(1):S22-S29
    148. Zheng, Huirning; Zhong, Zengtao; Lai, Xin. A LuxR/LuxI-type quorum-sensing system in a plant bacterium, Mesorhizobium tianshanense, controls symbiotic nodulation. Journal of Bacteriology. 2006, 188(5): 1943-1949.
    149. Lumjiaktase, Putthapoom, Diggle, Stephen P. Loprasert, Suvit. Quorum sensing regulates dpsA and the oxidative stress response in Burkholderia pseudomallei. Microbiology (Reading). 2006, 152(Part 12): 3651-3659.
    150. Anack, Kristen J.; Runyen-Janecky, Laura J.; Ferrell, Evan P. Characterization of DNA-binding specificity and analysis of binding sites of the Pseudomonas aeruginosa global regulator, Vfr, a homologue of the Escherichia coli cAMP receptor protein. Microbiology, 2006, 152(Part 12): 3485-3496.
    151. Gonzalez, Juan E.; Keshavan, Neela D. Messing with bacterial quorum sensing. Microbiology and Molecular Biology Reviews. 2006, 70(4): 859-875,
    152. Bandara, W. M. M. S. Seneviratne, Gamini; Kulasooriya, S. A. Interactions among endophytic bacteria and fungi: effects and potentials. Journal of Biosciences (Bangalore). 2006, 31(5): 645-650.
    153. Supanjani, S.; Lee, Kyung D.; Almaraz, Juan J. Effect of organic N source on bacterial growth, lipo-chitooligosaccharide production, and early soybean nodulation by Bradyrhizobium japonicum. Canadian Journal of Microbiology. 2006, 52(3): 227-236
    154. Gould, Phillip; Maguire, Maria; Lund, Peter A. Distinct mechanisms regulate expression of the two major groEL homologues in Rhizobium leguminosarum. Archives of Microbiology. 2007, 187(1): 1-14.
    155. Lee, Sang-Won; Han, Sang-Wook; Bartley, Laura E. Unique characteristics of Xanthomonas oryzae pv. oryzae AvrXa21 and implications for plant innate immunity. Proceedings of the National Academy of Sciences of the United States of America. 2006, 103(49): 18395-18400.
    156. He, Ya-Wen; Wang, Chao; Zhou, Lian; Song, Haiwei. Dual signaling functions of thehybrid sensor kinase RpfC of Xanthomonas campestris involve either phosphorelay or receiver domain-protein interaction. Journal of Biological Chemistry. 2006, 281(44): 33414-33421
    157. Bratu, Simona; Gupta, Jyoti; Quale, John. Expression of the las and rhl quorum-sensing systems in clinical isolates of Pseudomonas aeruginosa does not correlate with efflux pump expression or antimicrobial resistance. Journal of Antimicrobial Chemotherapy. 2006, 58(6): 1250-1253
    158. teindler, Laura; Venturi, Vittorio. Detection of quorum-sensing N-acyl homoserine lactone signal molecules by bacterial biosensors. FEMS Microbiology Letters. 2007, 266(1): 1-9
    159. Wei, Hai-Lei; Zhang, Li-Qun. Quorum-sensing system influences root colonization and biological control ability in Pseudomonas fluorescens 2P24. Antonie van Leeuwenhoek. 2006, 89(2): 267-280
    158. Wang, Hui; Cai, Tao; Weng, Mengwei. Conditional production of acyl-homoserine lactone-type quorum-sensing signals in clinical isolates of enterobacteria. Journal of Medical Microbiology. 2006, 55(12): 1751-1753
    159. Conners, Shannon B.; Mongodin, Emmanuel F.; Johnson, Matthew R. Microbial biochemistry, physiology, and biotechnology of hyperthermophilic Thermotoga species. FEMS Microbiology Reviews. 2006, 30(6): 872-905
    160. He Xuesong; Fuqua, Clay. Rhizosphere communication: Quorum sensing by the rhizobia.Journal of Microbiology and Biotechnology. 2006, 16(11): 1661-1677
    161. Mainil, Jacques Regulation of virulence gene expression by "quorum-sensing": science or science-fiction? FT Regulation de l'expression des genes de virulence par "quorum-sensing". Annales de Medecine Veterinaire. 2005, 149: 33-40
    162. Nejad, Pajand; Ramstedt, Mauritz. Presence of quorum-sensing-mediated gene regulation in pathogenic ice-nucleation-active (INA) bacteria. World Journal of Microbiology & Biotechnology. 2006, 22(12): 1373-1375
    163. Nakayama, Jiro; Chen, Shengmin; Oyama, Nozomi; Nishiguchi, Kenzo. Revised model for Enterococcus faecalis fsr quorum-sensing system: the small oven readina frame fsrD encodes the gelatinase biosynthesis-activating pheromone propeptide corresponding to staphylococcal AgrD. Journal of Bacteriology. 2006, 188(23): 8321-8326
    164. Kaufmann, Gunnar F.; Sartorio, Rafaella; Lee, Sang-Hyeup. Discovering additional chemical and biological functions for 3-oxo-N-acylhomoserine lactones. Understanding Biology Using Peptides. 2006: 252-254
    165. Ramsay, Joshua P.; Sullivan, John T.; Stuart, Gabriella S. Excision and transfer of the Mesorhizobium loti R7A symbiosis island requires an integrase IntS, a novelrecombination directionality factor RdfS, and a putative relaxase RlxS. Molecular Microbiology. 2006, 623: 723-734
    166. Soto, Maria J.; Sanjuan, Juan; Olivares, Jose. Rhizobia and plant-pathogenic bacteria: common infection weapons. Microbiology. 2006, 152, Part 11: 3167-3174.
    167. Girard, Genevieve; Barends, Sharief; Rigali, Sebastien. Pip, a novel activator of phenazine biosynthesis in Pseudomonas chlororaphis PCL1391. Journal of Bacteriology. 2006, 188(23): 8283-8293.
    168. Chen, Guozhou; Wang, Chao; Fuqua, Clay; Zhang, Lian-Hui. Crystal structure and mechanism of TraM2, a second quorum-sensing antiactivator of Agrobacterium tumefaciens strain A6. Journal of Bacteriology. 2006, 88(23): 8244-8251
    169. Matsumoto-Nakano, Michiyo; Kuramitsu, Howard K. Role of bacteriocin immunity proteins in the antimicrobial sensitivity of Streptococcus mutans. Journal of Bacteriology. 2006, 188(23): 8095-8102
    170. Gomi, Kazunori; Kikuchi, Toshiaki; Tokue, Yutaka. Mouse and human cell activation by N-dodecanoyl-DL-homoserine lactone, a Chromobacterium violaceum autoinducer. Infection and Immunity. 2006, 74(12): 7029-7031
    171. Jafra, S.; Przysowa, J.; Czajkowski, R.; Michta, A. Detection and characterization of bacteria from the potato rhizosphere degrading N-acyl-homoserine lactone. Canadian Journal of Microbiology. 2006, 52(10): 1006-1015
    173. Singh, Vipender; Shi, Wuxian; Almo, Steven C. Structure and inhibition of a quorum sensing target from Streptococcus pneumoniae. Biochemistry. 2006,45,43,12929-12941
    174. Momb, Jessica; Thomas, Pei W.; Breece, Robert M. The quorum-quenching metallo-gamma-lactonase from Bacillus thuringiensis exhibits a leaving group thio effect. Biochemistry. 2006, 45(44): 13385-13393
    175. Blomqvist, Trinelise; Steinmoen, Hilde; Havarstein, Leiv Sigve. Pheromone-induced expression of recombinant proteins in Streptococcus thermophilus. Archives of Microbiology. 2006, 186(6): 465-473
    176. Peperzak, L. Below the Kolmogorov scale: the non-turbulent sex life of phytoplankton. AFRICAN JOURNAL OF MARINE SCIENCE. 2006, 28(2): 261-264
    177. Muh, Ute; Hare, Brian J.; Duerkop, Breck A.; A structurally unrelated mimic of a Pseudomonas aeruginosa acyl-homoserine lactone quorum-sensing signal. Proceedings of the National Academy of Sciences of the United States of America. 2006, 103(45): 16948-16952
    178. Zhang, Lian Hui; Xu, Jin Ling; Lin, Yi Han. Ralstonia ahl-acylase gene. Official Gazette of the United States Patent and Trademark Office. Patents. 2006.
    179. Andrade, Maxuel O.; Alegria, Marcos Castanheira; Guzzo, Cristiane R. The HD-GYP domain of RpfG mediates a direct linkage between the Rpf quorum-sensing pathway and a subset of diguanylate cyclase proteins in the phytopathogen Xanthomonas axonopodis pv citri. Molecular Microbiology. 2006, 62(2): 537-551
    180.Urban, Sinisa.Rhomboid proteins: conserved membrane proteases with divergent.biological functions. Genes & Development. 2006, 20(22): 3054-3068
    181. Afriat, Livnat; Roodveldt, Cintia; Manco, Giuseppe. The latent promiscuity of newly identified microbial lactonases is linked to a recently diverged phosphotriesterase. Biochemistry. 2006, 45(46): 13677-13686
    182. Nakashima, Takuji; Miyazaki, Yousuke; Matsuyama, Yukihiko. Producing mechanism of an algicidal compound against red tide phytoplankton in a marine bacterium gamma-proteobacterium. Applied Microbiology and Biotechnology. 2006, 73(3): 684-690
    183. Eboigbodin, K. E.; Newton, J. R. A.; Routh, A. F. Bacterial quorum sensing and cell surface electrokinetic properties. Applied Microbiology and Biotechnology. 2006, 73(3): 669-675
    184. Moons, Pieter; Van Houdt, Rob; Aertsen, Abram. Role of quorum sensing and antimicrobial component production by Serratia plymuthica in formation of biofilms, including mixed biofilms with Escherichia coli. Applied and Environmental Microbiology. 2006, 72(11): 7294-7300
    185. Hilton, Tamara; Rosche, Tom; Froelich, Brett. Capsular polysaccharide phase variation in Vibrio vulnificus. Applied and Environmental Microbiology. 2006, 72(11): 6986-6993
    186. Wagner-Doebler, Irene; Biebl, Hanno. Environmental biology of the marine Roseobacter lineage. Annual Review of Microbiology. 2006, 60: 255-280
    187. Liu, M.; Gray, J. M.; Griffiths, M. W. Occurrence of proteolytic activity and N-acyl-homoserine lactone signals in the spoilage of aerobically chill-stored proteinaceous raw foods. Journal of Food Protection. 2006, 69(11): 2729-2737
    188. Kulakov, Yu. K.; Zheludkov, M. M. Molecular basis of Brucella persistence. Zhurnal Mikrobiologii Epidemiologiii Immunobiologii. 2006, 4: 72-77
    189. Chernuha, M. Yu.; Shaginyan, I. A.; Romanova, Yu. M. The role of "Quorum sensing" regulation system in symbiotic interaction of bacteria Burkholderia cepacia and Pseudomonas aeruginosa during mixed infection. Zhurnal Mikrobiologii Epidemiologii i Immunobiologii. 2006, 4: 32-37
    190. Wang, Chao; Zhang, Hai-Bao; Wang, Lian-Hui. Succinic semialdehyde couples stress response to quorum-sensing signal decay in Agrobacterium tumefaciens. Molecular Microbiology. 2006, 62(1): 45-56
    191. Saara Qazi, Barry Middleton, N-Acylhomoserine Lactones Antagonize Virulence Gene Expression and Quorum Sensing in Staphylococcus aureu . Microbes and Infection. 2006, 910-919

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700