用户名: 密码: 验证码:
重金属镉、铅胁迫对茭白生长发育的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
茭白(Zizania latifolia Turcz.)作为中国原产的特色水生蔬菜,以前主要在我国长江流域及其以南地区种植。20世纪80年代以来,随着我国种植业结构的调整和蔬菜流通体制的改革,各地纷纷引种茭白,目前茭白产品已在全国大部分地区种植并消费,成为消费量最大的22种蔬菜之一。部分加工产品已出口到日韩、北美、欧盟和澳洲等多个国家和地区。镉(Cd)、铅(Pb)是重要的污染物质,随着工业的快速发展及三废的大量排放,水体中重金属Cd~(2+)、Pb~(2+)的含量越来越高,而水生蔬菜栽培需要大量的灌溉用水,且大都在主要水系周边区域种植,因此受随水系扩散的重金属污染的可能性要高于其他种类的农作物。本文以江苏省特色水生蔬菜茭白的代表性品种蒋墅茭(单季茭)和葑红早(双季茭)为试验材料,研究了Cd~(2+)、Pb~(2+)在不同栽培介质处理下,以及Cd~(2+)、Pb~(2+)的单一、复合胁迫在不同肥料处理下对茭白生长发育的影响,同时测定了茭白各器官中Cd~(2+)、Pb~(2+)的积累量。期望为重金属胁迫对茭白伤害机理的研究提供一些科学依据,同时也为水生蔬菜的安全生产提供部分理论依据。取得如下结果:
     1、低浓度Cd~(2+)、Pb~(2+)胁迫能促进两茭白品种株高、叶面积的增加,但随处理浓度的进一步增加而显著下降;茭白的分蘖数则随Cd~(2+)、Pb~(2+)处理浓度的增加而呈持续下降的变化趋势。不同栽培介质处理间以苇末基质栽培下茭白的株高、叶面积、分蘖数同比高于土壤栽培。品种间以葑红早的株高、叶面积同比高于蒋墅茭,而分蘖数则低于蒋墅茭。
     2、不同栽培介质处理时,低浓度Cd~(2+)、Pb~(2+)胁迫均能促进两茭白品种的可溶性蛋白含量、脯氨酸含量、叶绿素含量和净光合速率总体的增加,但随Cd~(2+)、Pb~(2+)处理浓度的进一步增加而显著下降;根系活力则随Cd~(2+)、Pb~(2+)处理浓度的增加而呈持续下降的变化趋势;细胞膜透性随Cd~(2+)、Pb~(2+)处理浓度的增加而持续上升;不同栽培介质处理间以苇末基质栽培下茭白的可溶性蛋白含量、叶绿素含量、净光合速率等指标同比高于土壤栽培,而脯氨酸含量、根系活力、细胞膜透性则低于土壤栽培。不同肥料处理间相比则以有机肥处理下茭白植株受Cd~(2+)、Pb~(2+)胁迫伤害的程度小于无机肥处理。单一、复合胁迫处理间以复合胁迫处理时茭白受Cd~(2+)、Pb~(2+)的胁迫伤害大于单一胁迫。Cd~(2+)、Pb~(2+)胁迫能显著降低茭白的产量。品种间各指标存在差异。
     3、低浓度Cd~(2+)、Pb~(2+)胁迫能促进两茭白品种倒三片功能叶中保护酶活性的增加,但均随Cd~(2+)、Pb~(2+)胁迫浓度的进一步增加而下降;苇末基质栽培和有机肥处理时,茭白叶片中的保护酶活性分别高于土壤栽培和无机肥处理。复合胁迫处理时,茭白叶片保护酶活性下降的幅度显著大于单一胁迫处理。品种间以葑红早叶片中保护酶的活性高于蒋墅茭,说明葑红早对Cd~(2+)、Pb~(2+)胁迫的忍耐性要强于蒋墅茭。
     4、Cd~(2+)、Pb~(2+)胁迫能显著降低两茭白品种叶片中DNA提取的量以及DNA增色效应的程度。单一、复合胁迫处理间则以复合胁迫处理下茭白叶片中DNA提取的量显著低于单一胁迫处理,而复合胁迫处理下茭白叶片DNA的增色效应下降的幅度显著大于单一胁迫处理。不同肥料处理间则以无机肥处理下茭白叶片DNA提取的量显著低于有机肥处理;而无机肥处理下叶片DNA增色效应下降的幅度显著大于有机肥处理。品种间以蒋墅茭同比高于葑红早。
     5、Cd~(2+)、Pb~(2+)的单一以及复合胁迫均能促进两茭白品种根系和叶片中NPT、GSH、PCs含量的显著增加,Cd~(2+)胁迫时其增加的幅度大于Pb~(2+)胁迫处理,复合胁迫处理时两茭白品种根系和叶片中NPT、GSH、PCs的含量均高于单一胁迫。无机肥处理时,其含量显著高于有机肥处理。根系中NPT、GSH、PCs的含量显著高于叶片。品种间以蒋墅茭同比高于葑红早。
     6、Cd~(2+)、Pb~(2+)在茭白各亚细胞组分中的分布表现为:细胞壁>可溶性部分>细胞器,细胞壁>原生质体。有机肥处理时,茭白各亚细胞组分中Cd~(2+)、Pb~(2+)的积累量明显低于无机肥处理。复合胁迫处理时,茭白叶、根亚细胞组分中Cd~(2+)、Pb~(2+)的积累量同比均高于单一胁迫。品种间存在差异。
     7、随Cd~(2+)、Pb~(2+)胁迫处理时间的增加,其在茭白各营养器官中积累量呈显著增加的变化趋势;Cd~(2+)、Pb~(2+)在茭白不同营养器官间的积累量表现为:根>短缩茎>叶>产品器官;双季茭白品种葑红早在第2年采收的夏茭产品器官中Cd~(2+)、Pb~(2+)的残留量均显著高于当年的秋茭。苇末基质栽培和有机肥处理时茭白各器官中的残留量分别显著低于土壤栽培和无机肥处理。品种间以蒋墅茭对Pb~(2+)的积累能力强于葑红早,而对Cd~(2+)的积累能力则低于葑红早。
     8、随硫处理浓度的增加,茭白植株受Cd~(2+)胁迫伤害的程度呈逐渐下降的变化趋势。当硫处理浓度达2 mmol·L~(-1)时茭白的产量达最大,其后随硫处理浓度的增加而持续下降,但均高于不施硫的处理;非蛋白巯基、植物络合素则在12 mmol·L~(-1)的硫处理时达最大,而6 mmol·L~(-1)处理时达最小;随硫处理浓度的增加,两茭白品种根中Cd~(2+)的积累量呈明显下降的变化趋势,而短缩茎、叶、肉质茎中Cd~(2+)的积累量则有所增加。有机肥处理能降低Cd~(2+)对茭白的胁迫伤害,且能降低其在茭白各器官中的积累。品种间存在差异。
As a kind of characteristic vegetable originated from China, Zizania latifolia Turcz. was mainly cultivated along Yangze River and the river’s south areas. Since 1980s, Zizania latifolia has been introduced to many areas of China with the adjustment of planting structure and the reformation of vegetable circulation system. It has been planted and consumed around China, and has become one of the 22 vegetables which are maximally consumed at present. Some processed products of Zizania latifolia have been exported to other countries such as Japan, Korea, North America, European Union and Australia.
     Cadmium (Cd~(2+)) and lead (Pb~(2+)) are two important contaminants in agricultural soil. With the rapid development of industry, waste and other contaminations goes to the river, content of Cd~(2+) and Pb~(2+) in water highly increasing. Aquatic Vegetable cultivation requires such a large amount of irrigating-water and this kind of vegetable needs to be cultived near the major water systems, which brings about its more possibility of being contaminated than other types of crops.
     In the paper, two typical cultivars of Zizania latifolia namely Jiangshu (single-harvested cultivar) and Fenghongzao (double-harvested cultivar), characteristic hydrophytic vegetables in Jiangsu province, were used to study the influence of Cd~(2+), Pb~(2+) and their combined stress to the growth of Zizania latifolia with different cultural media and fertilizers. The Cd~(2+) and Pb~(2+) accumulation in Zizania latifolia were also determined. This paper will provid some theoretical evidences to the safety production of hydrophytic vegetables, and some scientific evidences to the study of mechanism of injury of Zizania latifolia. The main results show as follow:
     1. The plant height, leaf area increased under lower concentration of Cd~(2+) and Pb~(2+), but significantly decreased under higher concentration of Cd~(2+) and Pb~(2+), while tiller number descended with increased concentration of Cd~(2+) and Pb~(2+). The plant height, leaf area, tiller number in reed sediment substrate were higher than those in soil. The plant height, leaf area of Fenghongzao were higher than Jiangshu, but tiller number was lower.
     2. Content of soluble protein, proline, chlorophyll and net photosynthetic rate increased under lower concentration of Cd~(2+) and Pb~(2+), but significantly decreased under higher concentration of Cd~(2+) and Pb~(2+). Activities of root descended with increased concentration of Cd~(2+) and Pb~(2+), while the membrane permeability ascended. Content of soluble protein, chlorophyll and net photosynthetic rate in reed sediment substrate were higher than those in soil, but proline, activities of root and membrane permeability were lower. The harm of Cd~(2+) and Pb~(2+) to the growth of Zizania latifolia with organic fertilizer was lower than those of inorganic fertilizer. It was less harmly treated with single stress of Cd~(2+) and Pb~(2+) than combined stress. There were differences among cultivars.
     3. Protective enzyme activities in leaves increased under lower concentration of Cd~(2+) and Pb~(2+), but significantly decreased when increasing the concentration of Cd~(2+) and Pb~(2+). Protective enzyme activities of Zizania latifolia were higher when cultived in reed sediment substrate than when cultived in soil. Treated with organic fertilizer, the protective enzyme activities of Zizania latifolia was higher than treated with inorganic fertilizer. And it was lower when treated with single stress of Cd~(2+) and Pb~(2+) than combined stress. Protective enzyme activities of Jiangshu were lower than that of Fenghongzao in leaves. It showed that the endurance of Fenghongzao to Cd~(2+) and Pb~(2+) stress was stronger than that of Jiangshu.
     4. Cd~(2+) and Pb~(2+) stress could reduce the amount of extracted DNA and the hyperchromicity of DNA in the leaves of Zizania latifolia. Treated with combined stress of Cd~(2+) and Pb~(2+), the amount of extracted DNA in the leaves of Zizania latifolia was lower than single stress. The hyperchromicity of DNA had a larger descendent range when treated with combined stress than single stress. Treated with inorganic fertilizer, the amount of extracted DNA in the leaves of Zizania latifolia was lower than treated with organic fertilizer. The hyperchromicity of DNA had a larger descendent range when treated with inorganic fertilizer than organic fertilizer. The amount of extracted DNA and the hyperchromicity of DNA in leaves of Jiangshu were higher than that of Fenghongzao at the same treatment.
     5. Contents of NPT, GSH and PCs in functional leaves and roots of Zizania latifolia were significantly increased when treated with Cd~(2+) and Pb~(2+) stress. Under Cd~(2+) stress, contents of those had a larger increase range than Pb~(2+) stress. Contents of NPT, GSH and PCs of Zizania latifolia were higher under combined stress than under single stress. These contents of Zizania latifolia with inorganic fertilizer were higher remarkably than with organic fertilizer. Contents of NPT, GSH and PCs of Jiangshu were higher than that of Fenghongzao in leaves and roots at the same treatment.
     6. Distribution of Cd~(2+) and Pb~(2+) in subcellular fraction with the following sequence: cell wall>soluble fraction>organelle, and cell wall>protoplast. Accumulation of Cd~(2+) and Pb~(2+) in subcellular fraction of Zizania latifolia were lower when treated with organic fertilizer than with inorganic fertilizer. Treated with combined stress, those contents of Cd~(2+) and Pb~(2+) in leaves and roots of Zizania latifolia were lower than that of single stress. There were differences among cultivars.
     7. Accumulation of Cd~(2+) and Pb~(2+) in vegetative organs of Zizania latifolia was remarkably increased with the processing time of Cd~(2+) and Pb~(2+) stress. Accumulation of Cd~(2+) and Pb~(2+) in different vegetative organs of Zizania latifolia was in the order of root>culm>leaf>gall. The Cd~(2+) and Pb~(2+) acculumation in next summer-harvested galls was higher observable than those in first-autumn-harvested galls of Fenghongzao. The Cd~(2+) and Pb~(2+) acculumation of Zizania latifolia of reed sediment substrate were lower remarkably than those of soil culture at the same concentration of Cd~(2+) and Pb~(2+) stress. And it was also lower when treated with organic fertilizer than treated with inorganic fertilizer. The acculumating ability of Cd ~(2+)of Fenghongzao was stronger than Jiangshu, but acculumating ability of Pb~(2+) was lower than Jiangshu.
     8. Injury of Cd~(2+) stress to Zizania latifolia was decreased with increasing the concentration of SO_4~(2-). At the level of 2 mmol·L~(-1), the yield of Zizania latifolia reached the maximum. And it consistently descended with increasing the concentration of SO_4~(2-), the yield of Zizania latifolia was still higher than the yield of Zizania latifolia which was treated without SO_4~(2-) . Contents of NPT and PCs in functional leaves and roots of Zizania latifolia were reached the maximum at the level of 12 mmol·L~(-1) and reached the minimum at the level of 6 mmol·L~(-1). It could remarkably reduce the content of Cd~(2+) in different subcellular fraction in leaves and roots of Zizania latifolia, when treated with SO_4~(2-). It was concluded that supply of SO_4~(2-) could reduce the stress of Cd~(2+) to Zizania latifolia. It also could reduce the Cd~(2+) accumulation in roots, but improve the Cd~(2+)accumulation in leaves and culms and galls. There were differences between cultivars.
引文
[1]赵有为.中国水生蔬菜[M].北京:中国农业出版社,1999.
    [2]黄洽.珍贵蔬菜话茭白[J].植物杂志,2001,5:18~19.
    [3]孔庆东,柯卫东,杨保国.茭白资源分类初探[J].中国种业,1994,4:1~4.
    [4]江解增.茭白养分积累与分配的品种间差异及其机理[D].扬州:扬州大学,2004.
    [5]方家齐.苏南主要茭白品种孕茭的适宜温度[J].长江蔬菜,1988,1:11~12.
    [6]柯卫东,周国林.我国茭白生产及研究概况(上) [J].长江蔬菜,1995,5:3~5.
    [7]曹碚生.苏南两熟茭白生态分类及栽培[J].江苏农学院学报,1987,4:31~32.
    [8]赵有为,曹碚生,薛林宝,等.中国水生蔬菜作物品种资源的初步研究[J].江苏农学院学报,1989,3:15~40.
    [9]柯卫东,孔庆东,彭静.我国双季茭白品种资源及育种研究[J].武汉植物学研究,1997,3:262~268.
    [10]柯卫东.我国双季茭白品种资源及育种研究[J].武汉植物学研究,1997,15(3):262~268.
    [11]柯卫东,黄新芳,周国林,等.茭白部分数量性状的遗传分析[J].长江蔬菜,2000,5:28~30.
    [12]严龙.苏州茭白资源的初步调查[J].中国蔬菜,1994,2:38~40.
    [13]柯卫东,黄新芳,刘玉平,等.云南省部分地区水生蔬菜种质资源考察[J].中国蔬菜,2005,2:31~33.
    [14]袁子鸿.琐谈几种水生蔬菜的食疗[J].当代蔬菜,2001,11:43.
    [15]邢湘臣.亦食亦药话茭白[J].蔬菜,2002,3:42.
    [16]蔡元海.素食药膳系列[J].药膳食疗,2002,2:27~28.
    [17]江解增.主要水生蔬菜的营养保健功能及选购[J].中国食物与营养,2001,5:51~52.
    [18]黄桂英.膳食纤维与人体健康[J].中国食物与营养,2003,2:38~39.
    [19]黄凯丰.茭白膳食纤维的初步研究[D].扬州:扬州大学,2005.
    [20]黄凯丰,江解增,秦玉莲,等.茭白肉质茎膳食纤维含量及理化特性的研究[J].扬州大学学报(农业与生命科学版),2007,28(2):88~90.
    [21]赵有为,曹碚生,薛林宝,等.中国水生蔬菜作物品种资源的初步研究[J].江苏农学院学报,1989,3:15~40.
    [22]丁小余,徐祥生,陈维培.雄茭、灰茭形成规律的初步研究[J].武汉植物学研究,1991,9 (2):115~120.
    [23] Hennings P Neue und interesante Pilze aus dem Konigl. botan. Museum in Berlin. iii [J]. Hedwigia, 1895, 34: 10~13.
    [24] Miyabe K. Note on Ustilago esculenta [J]. Bot Mag, 1895(9): 197~198.
    [25]余永年.菰黑粉菌科(Yeniaceae)的确认问题[J].植物分类学报,1974,12(3):317~327.
    [26]郑传临,沈崇尧,裘维蕃.黑粉菌属的聚类分析[J].真菌学报,1990,9(3):196~201.
    [27]程岩,沈崇尧,裘维蕃.关于茭白黑粉菌的正名问题[J].真菌学报,1989,8(1):9~16.
    [28]郭得平,李曙轩,曹小芝.茭白黑粉菌某些生物学特性的研究[J].浙江农业大学学报,1991,17(1):80~84.
    [29]韩秀芹,江解增,曹碚生.茭白黑粉菌不同培养形态及能谱分析[J].长江蔬菜,2004,5:42~43.
    [30]韩秀芹.茭白黑粉菌生物学特性的研究[D].扬州:扬州大学,2004.
    [31]江解增,韩秀芹,曹碚生,等.茭白异地种植后共生黑粉菌差异性的研究[J].扬州大学(农业与生命科学版),2005,25(1):65~69.
    [32]江解增,韩秀芹,曹碚生,等.茭白品种间黑粉菌部分生物学特性[J].江苏农业学报,2006,22(1):71~75.
    [33] Shu W E, Li Y B. The management and cultivation of Zizania latifolia.(1), (2) [J]. Agriculture and Horticulture. 1990,65(1): 53~58; (2)309~312.
    [34] Michiyama H, Matsuoka A. The effect of tillering position on the main stem and the number of transplanted seedlings/hill on the thickening of Zizania stems [J]. Report of the Tokai Branch of the Crop Science Society of Japan. 1996, 122, 11~18.
    [35]林孟勇,王雨生.利用叶脉区分正常菱、雄茭和灰茭[J].浙江农业科学,1988,3:143~145.
    [36]林孟勇,张棉天.夏菱密度对株丛发育和产量的影响[J].上海蔬菜,1991,2:32~33.
    [37]孙家华,徐土松.用冷水降温促进孕茭初报[J].长江蔬菜,1992,2:34~35.
    [38]杜志贵,吴景云,刘显国,等.水库深层低温水灌溉茭田的效应[J].中国蔬菜,1996,1:36~37.
    [39]施长安,王健康,杨忠秋,等.冷水茭白栽培的关键技术[J].长江蔬菜,2005,3:13~14.
    [40]江冬青,朱广军.双季菱白覆膜试验初报[J].上海蔬菜,1993,2:27.
    [41]徐洪根.塑料大棚栽培茭白技术[J].广西蚕业,2006,43(2):46~47.
    [42]曹碚生,江解增,刘西亚,等.挖沟条栽对茭白生长发育的影响[J].长江蔬菜,1995,5:28-29.
    [43]钱玉亭,何国元.茭白基本苗与产量的关系[J].上海蔬菜,1995,4:23~24.
    [44]姚鼎汉,张军才,唐秋林,等.施用硅肥促进茭白早收的增产效益简报[J].浙江农业科学,1997,2:81.
    [45]周振兴,杨勇.宜昌县开发高山淡季茭白[J].长江蔬菜,1998,11:10.
    [46]李建荣,吕秀琴,翁丽青,等.高山茭白的无害化生产技术[J].浙江农业学报,2003,15(3):197~199.
    [47]张国洪,何德良.高山地区的茭白栽培技术[J].上海蔬菜,2004,1:37.
    [48]李挺.双季茭白“三改两优化”栽培技术总结[J].浙江农业科学,2001,1:8~9.
    [49]李挺,陈可可.茭白塑料棚覆盖栽培技术[J].中国蔬菜,2001,2:42~43.
    [50]符长焕,李建荣,刘宝法,等.有机无机复合肥对茭白产量及品质的影响[J].浙江农业科学,2002,4 :169~171.
    [51]翁丽青,李忠伟,刘宝法.茭白大棚窝泥栽培技术[J].当代蔬菜,2005,12:24
    [52]俞丽芬,徐瑞华.双季茭大棚早熟栽培技术[J].上海蔬菜,2006,4:52.
    [53]祁水琴,李罕琼.无公害茭白优质高产高效栽培技术[J].中国瓜菜,2007,2:30~31.
    [54]徐强,曹碚生,江解增,等.不同施氮、钾肥量和种植密度对茭白产量的影响[J].长江蔬菜,2004,3:43~45.
    [55]杜志贵,吴景云,刘显国,等.水库深层低温水灌溉茭田的效应[J].中国蔬菜,1996,1:36~37.
    [56]祝利莉,胡为群,郑可锋,等.茭白无害化生产专家系统的研发[J].浙江农业科学,2006,3:251~253.
    [57]蒙华贞.茭白胡麻斑病的发生与防治[J].长江蔬菜,2005, 2:33.
    [58]叶琪明,顾国平,李建荣,等.茭白锈病和胡麻斑病的发生规律及其无害化防治[J].浙江农业学报,2003,15(3):144~148.
    [59]梁继农,徐强,苏彩霞,等.茭白纹枯病菌菌丝融合群及其致病性测定[J].长江蔬菜,2002,12:33~34.
    [60]陈轶.剥老叶对茭白主要病虫害及经济性状的影响[J].浙江农业科学,2005,6:490~500.
    [61]徐强,曹碚生,梁继农,等.纹枯病对不同茭白品种产量的影响[J].长江蔬菜,2002,S1:23~24.
    [62]徐强,曹碚生,江解增,等.不同抗性支白感染纹枯病菌后4种酶活性的变化[J].扬州大学学报(农业与自然科学版),2006,26(1):81~84.
    [63]郑许松,郑春龙,陈建明,等.不同间栽模式对茭白病虫害的控制作用[J].浙江农业科学,2006,6:672~674.
    [64]常福辰,丁小余,罗玉明,等.汞离子胁迫对茭白及其体内黑粉菌的影响[J].南京师大学报,2006,29(4):79~81.
    [65]江解增,黄凯丰,杨凯,等.茭白对苇末基质中镉的生理反应及其镉的残留[J].园艺学报,2007. 34(2):407~410.
    [66]余贵芬,青长乐.重金属污染土壤治理研究现状[J].农业环境与发展,1998,15(4):22~24.
    [67]张格丽.国内外农业锚污染研究现状及其发展趋势分析[J].农业环境保护,1997,16(3):114~117.
    [68] Adriano D C(Ed.). Boigeochemistry of trace metals [M]. Lewis Publishers, Boca Raton, Florida US. 1992.
    [69] Alloway B J. Heavy metals in soils [M]. Blackie Academic and Professional, London, UK. 1995.
    [70]顾继光,周启星,王新.土壤重金属污染的治理途径及其研究进展[J].应用基础与工程学报,2003,11(2):143~151.
    [71]陈怀满.土壤—植物系统中的重金属污染[M].北京:科学出版社,1996:71~85.
    [72] Florijn P J, Van Beusichem M L. Uptake and Distribution of Cadmium in Maze Inbred Lines [J]. Plant and Soil, 1993, (150): 25~32.
    [73] Davies B E. Lead. In: Alloway B J (Ed.). Heavy Metals in Soils [J]. Blackie and Son, Glasgow, UK , 1990, 177~196.
    [74] Jaworski J F, Nriagu J Denny P, et al. Group report; Lead. In:Hutchinson T C, Meema K M. Lead, mercury, cadmium and arsenic in the environment [J]. John Wiley&Sons Ltd., Chichester, UK, 1987: 3~16.
    [75]李子芳,刘惠芬,熊肖霞,等.镉胁迫对小麦种子萌发幼苗生长及生理生化特性的影响[J].农业环境科学学报,2005,24(增刊):17~20.
    [76]吴燕玉,周启星.制定我国土壤环境标准(汞、镉、铅和砷)的探讨[J].应用生态学报,1991,2(4):343~349.
    [77]徐厚恩.环境医学与毒理学的研究动向[J].中国科学基金,1997,110~112.
    [78]赵其国,周炳中,杨浩,等.中国耕地资源安全问题及相关对策思考[J].土壤,2002,6:293~302.
    [79]吴燕玉,陈涛,孔庆新,等.士灌区镉污染及其改良途径[J].环境科学学报,1984,4(3):275~282.
    [80]黄吉厚.镉对环境的污染及其对策研究[J].辽宁教育学院学报,2000,5(17): 29~31.
    [81]李花粉,郑志宇,张福锁,等.铁对小麦吸收不同形态镉的影响[J].生态学报,1999,19(2):170~173.
    [82]朱宇林,曹福亮,汪贵斌,等. Cd、Pb胁迫对银杏光合特性的影响[J].西北林学院学报,2006,21(1):47~50.
    [83]郭瑞刚,范崇辉,赵政阳.汽车尾气对公路两侧苹果的Pb污染研究[J].西北林学院学报,2007,22(2):200~202.
    [84] Campbell P G C, Stokes, Galloway J N. The effect of atmospheric deposition on the geochemical cycling and biological availability of metals [J]. In: Heavy metals in the environment. Heidelberg International Conference. CEP Consultants, Edinburgh, 1983, 2: 760-763.
    [85] Kabata-Pendias A, Pendias H. Trace elements in soils and plants [M]. CRC Press Inc, Florida, 1992: 154~163.
    [86] Davies B E. Lead. In: Alloway B J (Ed.). Heavy metals in soils [M]. Blackie and Son, Glasgow, UK. 1990: 177~196.
    [87] McLaughlin M J, Parker D R, Clarke J M. Metals and micronutrients-food safety issues [J]. Field Crops Research, 1999, 60(1-2):143~163.
    [88] Buchauer M J. Contamination of soil and vegetation near a zinc smelter by zinc cadmium copper and lead [J]. Environmental science and technology, 1973, (7): 131~135.
    [89] Ragaini R C, Ralston R, Roberts N. Environmental trace metal contamination in Kellog, Idaho, near a lead smelting complex [J]. Environmental science andtechnology, 1977, 11: 773~781.
    [90] Davies B E. Heavy Metals in Soils [M]. Blackie Academic& Professional, Glasgow, UK, 1995: 216.
    [91]赵学茂.土壤重金属污染的防治方法[J].甘肃农业,2006:228.
    [92]肖承坤.我国铅污染现状分析[J].中国环境科学学会,2007:159~161.
    [93] Williams C, Hand D J, David. The effect of superphosphate on the cadmium content of soils and plants [J]. Austr.J.Soil Res, 1973, 11: 43~56
    [94]岳秀英,冯健,冯泽光.雏鸭实验性镉中毒的病理学研究[J].畜牧兽医学报,2001,32(2),162~169.
    [95]钟格梅,唐振柱.我国环境中镉、铅、砷污染及其对暴露人群健康影响的研究进展[J].环境与健康杂志,2006,23(6):562~565.
    [96]商平,王丽娜.环境矿物材料治理镉(Cd2+)污染研究进展[J].岩石矿物学杂志,2005,24(6):681~685.
    [97]秦天才,吴玉树,王焕校,等.镉、铅及其相互作用对小白菜根系生理生态效应的研究[J].生态学报,1998,18(3):320~325.
    [98]范鹏.重金属对人体健康的影响[J].环境与人,2004,1:40.
    [99]周中平,彭双清.重金属铅致高血压形成的作用机制[J].中国预防医学杂志,2004,5(3):236~239.
    [100] Bellinger D C, Stiles K M, Needleman H L. Low-level lead exposure, intelligence and academic achievement [J]. Pediatrics, 1992, 90: 855~861.
    [101] Neenleman H L, Schell A, Bellinger D, Leviton A, Alfred E N. The long term effects of exposure to low doses of lead in childhood. An 11-year follow-up report [J]. New Engl. J. Med, 1990, 322: 83~88.
    [102] Silbergeld E K, Waalkes M, Rice J M. Lead as a carcinogen: experimental evidence and mechanisms of action [J]. Am J Ind Med, 2000, 38: 316~323.
    [103]张义贤.重金属对大麦(Hordeum vulgare)毒性的研究[J].环境科学学报,1997,17(2):199~201.
    [104]陈愚,任久长,蔡晓明.镉对沉水植物硝酸还原酶和超氧化物歧化酶活性的影响[J].环境科学学报,1998,18(3):313~317.
    [105]赵海泉,洪法水.汞毒害下小麦幼苗生长过程中保护酶活生变化规律的研究[J].农业环境保护,1998,17(1):20~21.
    [106]罗立新,孙铁衍,靳月华.镉胁迫下小麦叶中超氧阴离子自由基的积累[J].环境科学学报,1998,18 (5):495~499.
    [107] Luna CM, Gonzalez CA, Troppi VS. Oxidative damage caused by an excess of copper in oat leaves [J]. Plant Cell Phsiol, 1994, 35: 11~15.
    [108]罗立新,孙铁衍,靳月华.镉胁迫对小麦叶片细胞膜脂过氧化的影响[J].中国环境科学,1998,18(1):72~75.
    [109]文传浩,常学秀,王震洪,等.不同重金属污染经历下曼佗罗(Datura stramonium)核酸代谢动态平衡[J].农业环境保护,1999,18 (2):49~53.
    [110]吕朝晖,王焕校.镉铅对小麦醇脱氢酶(ADH)基因表达影响的初步研究[J].环境科学学报,1998,18(5):500~503.
    [111]施农农,陈志伟,贾秀英.镉胁迫下水稻种子的萌芽生长及体内水解酶的活性变化[J].农业环境保护,1999,18(5):213~216.
    [112]马成仓,李清芳. Ca2+对汞毒害下的小麦种子萌发代谢的影响[J].农业环境保护,2000,19 (3):173~175.
    [113] Cox RM, Hutchinson TC. Multiple and tolerance to metals in the grass Despitosa (L) Beauv. from the Sudbury smelting area [J]. J Plant Nutrution, 1981, 3: 731~741.
    [114]周青,黄晓华,屠昆岗,等. La对Cd伤害大豆幼苗的生态生理作用[J].中国环境科学,1998,18 (5):442~445.
    [115]李道林,何方,马成泽,等.砷对土壤生物学活性及蔬菜毒性的影响[J].农业环境保护,2000,19 (3):148~151.
    [116]胡正义,沈宏,曹志洪. Cu污染土壤—水稻系统中Cu的分布特征[J].环境科学,2000,21 (2):62~65.
    [117]郑春荣,陈怀满. Pb的植物效应[M].北京:科学出版社,1996,238~247.
    [118]段昌群,王焕校.重金属对蚕豆的细胞遗传学毒理作用和蚕豆根尖微核技术的探讨[J].植物学报,1995,37(1):14~24.
    [119] T O msett A B, Thunnan D A. Mo1ecular bio1ogy of metal to1erances of plants [J]. Plant Cell Environ, 1988, 11:383~394.
    [120] Foy C D, White M C. The Physio1ogy of metaltoxico1ogy in plants [J]. Ann Rev P1an tphysio1, 1978, 29:511~566.
    [121]段昌群,王焕校,曲仲湘.重金属对蚕豆根尖的核酸含量及核酸酶活性影响的研究[J].环境科学,1992,13(5):31~35.
    [122]莫文红,李懋学.锦离子对蚕豆根尖细胞分裂的影响[J].植物学通报,1992,9 (3):30~34.
    [123]王焕校.污染生态学基础[M].昆明:云南大学出版社,1990,91~108.
    [124] Stobart A K, Griffiths W T, Ameen-2Bukhari I, Sherwood R P. The effect of Cd2+ on the biosynthesis of hlorophyll in leaves of barley [J]. Physiol Plant, 1985, 63: 293~298.
    [125] Siedlecka A, Krupa Z. Interaction between cadmium and iron and its effects on photosynthetic capacity of primary leaves of Phaseolus vulgaris [J]. Plant Physiol Biochem, 1996, 34: 833~841.
    [126] Baszynski T, Wajda L, Krol M, et al. Photosynthetic activities of cadmium-treated tomato plants [J]. Physiol Plant, 1980, 48: 365~370.
    [127] Weigel H J. Inhibition of photosynthetic reactions of isolated in-tact chloroplasts by cadmium [J]. Plant Physiol, 1985, 119: 179~189.
    [128] Krupa Z, Oquist G, Huner N P A. The effects of cadmiumon photosynthesis of Phaseolus vulgaris-a fluorescence analysis [J]. Physiol Plant, 1993, 88:626~630.
    [129]朱红霞,杨小勇,葛才林,等.重金属对水稻过氧化物酶同功酶的影响[J].核农学报,2004,18(3):233~236.
    [130]朱宇林,曹福亮,汪贵斌,等. Cd、Pb胁迫对银杏光合特性的影响[J].西北林学院学报,2006,21(1):47~50.
    [131]孙光闻,陈日远,刘厚诚,等.镉对植物光合作用及氮代谢影响研究进展[J].中国农学通报,2005,21(9):234~237.
    [132]李裕红,黄小瑜.重金属污染对植物光合作用的影响[J].环境科研,2006,6:23~24.
    [133]马新明,李春明,袁祖丽,等.铅污染对烤烟光合特性、产量及其品质的影响[J].植物生态学报,2006,30(3):472~478.
    [134]陈国祥,施国新. Hg、Cd对莼菜越冬芽光合膜光化学活性及多肽组分的影响[J].环境科学学报,1999,19(5):521~525.
    [135]戴玲芬,高宏,夏建荣.雪松聚球藻对重金属镉的抗性和解毒作用[J].应用与环境生物学报,1998,4(3):192~195.
    [136] Cedeno-Maldonado A. The copper ion as an inhibitor of photosynthetic electron transport in isolated chloroplasts [J]. Plant Physiol, 1972, 50: 698~701.
    [137]杨居荣,贺建新,蒋婉茹. Cd污染对植物生理生化的影响[J].农业环境保护,1995,14(5):193~197.
    [138]彭鸣,王焕校,吴玉树.镉、铅诱导的玉米(Zea maYs L.)幼苗细胞超微结构的变化[J].中国环境科学,1991,11(6):426~431.
    [139]杨树华,曲仲湘,王焕校.铅在玉米中的迁移积累及对玉米生长发育的影响[J].生态学报,1986,6(4):312~322.
    [140]葛才林,络剑峰,刘冲,等.重金属对水稻呼吸速率及相关同功酶影响的研究[J].农业环境科学学报,2005,24(2):222~226.
    [141] Mathys W. Vergleichende Untersuchugen der Zinkaufnahme Von die Sistenten und Sensitiven Popualtion Von agrostis tenuis Sibth [J]. Flora, 1973, 162:492~499.
    [142] Morris HE. Injury to growing crops caused by the application of araenical compounds to the soil [J]. J Agr Res, 1927, 34: 59~78.
    [143] Mukherji S, Roy BK. Characterization of chromium toxicity in different plant materials [J]. Indian J Exp Biol, 1978, 16:1017~1019.
    [144] Lamoreaux RJ, Chaney WR. Grow and water movement in silver maple seedling affected by cadmium [J]. J Environ Qual, 1977, 6:201~205.
    [145]周建华,王永锐.硅营养缓解水稻幼苗Cd,Cr的毒害的生理研究[J].应用与环境生物学报,1999,5(1):11~15.
    [146]孙赛初,王焕校,李启任.水生维管束植物受镉污染后的生理变化及受害机制初探[J].植物生理学报,1985,11(2):19~23.
    [147]李元,王焕校,吴玉树. Cd、Fe及其复合污染对烟草叶片几项生理指标的影响[J].生态学报,1992,12(2):147~153.
    [148]李荣春. Pb、Cd及其复合污染对烤烟叶片生理生化及细胞亚显微结构的影响[J].植物生态学报,2000,22(4):238~242.
    [149]孔祥生,张妙霞,郭秀璞. Cd毒害对玉米幼苗细胞膜透性及保护酶活性的影响[J].农业环境保护,1999,18(3):133~134.
    [150] Ouzonidou GM, ousbakas M, karataglis S. Responses of maize(zea mays.L.) plants to copper stress: growth. Mineral content and ultrast ructure of roots [J]. Environ Experi Bot, 1995, 35(2):167~176.
    [151]解凯彬,施国新,陈国祥,等. Hg对萍蓬草光合膜超微结构及功能的影响[J].农村生态环境,2002,18(1):26~30.
    [152] Camp W V. Enhencement or oxidative stress tolermlce intransgenic tobacco plants overproducing Fe-su-peroxide dis mutase in chloroplasts [J]. Plant physiol, 1996, 112: 1703~1714.
    [153]史吉平,董永华.重金属胁迫对小麦幼苗超氧物歧化酶活性的影响[J].国外农学-麦类作物,1996,3:33~34.
    [154]孔祥生,张妙霞,郭秀璞. Cd2+毒害对玉米幼苗细胞膜透性及保护酶活性的影响[J].农业环境保护,1999,18 (3):133~134.
    [155]陈宏,徐秋曼,王葳,等.镉对小麦幼苗脂质过氧化和保护酶活性的影响[J].西北植物学报,2000,20(3):399~403.
    [156]李大辉,施国新,丁小余,等. Cd2+、Hg2+对菱幼苗生长及其超氧化物歧化酶、过氧化物酶活性的影响[J].武汉植物学研究,1999,17(3):206~210.
    [157]檀建新,尹君,王文忠,等.镉对小麦、玉米幼苗生长和生理生化反应的影响[J].河北农业大学学报,1994,(17):83~87.
    [158]陈宏,徐秋曼,王葳,等.镉对小麦幼苗脂质过氧化和保护酶活性的影响[J].西北植物学报,2000,20(3):399~403.
    [159]严重玲,杨先科. Pb、Hg胁迫对烟草叶片中过氧化物酶及叶绿素代谢的影响[J].贵州环保科技,1997,1:39~42.
    [160]张义贤,雷晓波,阎继耀.重金属镉、镍、汞对大麦过氧化物酶同工酶的影响[J].华北农学报,2000,15(1):27~31.
    [161]朱红霞,杨小勇,葛才林,等.重金属对水稻过氧化物酶同功酶的影响[J].核农学报,2004,18(3):233~236.
    [162]董慧.几种重金属对紫背萍过氧化氢酶活性的影响[J].云南环境科学,2001,18(2):13~15.
    [163]李宏文,黄森华,Paul K,等.几种重金属对紫背萍的过氧化氢酶(CAT)活性的影响[J].苏州城建环保学院学报,1996,3:60~78.
    [164]葛才林,杨小勇.重金属胁迫对水稻叶片过氧化氢酶活性和同功酶表达的影响[J] .核农学报,2002,16(4):197~202.
    [165]张云荪,王焕校.铅在水稻中迁移积累及其对水稻生长发育的影响[J].环境科学学报,1986,6:199~206.
    [166]高圣义,王焕校,吴玉树.重金属离子对植物的毒害及其机理[J].中国环境科学,1992,12(4):281~284.
    [167] Coombes AJ. Effect of copper on IAA-oxidase activity in root tissue of barley [J]. Pflanzenphysiol, 1976, 80: 236~242.
    [168]冯保民,麻密.植物络合素及其合酶在重金属抗性中的功能研究进展[J].应用与环境生物学报,2003,9(6):657~66.
    [169] Kneerr, Kutchantm, Hochbergera, et al. Sacchar omyces cerevisiae and Neurosp or a crassa contain heavy metal sequestering phytochelatin [J]. Arch. Microbiol,1992, 157: 305~310.
    [170] Morellie, Pratesie. Production of phytochelatins in the marine diatom Phaeodactylum tricornutum in response to copper and cadmium exposure [J]. Environ Contam Toxicol, 1997, 59:657~664.
    [171] Rauser W E. Phytochelatins and related peptides [J]. Plant Physiol, 1995, 109:1141~1149.
    [172] Zenk M H. Heavy metal detoxification in higher plants-areview [J]. Gene, 1996, 179: 21~30.
    [173]高华,张玉秀,柴团耀.植物络合素和植物络合素合酶的研究[J].西北植物学报,2001,21(4):779~790.
    [174] Rauser W E. Phytochelatins and related peptides [J]. Plant Physiol, 1995, 109: 1141~1149.
    [175]张玉秀,柴团耀,Burkardg.植物耐重金属机理研究进展[J].植物学报,1999,41:453~457.
    [176] Chaity, Didierjeanl, Burkardg, et al. Expression of a green tissue-specific 11k Daproline-rich protein gene in bean in response to heavy metals [J]. Plant Science, 1998, 133:47~56.
    [177]董娟,柴团耀,安成才,等.抗重金属基因PvSR2的原核表达及转化烟草研究[J].云南大学学报,1999,21(10):28.
    [178]郭秀璞,孔祥生,张妙霞,等.锌对小麦镉毒害的缓解效应[J].河南农业大学学报,1999,33(2):211~214.
    [179]范昌发,贾敬芬.植物整治研究现状[J].环境科学进展,1998,7(5):107~112.
    [180] Murphy A, Tai Z L. Comparison of metallothionein gene expression and non-protein thiols in ten Arabidopsis ecotypes [J]. Plant Physiology, 1995(109): 945~954.
    [181] Haag-Kerwer A, Schfer H J, Heiss S, et al. Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis [J]. Journal of Experimental Botany, 1999(50): 827~1835.
    [182] Leita L, DeNobili, et al. Analysis of intercellular cadmium forms in roots and leaves of bush bean [J]. J. Plant Nutr., 1996, 19: 527~533.
    [183] Verkleij A C, Shat H. Mechanisms of metaltolerance in higher plants. In:Show, J.Ed., Evolutionary Aspects of heavy metal tolerance in plants [M]. CRC press, Boca Raton, FL. 1990, 179~193.
    [184] Krotz R M, Evangelou B P, et al. Relationship between cadmium, zinc, Cd-binding peptide and organic acid into-bacco suspension cells [J]. Plant Physiol, 1989, 91:780~787.
    [185] RobisonNJ, TommeyAM, et al. Plant metallothioneins [J]. Biochein J, 1993, 295:1~10.
    [186] Blamey F P, Joyce D C, et al. Role of trichomes in sunflower tolerance to manganese toxicity [J]. Plant Soil, 1986, 91: 171~181.
    [187] Fuhrer J. Early effects of excess cadmium uptake in Phaseolus vulgaris [J]. Plant Cell Environ, 1982, b(5): 263~270.
    [188] Whitelaw, C A, Le Huquet J A, et al. The isolation and characterization of type II metallothionein-likegenes form tomato [J]. Plant Mol. Biol, 1997, 33:503~511.
    [189] Czarneck E, et al. Characterization of gmhsp26-A, a stress gene encoding a divergent heat shock proteion of soy-bean: heavy-metal-induced inhibition of intron procession [J]. Mol. Cell. Biol, 1998, 8: 1113~1122.
    [190] Koricheva J, RoyS, et al. Antioxidant responses to simulated acid rain and heavy metal deposition in birch seedings [J]. Eravion Pollut, 1997, 95:249~258.
    [191]徐厚恩.环境医学与毒理学的研究动向[J].中国科学基金,1997,110~112.
    [192] Ikeda M, Zhang Z W, Shimbo S, et al. Urban population exposure to lead and cadmium in east and south-east Asia [J]. Sci Total Environ. 2000, 249: 373~384.
    [193] Salt D E, Wagner G J. Cadmium transport across tonoplast of vesicles from oat roots [J]. J Biol Chem, 1993, 268(17): 12297~12302.
    [194] Petjt C M, van de Geijn S C. In vivo measurement of cadmium transport andaccumulation on the stem of intact tomato plants. I. Long distance transport and local accumulation [J]. Planta, 1978, 138: 137~143.
    [195] Hardiman R T, Jacoby B. Absorption and translocation of Cd in bush beans [J]. Physiol Plant, 1984, 61: 470~474.
    [196]黄会一,蒋德明,张春兴,等.木本植物对土壤中的镉的吸收、积累和耐性[J].中国环境科学,1989,9(5):323~330.
    [197]曹洪法.陆地生态系统中重金属的污染[J].环境科学,1981,2(2):216~220.
    [198]江行玉,王长海,赵可夫.芦苇抗镉污染的机理研究[J].生态学报,2003,23(5):856~862.
    [199]王新,吴燕玉.改进措施对复合污染土壤重金属行为影响的研究[J].应用生态学报,1995,6(4):440~444.
    [200]王新,吴燕玉.重金属在土壤一水稻系统中的行为特性[J].生态学杂志,1997,16(4):10~14.
    [201]马运宏,范瑜,胡维佳,等.重金属在土壤一作物系统中迁移分配规律的分析[J].江苏环境科技,1995,(1):8~10.
    [202]衣纯真,付桂平,张福锁,等.施用钾肥的土壤对作物吸收累积镉的影响[J].中国农业大学学报,1996,5:79~84.
    [203]许嘉林,鲍子平,杨居荣,等.农作物体内铅、镉、铜的化学形态研究[J].应用生态学报,1991,2(3):244~248.
    [204] Zimdahl R L. Entry and movement in vegetation of lead derived from air and soil sources paper presented at 68th Annu [J]. 1975: 45.
    [205]孙贤斌,李玉成,王宁.铅在小麦和玉米中活性形态和分布的比较研究[J].农业环境科学学报,2005,24(4):666~669.
    [206]叶春和.花苜蓿对铅污染土壤修复能力及其机理的研究[J].土壤与环境,2002,11(4):331~334.
    [207] Bennett JP, Chiriboga E, Coleman J,et al. Heavy metal in wild rice from northern Wisconsin [J]. Sci Total Envil-on, 2000, 246(2-3):261~269.
    [208]王红旗,李华,陆泗进.羽叶鬼针草对Pb的吸收特性及修复潜力[J].环境科学,2005,26(6):143~147.
    [209]董力诚,夏春镗,沈昕妍.芹菜叶对铅的吸收及其迁移规律初探[J].同济大学学报:医学版,2005,26(5):79~81,85.
    [210]杨居荣,查燕,刘虹.污染稻、麦籽实中Cd、Cu、Pb的分布及其存在形态初探[J].中国环境科学,1999,19(6):500~504.
    [211]林琦,陈英旭,陈怀满,等.小麦根际铅、镉的生态效应[J].生态学报,2000,20(4):634~638.
    [212]孙贤斌,李玉成,王宁.铅在小麦和玉米中活性形态和分布的比较研究[J].农业环境科学学报,2005,24(4):666~669.
    [213]江行玉,赵可夫.铅污染下芦苇体内铅的分布和铅胁迫相关蛋白[J].植物生理与分子生物学学报,2002,28(3):169~174.
    [214] Bingham F T, Page A L, Mahler R J, et al. Growth and cadmium accumulation of plants grown on a soil treated with cadmium-enriched sewage sludge [J] J. Environ. Qual, 1975, 4:207~211.
    [215]杨居荣,贺建群,黄翌,等.农作物Cd耐性的种内和种间差异[J].应用生态学报,1994,5(2):192~196.
    [216]章钢亚,骆永明.太湖流域典型水稻土对镉吸持特征的初步研究[J].土壤,2000,2:91~94.
    [217] McLaughlin M J, Parker D R,Clarke J M. Metals and micronutrients-food safety issues [J]. Field Crops Research, 1999, 60(1-2):143~163.
    [218] Kashem M A, Singh B R. Metal availability in contaminated soils:I. Effects of flooding and organic matter on changes in Eh, pH and solubility of Cd,Ni and Zn [J]. Nutrient Cycling in Agroecosystems, 2001, 61: 247~255.
    [219]刘文菊,张西科,尹君,等.镉在水稻根际的生物有效性[J].农业环境保护,2000,19(3):184~187.
    [220]陈涛.张土灌区镉土改良和水稻镉污染防治研究[J].环境科学,1980,1(5):7~11.
    [221] Gambrell R P, Wiesepape J B, Patrick W H and Duff M C. The effects of pH: redox and salinity on metal release froth a contaminated sediment [J]. Water Air Pollut, 1991, 57~58: 359~367.
    [222]丁宝莲,谈宏鹤,朱素琴.胁迫与植物细胞壁关系研究进展[J].广西科学院学报,2001,17(2):87~90.
    [223]郭峰.重金属Hg、Pb、Cr单一污染对绿豆生理生化指标的影响[J].山西农业大学学报,2006,26(3):382~386.
    [224]闵航,吕镇梅,闫铂.复合污染的氧化应激反应研究[J].浙江大学学报,2006,32(5):489~494.
    [225]于拴仓,刘立功. Cd、Pb及其相互作用对3种主要蔬菜胚根伸长的影响[J]. 2005,24(1):61~63.
    [226]王启明.铅、镉及其复合胁迫对大豆幼苗生理生化特性的影响[J].河南农业科学,2006,7:34~37.
    [227] Chaney R T, Malik M,Li Y M. Phytoremediation of soil metals [J]. Current Opinions in Biotechnolohy, 1997, (8): 279~284.
    [228] Baker A J M, Reeves R D, Hajar A S M. Heavy metal accumulation and tolerance in British population of the metallophyte Thlaspi caerulescens [J]. Presl (Brassicacceae), New Phytol, 1994, 127:61-67.
    [229]沈振国,陈怀满.土壤重金属污染生物修复的研究进展[J].农村生态环境,2000,16(2):39~ 44.
    [230] Watanabe M E. Environ Sci Techol [J], 1997, 31(4): 182A.
    [231] Banuelos G S. J. Environ [J]. Qual, 1997, (26):639~642.
    [232] Banuelos GS, Cardon G, M acckey B, et al. Boron and se-lenium removal in boron-laden soils by 4 sprinkler irrigated plant-specs [J]. Journal of Environmental Quality, 1993, 22:786~792.
    [233] Cunningham S D, Berti W R, Huang J W. Bioremediation of norganic [M].Columbus-Richland: Batelle Press, 1995:33.
    [234] Schnoor J L. phytoremediation of organic and mutrient contaminants [J]. Environment and Technol, 1995, 29: 318~323.
    [235] Marcia pletsch. Novel biotechnology approaches in environmental remediation research; Biotechnological approaches in environmental research [J]. Biotechnology Advances, 1999, 17: 679~687.
    [236]黄晓华,周青.稀土在农肥中的应用[J].自然杂志,2001,23(3):160~163.
    [237]张亚丽,沈其荣,姜洋.有机肥料对镉污染土壤的改良效应[J].土壤学报,2001,38(2):212~218.
    [238]梁利芳,张丽霞,杨肖伟,等.稀土镧及其配合物对植物铅、镉单一及复合污染的作用[J].广西师范学院学报,2002,19(1):69~73.
    [239]李莉,秦恩华,张熔,等.铅胁迫对绿豆苗期生理生化特性的影响及硒缓解作用[J].湖北民族学院学报(自然科学版),2006,33(2):94~96.
    [240]谭周磁,陈嘉勤,薛海霞.硒(Se)对降低水稻重金属Pb,Cd,Cr污染的研究[J].南师范大学自然科学学报,2000,23(3):80~83.
    [241]郭秀璞,孔祥生,张妙霞,等.锌对小麦镉毒害的缓解效应[J].河南农业大学学报,1999,33(2):211~214.
    [242]王鑫.化肥对土壤和农产品的污染及治理措施[J].甘肃农业科技,2003,12:39~40.
    [243]廖敏. pH对镉在土水系统中的迁移和形态的影响[J].环境科学学报. 1999,19(1):81~86.
    [244]韩盛,努尔加义,刘雪梅,等. pH值对土壤中Pb的缓冲影响[J].干旱环境监测,1999,13(2):116~118.
    [245]徐仁扣,肖双成,蒋新,等. pH对Cu2+和Pb2+在可变电荷土壤表面竞争吸附的影响[J].土壤学报,2006,43(5):871~874.
    [246]史庆华,朱祝军,李娟,等.高锰胁迫与低pH对黄瓜根系氧化胁迫和抗氧化酶的复合效应[J].中国农业科学,2005,38(5):999~1004.
    [247] P.D. Alexander, B.J. Alloway, A.M. Dourado. Genotypic variations in the accumulation of Cd, Cu, Pb and Zn exhibited by six commonly grown vegetables [J]. Environmental Pollution, 2006, 3(144): 736~745.
    [248] Sabriye Doyurum, Ali ?elik. Pb(II) and Cd (II) removal from aqueous solutions by olive cake [J]. Journal of Hazardous Materials, 2006, 1 (138):22~28.
    [249]刘建国.水稻品种对土壤重金属镉铅吸收分配的差异及其机理[D].扬州:扬州大学,2004.
    [250]王凯荣. Cd对不同基因型水稻生长毒害影响的比较研究[J].农村生态环境,1996,12(3): 18-23.
    [251] Athar R, Ahmad M. Heavy metal toxicity: effect of plant growth and metal uptake by wheat, and on free living Azotobacter [J]. Water, Air and Soil pollution, 2002, 138: 165~180.
    [252]程斐,孙朝辉,赵玉国,等.芦苇末有机栽培基质的基本理化性能分析[J].南京农业大学学报,2001,24(3):19~22.
    [253] B.B.布坎南,W.格鲁依森姆,R.L.琼斯.植物生物化学与分子生物学[M].北京:科学出版社,2003,976~983.
    [254]邬飞波,张国平.不同镉水平下大麦幼苗生长和镉及养分吸收的品种间差异[J].应用生态学报,2002,13(12): 1595~1599.
    [255]刘建新.镉锌交互作用对玉米幼苗生理生化特性的影响[J].宜春学院学报(自然科学版),2004, 26(6): 55~57.
    [256]杨金凤,卜玉山,郭小燕,等.土壤外源镉、铅污染对油菜生长的影响研究[J].陕西农业科学,2005( 3):26~28.
    [257]丁海东,万延慧.重金属(Cd2+,Zn2+)胁迫对番茄幼苗抗氧化酶系统的影响[J].上海农业学报,2004,20(4): 79~82.
    [258] Jalil A, Selles F, Clarke J M. Effect of cadmium on growth and the uptake of cadmium and other elements by durum wheat [J]. J. Plant Nutr.,1994, 17: 1839~1895.
    [259]李廷强,杨肖娥.土壤中水溶性有机质及其对重金属化学与生物行为的影响[J].应用生态学报,2004,15(6):1083~1087.
    [260]李波,青长乐,周正宾,等.肥料中氮磷和有机质对土壤重金属行为的影响及在土壤治污中的应用[J].农业环境保护,2000,19(6):375~377.
    [261] S Clemens. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plant [J]. Biochimie, 2006,11 (88): 1707~1719.
    [262]金锋,汪再娟,吴南翔,等.尿中镉与-MG相关性的流行病学调查[J].职业与健康,2000,16(9):57~58.
    [263] Ouariti O,Boussama N,Zarrouk M,Cherif A and Ghorbal M H. Cadmium and copper-induced changes in tomato membrane lipids [J]. Phytochemistry, 1997, (45):1343~1350.
    [264] Shah K, Dubey R S. Cadmium elevates level of protein, amino acids and alters activity of proteolytic enzymes in germinating rice seeds [J].Acta Physoil.Plant., 1998, (20):189~196.
    [265] Florijn P J, Van Beusichem M L. Uptake and Distribution of Cadmium in Maze Inbred Lines [J]. Plant and Soil, 1993, (150): 25~32.
    [266] Yang X, Baligar VC, Maertens D C and Clark R B. Influx,transPort and accumulation of cadmium in Plant species [J]. J.Environ.Sci.Health, 1995, B 30 (4) : 569~583.
    [267]杨元根,Paterson E,Campbell C.城市土壤中重金属元素的积累及其微生物效应[J].境科学,2001,22 (3):44~48.
    [268]任安芝,高玉葆.铅,镉,铬单一和复合污染对青菜种子萌发的生物学效应[J].生态学杂志,2000,19(1):19~22.
    [269]邹琦.植物生理学实验指导[M].北京:中国农业出版社,2000.
    [270]刘宁,高玉葆,贾彩霞,等.渗透胁迫下多花黑麦草叶内过氧化物酶活性和脯氨酸含量以及质膜相对透性的变化[J].植物生理学通讯,2000,36(1):11~14.
    [271]王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系[J].植物生理学通讯,1990(6):55~57.
    [272] AOAC 991.43. AOAC Mensuration of dietary fiber (enzyme-gravity)
    [273] GB 10469-89:水果、蔬菜粗纤维的测定方法
    [274]杨素欣,王振镒.盐胁迫下小麦愈伤组织生理生化特性的变化[J].西北农业大学学报,1999,27(2):48~52.
    [275]邵云,冯淑利,李春喜,等. Cd2+胁迫对小麦幼苗生理活性的影响[J].安徽农业科学,2006,34(5):836~838.
    [276]刘祖棋,张石城.植物抗性生理学[M].北京:中国农业出版社,1994.
    [277]杨双春,刘玲,潘一,等. Hg2+、Cd2+胁迫对玉米生理生态的影响[J].辽宁石油化工大学学报,2004,9 (3):62~65.
    [278]张玲,李俊梅,王焕校.镉胁迫下小麦根系的生理生态变化[J].土壤通报,2002,33(1):61~65.
    [279]张永清,苗果园,张定一.污灌胁迫对春小麦抗氧化酶活性及根系与幼苗生长的影响[J].农业环境科学学报,2005,24(4):662~665.
    [280]姜勇,梁文举,张玉革,等.污灌对土壤重金属环境容量及水稻生长的影响研究[J].中国生态农业学报,2004,12(3):124~127.
    [281]王洪春.植物抗性生理[J].植物生理学通讯,1981,6:72~81.
    [282]张福锁.环境胁迫与植物营养[M].北京:北京农业大学出版社,1993.
    [283] Siegel N,Huag A. Calmodulin-dependent formation of membrane potential in barley root plasma membrane vesicles: A biochemical model of aluminum toxicity in plants [J]. Physiol Plant, 1983, 59: 258.
    [284] Somashekaraish B V, Padmaja K, Prasad R K. Phyto-toxicity of Cadmium ions on germination seedling of mung bean:Involvement of lipid peroxides in chlorophyll degradation [J]. Physiol Plant, 1992, 85: 85~89.
    [285]宋勤飞,樊卫国.铅胁迫对番茄生长及叶片生理指标的影响[J].山地农业生物学报,2004,23(2):134~138.
    [286]王忠.植物生理学[M].北京:中国农业出版社,2000.
    [287] Van Assche F, Clijsters H. Effects of metal on enzyme activity in plants [J]. Plant Cell Environ, 1990, 13: 195~206.
    [288]徐勤松,施国新,杜开和.六价铬污染对水车前叶片生理生化及细胞超微结构的影响[J].广西植物,2002,22(1):92~96.
    [289]潘瑞炽,董愚得.植物生理学[M].北京:高等教育出版社,1999.
    [290] Cornic G, Briantaris J M. Partitioning of photosynthetic electron flow between CO2 and O2 reduction in a C3 leaf(Phaseolus vulgaris L.) at different CO2 concentrations and during drought stress [J]. Planta, 1991, 183: 178~184.
    [291] Quick W P, Chaves M M,Wendler R, et al. The effect of water stress on photosynthetic carbon metabolism in four species grown under field conditions [J]. Plant Cell Environ, 1992, 15: 25~35.
    [292] Lal A M, Ku S B, Edwards G E. Analysis of inhibition of photosynthesis due to water stress in the C3 species Hordeum vulgare and Viciafaba: electron transport, CO2 fixation and carboxylation capacity [J]. Photosynth Res, 1996, 49: 57~69.
    [293]金松恒,蒋德安,王品美,等.水稻孕穗期不同叶位叶片的气体交换与叶绿素荧光特性[J].中国水稻科学,2004,18(5):443~448.
    [294]李荣春. Cd、Pb及其复合污染对烟叶生理生化指标的影响[J].云南农业大学学报,1997,12(1):45~50.
    [295]阎成士,李德全,张建华.植物叶片衰老与氧化胁迫[J].植物学通讯,1999, 16(4):384~304.
    [296]龚平,李培军,孙铁珩. Cd、Zn菲和多效唑复合污染土壤的微生物生态毒理效应[J].中国环境科学,1997,17(1):58~62.
    [297]宣瑛,闵航,吕镇梅,等. Azotobacter beijerinckii C4对镉和乙草胺复合污染的氧化应激反应研究[J].浙江大学学报,2006,32(5):489~494.
    [298]周希琴,莫灿坤.植物重金属胁迫及其抗氧化系统[J].新疆教育学院院报,2003,19(2):103~108.
    [299]张亚丽,沈其荣,姜洋.有机肥料对镉污染土壤的改良效应[J].土壤学报,2001,38(2):212~218.
    [300]武雪萍,刘国顺,郭平毅,等.饼肥中的有机营养物质及其在发酵过程中的变化[J].植物营养与肥料学报,2003,9(3):303~307.
    [301]杨锦忠.玉米的重金属胁迫及其抗性[J].玉米科学,2000,8(3):62~66.
    [302]杨居荣,黄翌.植物对重金属的耐性机理[J].生态学杂志,1994,13(6):20~26.
    [303] Chis Marc V H, Dirk I. Superoxide disutase and stress tolerance [J]. Annu Rev Plant Physiol Plant Mol Biol, 1992, 48~83.
    [304] Van Assche F, Clijsters H. Effects of metals on enzymes activity in plants [J]. Plant Cell and Environ, 1990, 13: 195~206.
    [305]马成仓,洪法水.汞对小麦种子萌发和幼苗生长作用机制初探切[J].植物生态学报,1998,22(4):373~378.
    [306]刘娟,王智析.小麦在叶锈菌侵染过程中过氧化物酶及多酚氧化酶活性变化[J].河北农业大学学报,1989,12(3): 41~46.
    [307]上海植物生理学会编.植物生理学实验手册[M].上海:上海科技出版社,1985,6:191~192.
    [308]王洪春.生物膜结构功能和渗透调节[M].上海:科学技术出版社,1987.
    [309]王建华.超氧物歧化酶在植物逆境和衰老生理中的作用[J].植物生理学通讯,1989,(1):1~7.
    [310] Mea J F. Free radical mechanism of lipid damage,a consequence or cellular membranes. In:Pryor WA(ed). Free Radical in Biology Chapter 2 [M]. NewYork:AcademicPress,1986.
    [311]吴振球,吴岳轩.铜、锌对水稻幼苗生长及超氧化物歧化酶的影响[J].植物生理学报,1990,16(2):139~146.
    [312] Corvetti G, Fornaro M, Geuna S, Poncino A Giacobini-Robecchi MG. Unscheduled DNA synthesis in rat adult myenteric neurons: animmunohistochemical study [J]. Neuroreport, 2001, 12: 2165~2168.
    [313] Whiting RF, Wei L, Stich HG. Enhancement by transition metals of unscheduled DNA synthesis induced by isoniazid and related hydrazines in cultured normal and xeroderma pigmentosum human cells [J]. MutatRes, 1979, 62: 505~515.
    [314] Popp W, Vahrenholz C, Schmieding W, Krewet E, Norpoth K. Investigations of the frequency of DNA strand breakage and cross-linking and of sister chromatid exchange in the lymphocytes of electric welders exposed to chromium- and nickel-containing fumes [J]. Int Arch Occup Environ Health, 1991, 63: 115~120.
    [315] Stearns DM, Kennedy LJ, Giangrande PH, Phieffer LS. Reduction of chromium(Ⅵ) by ascorbate leads to chromium-DNA binding and DNA strand breaks in vitro [J]. Biochemistry, 1995, 34: 910~919.
    [316] Tawa R, Takami M, Imakura Y, Lee KH, Sakurai H. Breaks in double-strand DNA by Cu(Ⅱ) complexes of etoposide(VP-16) and its derivatives, as evaluated by S1 nuclease treatment [J]. BiolPharmBull, 1997, 20: 1002~1005.
    [317] Duguid JG, Bloomfield VA. Aggregation of melted DNA by divalent metal ion-mediated cross-linking [J]. Biophys J, 1995, 69: 2642~2648.
    [318] Mattagajasingh SN, Misra HP. Mechanisms of the carcino-genic chromium (Ⅵ)-induced DNA-protein cross-linking and their characterization in cultured human cells [J]. J Biol Chem, 1996, 271: 33550~33560.
    [319] Misra M, Olinski R, Dizdaroglu M, Kasprzak KS. Enhancement by L-histidine of nickel(II)-induced DNA-protein cross-linking and oxidative DNA base damage in the rat kidney [J]. Chem Res Toxicol, 1993, 6: 33~37.
    [320]葛才林,杨小勇,孙锦荷,等.重金属胁迫引起的水稻和小麦幼苗DNA损伤[J].植物生理与分子生物学学报,2002,28(6):419~424.
    [321]夏寿萱.放射生物学[M].北京:军医医学出版社,1998,87~88.
    [322] Rauser W E. Structure and function of met al chelators produced by plants;the case for organic acids, aminoacids, phytin, and met al lothioneins [J]. CellBiochem Biophys, 1999, 31: 19~48.
    [323]安志装,王校常,严蔚东,等.镉硫交互处理对水稻吸收累积镉及其蛋白巯基含量的影响[J].土壤学报,2004,41(5):728~734.
    [324] Rama Devi S, Prasad M N V. Copper toxicity in Ceratophyllum demersum L. (Coontail), a free floating macrophyte: Response of antioxidant enzymes and antioxidants [J]. Plant Sci, 1998, 138: 157~165.
    [325]中国科学院上海植物研究所,上海市植物生理学会.现代植物生理学试验指南[M].北京:科学出版社,1999,149.
    [326] Keltjens W G, Beusichem M L. Phytochelatins as biomarker for heavy metal stress in maize (Zeamays L.) and wheat (Triticum aestivum L.): combined effects of copper and cadmium [J]. Plant Soil, 1998b, 203: 119~126.
    [327] Cobbett C T. Phytochelatins and their roles in heavy metal detoxification [J]. Plant Physiol, 2000, 123: 825~832.
    [328] Salt D E, Smith R D, Raskin I. Phytoremediation. Annu. Rev. Plant Physiol [J]. Plant Mol. Biol, 1998, 49: 643~668.
    [329] Rauser W E. Phytochelatins and related peptides [J]. Plant Physiology, 1995, 109(4): 1141~1149.
    [330] Steffens J C. The heavy metal-binding peptides of plants [J].Annu. Rev. Plant Physiol. Plant Mol.Biol, 1990, 41: 553~575.
    [331]安志装,王校常,严蔚东,等.植物鳌合肽及其在重金属胁迫下的适应机制[J].植物生理学通讯,2001,37(5):463~467.
    [332] Grill E, Winnacker E L, Zenk M H. Phytochelatins :the principal heavy metal complexing peptides of higher plants [J]. Science, 1985, 230: 674~676.
    [333]孙琴,王晓蓉,袁信芳,等.有机酸存在下小麦体内Cd的生物毒性和植物络合素(PCs)合成的关系[J].生态学报,2004,24(12):2804~2809.
    [334] Wu F B, Zhang G P. Phytochelatins and its function in heavy metal tolerance of higher plants [J]. Chinese Journal of Applied Ecology, 2003, 14(4): 632~636.
    [335] Keltjens W G, Beusichem M L. Phytochelatins as biomarkers for heavy metal toxicity in maize: single metal effects of copper and cadmium [J]. J. Plant Nutr, 1998a, 21(4): 635~648.
    [336] Keltjens W G, Beusichem M L. Phytochelatins as biomarker for heavy metal stress in maize(ZeamaysL.) and wheat(TriticumaestivumL.): combined effects of copper and cadmium [J]. Plant Soil, 1998b, 203: 119~126.
    [337] De Knecht J A, Van Baren N, Ten Bookum W M, etal. Synthesis and degradation of phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris [J]. Plant Sci, 1995, 106: 9~18.
    [338] Sneller F E C, Noordover E C M, Ten Bookum W M, etal. Quantitative relationship between phytochelatin accumulation and growth inhibition during prolonged exposure to cadmium in Silene vulgaris [J]. Ecotoxicology, 1999, 8(3): 167~175.
    [339] Boominathan R. Doran P M. Organic acid complexation, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator plant species [J]. J. Biotechnol, 2003, 101(2): 131~146.
    [340] Kocjan G, Samardakiewicz S, Wozny A. Regions of lead uptake in Lemna minor plants and localization of this metal within selected parts of the root [J]. Biol, Plantm, 1996, 38: 107~117.
    [341]杨居荣,鲍子平,张素芹.镉、铅在植物细胞内的分布及其可溶性结合形态[J].中国环境科学,1993,13(4):263~268.
    [342] Hans J W, Hans J J. Subcellular distribution and chemical form of cadmium in Bean plants [J]. Plant Physiol, 1980, 65: 480~482.
    [343]刘鸿先,曾韶西,王以柔,等.低温对杂优水稻及其亲本幼苗中超氧化物歧化酶的影响[J].植物学报,1987,29(3):262~267.
    [344]彭鸣,王焕校.铅镉在玉米幼苗中的积累和迁移[J].环境科学学报,1989,9(1):61~67.
    [345] Varga A, Zaray G, Fodor F. Determination of element distribution between the symplasm and apoplasm of cucumber plant parts by total reflection X-ray fluorescence spectrometry [J]. Journal of Inorganic Biochemistry, 2002, 89(1-2): 149~154.
    [346]王宏镔,王焕校,文传浩,等.镉处理下不同小麦品种几种解毒机制探讨[J].环境科学学报,2002,22(4):523~528.
    [347]徐勤松.黑藻对水体Cd、Cu、Zn污染的反应机制研究[D].南京:南京师范大学, 2004
    [348]苏苗育,罗丹,陈炎辉,等. 14种蔬菜对土壤Cd和Pb富集能力的估算[J].福建农林大学学报(自然科学版),2006,35(2):207~211.
    [349] ?wiergosz-Kowalewska, Bednarska, A. Kafel. Glutathione levels and enzyme activity in the tissues of bank vole Clethrionomys glareolus chronically exposed to a mixture of metal contaminants [J]. Chemosphere, 2006, 65(6): 963~974.
    [350] JoséAntonio Rodríguez Martín, Manuel López Arias, JoséManuel Grau Corbí. Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geoestatistical methods to study spatial variations [J]. Environmental Pollution, 2006, 3(144): 1001~1012
    [351]吴启堂,陈卢,王广寿.水稻不同品种对Cd吸收累积的差异和机理研究[J].生态学报,1999,1(1):104~107
    [352]黄亮,李伟,吴莹,等.长江中游若干湖泊中水生植物体内重金属分布[J].环境科学研究,2002,15(6):1~4
    [353]王慧忠,何翠屏,赵楠.铅对草坪植物生物量与叶绿素水平的影响[J].草业科学,2003,20(6):73~75.
    [354]杜应琼,何江华,陈俊坚,等.铅、镉和铬在叶类蔬菜中的累积及对其生长的影响[J].园艺学报, 2003,30(1):51~55.
    [355]王焕校.污染生态学[M].北京:高等教育出版社,2000:15~17.
    [356]王东林.重金属Cd、Pb胁迫对慈姑生长发育的影响及吸收分配的差异[D].扬州:扬州大学,2007:30
    [357]曹莹,黄瑞冬,李建东,等.铅和镉复合胁迫下玉米对镉吸收特性[J].生态学杂志,2006,25(11):1425-1427.
    [358]江解增,邱届娟,曹碚生,等.剪叶对茭白肉质茎膨大的影响[J].中国蔬菜,2004,(4):14-16.
    [359]江解增,曹碚生,黄凯丰,等.茭白肉质茎膨大过程中的糖代谢与激素含量变化[J].园艺学报,2005,32(1):134-137.
    [360]杜应琼,何江华,陈俊坚,等.铅、镉和铬在叶类蔬菜中的累积及对其生长的影响[J].园艺学报,2003,30(1):51-55.
    [361]李廷强,杨肖娥.土壤中水溶性有机质及其对重金属化学与生物行为的影响[J].应用生态学报,2004,15(6):1083-1087.
    [362]李波,青长乐,周正宾,等.肥料中氮磷和有机质对土壤重金属行为的影响及在土壤治污中的应用[J].农业环境保护,2000,19(6):375~377.
    [363] Lee S, Leustek T. The effect of cadmium on sulfate assimilation enzymes in Brassica Juncea [J]. Plant Sci., 1999, 141:201~207.
    [364] Nussbaum S, Schumtz D, Brunold C. Regulation of assimilatory sulfate reduction by cadmium in Zea mays. L [J]. Plant Physiol., 1988, 88:1407~1410.
    [365] Guo Y, Marschner H. Uptake, distribution and binding of cadmium and nickel in different plant species [J]. Plant Nutr, 1995, 18: 2691~2706.
    [366] Mclauglin M J, Lambrechts R M, SmoldersE, et al. Effects of sulfate on cadmium uptake by Swiss chare:II. Effects due to sulfate addition to soil[J]. Plant Soil, 1998, 202(2):217~222.
    [367] Howarth J R, Domingueez-solis J, Rgutierrez-alcala G, et al. The serine acetyltransferase gene family in Arabidopsis thaliana and the regulation of its expression by cadmium [J]. Plant Mol.Biol., 2003, 51:589~598.
    [368] Dominguez-Solis J R, Gutierrez-Alcala. G, Vega J M, et al. The cytosolic O-acetylserine (thiol) lyase gene is regulated by heavy-metals and can function incadmium tolerance [J] J.Biol.Chem., 2001, 276: 9297~9302.
    [369] Heiss S, Schafer H J, Hagg-Kerwer A. Cloning sulfur assimilation gene of Brassica JuniceaL., Cadmium differentially affects the expression of a putative low-affinity sulfate transport and isoforms of ATP sulfurylase and APS reductase [J]. Plant Mol.Biol., 1999, 39: 847~857.
    [370] Nocito F F, Pirovano L, Cocucci M, et al. Cadmium-induced sulfate uptake in maize roots [J]. Plant Physiol., 2002, 129: 1872~1879.
    [371]衣纯真,傅桂平,张福锁.不同钾肥对水稻镉吸收和运移的影响[J].中国农业大学学报,1996,1(3):65~70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700