甘蔗脯氨酸积累与△~1-吡咯啉-5-羧酸合成酶(ScP5CS)基因克隆及转化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘蔗是我国重要的糖料和能源作物,主要分布在广西、广东、云南、海南等南方黄、红壤地区,而且90%以上的种植面积为缺乏灌溉的旱坡地,季节性干旱是限制我国甘蔗生产的首要环境因素。在广西各大植蔗区,大部分植蔗区基本上都没有灌溉条件,而且由于坡地保水能力差,不能充分利用自然降水,每年都出现不同程度的旱害,特别是春、秋旱,这是制约甘蔗获得高产高糖的最主要因素。
     脯氨酸是目前所知生物界分布最广的渗透保护物质之一,干旱、高盐、高低温及重金属等非生物胁迫都会导致细菌、动物、植物、藻类中脯氨酸大量累积。弄清甘蔗植株体内脯氨酸在胁迫诱导之下的生物合成与代谢变化,以及介入脯氨酸代谢的基因调控,了解其对提高甘蔗耐逆性的调控分子机制,将有助于利用脯氨酸基因工程改良甘蔗抗逆性。
     本研究以甘蔗(Saccharum officinarum L.)品种:桂糖21号(GT21),新台糖16号(ROC16)和新台糖22号(ROC22)等3个品种为材料,用聚乙二醇(polyethylene glycol,PEG)6000处理模拟水分胁迫条件,探讨其对甘蔗生长前期与伸长期间叶中脯氨酸积累及其代谢相关酶活性的影响,以阐明脯氨酸代谢与甘蔗耐水分胁迫能力之间的关系。同时,通过PEG6000进行模拟水分胁迫诱导甘蔗△~1-吡咯啉-5-羧酸合成酶(Saccharum officinarum L.△~-1-pyrroline-5-carboxylate synthetase,ScP5CS)基因的表达,采用同源克隆方法从甘蔗中克隆出ScP5CS基因,并对该基因核苷酸与推断的氨基酸序列进行了结构分析。为了进一步验证甘蔗ScP5CS基因的功能,通过构建ScP5CS基因植物反义表达载体遗传转化烟草,分析该基因在转基因烟草植株中的表达及其抗渗透胁迫功能,以初步探讨该基因的功能。主要研究结果如下:
     1.在甘蔗生长前期,经胁迫处理,对于游离脯氨酸的变化,ROC16在处理后第1 d其含量就明显上升,GT21在处理2 d后也开始上升,而ROC22在处理后12 d内其含量仍增加不明显。P5CS酶活性经胁迫处理都较之未处理的表现活跃,GT21与ROC16在胁迫处理后其酶活性表现上升趋势,而ROC22变化不明显。鸟氨酸转氨酶(ornithine-δ-aminotransferase,δ-OAT)酶活性变化不明显。对于脯氨酸脱氢酶(proline dehydrogenase,ProDH)酶活性,GT21与ROC16在处理1 d后稍有上升但在7 d后都有下降,而ROC22在第7 d其酶活性就开始提高。
     2.在甘蔗伸长期,PEG处理后第4 d,GT21与ROC16叶中游离脯氨酸含量明显上升,但ROC22在处理后6 d内其含量增加仍不明显。P5CS酶活性变化因品种而异,ROC22在处理后第6 d才明显上升,其他2个品种则在胁迫处理1 d后即明显提高。δ-OAT酶活性变化不明显。ROC22在处理1 d后其ProDH酶活性稍有提高,而其他2个品种则下降。
     3.通过探讨PEG胁迫处理下甘蔗生长前期与伸长期间叶中脯氨酸积累及其代谢相关酶活性的变化,表明了在渗透胁迫下,甘蔗叶中游离脯氨酸大量积累,其生物合成中谷氨酸→脯氨酸途径比精氨酸→鸟氨酸→脯氨酸途径更占优势地位。脯氨酸降解受抑制和其合成对脯氨酸积累有同等意义。
     4.P5CS是脯氨酸生物合成中谷氨酸途径的限速酶,本研究以甘蔗品种ROC22为材料,采用同源克隆方法从基因组DNA中获得两条特异扩增带,初步确定为甘蔗ScP5CS基因组片段,其中ScPS_1片段长度为2016 bp,包含有7个内含子,8个外显子,其中仅有977 bp的外显子编码序列,GenBank注册号为EF620362;将外显子序列与ScP5CS mRNA(EU005373)相比,同源率达到99.6%。而ScPS_2片段大小与ScPS_1外显子序列一样,长度为977 bp,同源率达到99.6%,但缺失了内含子,与ScP5CS mRNA(EU005373)相比,同源率也达到99.6%,这表明了ScPS_2具有大多数返座假基因鲜明的特征:完全缺失存在于功能基因中的间隔序列,即内含子序列。因此,初步推测基因片段ScPS_2为返座假基因序列。
     5.采用同源克隆与RT-PCR法从甘蔗品种ROC22中得到甘蔗ScP5CS基因的编码区cDNA序列,其长度为2151 bp,为一个完整的ORF,编码716个氨基酸,GenBank注册号为EU005373。核苷酸序列与前人已注册的甘蔗P5CS(EF155655)相比,同源率达到98%,但推断编码的氨基酸同源率仅为92%。该基因具有P5CS共有的结构域与结合位点:Putative ATP-bindingsite;Putative leucine domains;Glu-5-kinase domain;Putative NADPH-bindingdomain;Conserved GSA-DH domain保守区,脯氨酸反馈抑制作用位点。与前人已注册的甘蔗P5CS基因氨基酸序列(ABM30223)比较,在γ-GK保守域(Glu-5-kinase domain)内氨基酸变化较大,而与水稻、小麦的相比,其变化较小。因此,推断为甘蔗P5CS基因家族中的一个新成员。
     6.用长度分别为384 bp(位置为1318~1701 bp)和954 bp(位置为1163~2166 bp),包含在甘蔗ScP5CS基因的γ-谷氨酰磷酸还原酶(Gamma-glutamyl phosphate reductase,γ-GPR)区域内的两个甘蔗ScP5CS基因片段反向插入植物表达载体pBI121的克隆位点上,由CaMV35S启动子控制两个基因片段的表达,构建了植物表达载体pBI121/Sc-PCS_1与pBI121/Sc-PCS_2。用甘蔗ScP5CS基因反义植物表达载体遗传转化烟草。甘蔗ScP5CS基因在烟草中的反义表达,部分抑制了烟草P5CS基因的活力。对转基因烟草植株进行NaCl与PEG6000胁迫培养,发现转入ScP5CS反义基因片段的烟草植株矮小,叶片容易发黄,根系发育迟缓,根长缩短,而且转入短片段Sc-PCS_1(384 bp)与长片段Sc-PCS_2(954bp)的转基因植株生长受到抑制效果一样;而转入空载体pBI121的烟草和对照烟草植株一样,叶色和叶片的主脉均较绿,新叶长出正常,发根相对早,根长稍长。
Sugarcane (Saccharum officinarum L.) is an important sugar and energy crop in China. The major sugarcane and sugar production in China is dominently located in southern region includes such as Guangxi, Guangdong, Yunnan and Hainan provinces. Drought is the most important abiotic stress limiting sugar productivity in China because about 90% of sugarcane is grown in the upland areas where irrigation is not available. In Guangxi, drought occurs very often in the major sugarcane growing areas, especially in the spring and autumn, which affects cane yield and sugar productivity seriously.
     Proline accumulation in response to various environmental stresses such as drought, excessive salinity, high or low temperature and heavy metal, has been described in many phylogenetically diverse organisms such as bacterial, mammalian, plants and algae. Efforts toward understanding the proline biosynthetic pathway in sugarcane and to unravel the role of proline in response to osmotic stress may help us to use gene engineering related proline to enhance the resistance of sugarcane under osmotic stress.
     Three sugarcane varieties, GT21, ROC16 and ROC22, were used as experimental materials. The plants were treated with 25% polyethylene glycol (PEG) 6000 at early and elongation stages, respectively. Effects of PEG stress on proline accumulation and the activities of the key enzymes in leaves of sugarcane were investigated in the present study. At the same time, the isolation and the structure of the sequences of nucleotide acid and deduced amino acid encoding the ScP5CS {Saccharum officinarum L. Δ~1-pyrroline-5-carboxylate synthetase) gene were reported. And the functions of this gene were analyzed by transferring the anti-sense mRNA of ScP5CS gene into tobacco. Expression and resistance under osmotic stress of the sugarcane ScP5CS were analyzed in the transgenic tobacco. The main results as follows:
     1. At the early growth stage, free proline content in ROC16 increased 1 d after starting of the osmotic stress treatment, that in GT21 also increased 2 d after the starting of the treatment, while there was no difference between the treatment and the control for the variety ROC22 during 12 d. The same results for the activity ofΔ~1-pyrroline-5-carboxylate synthetase (P5CS) were obtained after the stress treatment, the activity in GT21 and ROC16 increased after treatment, but it was contrary in ROC22. For the activities of ornithine-δ-aminotransferase (δ-OAT), there was no remarkable difference between the treatment and control. The proline dehydrogenase (ProDH) activity in GT21 and ROC16 increased at firstly then decreased after 7 d while that in ROC22 increased 7 d after the starting of the treatment.
     2. At the elongation stage, free proline content in GT21 and ROC16 increased 4 d after the starting of the treatment, while there was no difference between the treatment and the control for the variety ROC22 during 6 d. The same results for the P5CS activity were obtained after the stress treatment, the P5CS activity in ROC22 did not increase until 6 d after the starting of the treatment. For the activities of 5-OAT, there was no remarkable difference between the treatment and the control. The ProDH activity in ROC22 increased after treatment, but it was contrary in the other varieties.
     3. Effects of water stress on proline content, activities of P5CS,δ-OAT and ProDH in leaves were studied. The results showed that proline is largely accumulated in sugarcane under the stress treatment. Whereas proline can be synthesized from either glutamate or ornithine in plants, the experiments indicate that glutamate, rather than ornithine, is primary precursor for proline biosynthesis in osmotically stressed sugarcane. And the accumulation of proline occurred as the result of both the activation of proline biosynthesis and the inactivation of proline degradation.
     4. P5CS is the rate-limiting enzyme in proline biosynthesis of glutamate pathway. In the present study, the sugarcane variety ROC22 was used as the experimental material.
     By homologous based cloning, two specific fragments isolated from sugarcane genome DNA with specific primers, which were confirmed as the sugarcane ScP5CS genes, naming ScPS_1 and ScPS_2. The length of sequence ScPS_1 was 2016 bp, containing 7 introns and 8 extrons, and the GenBank accession number is EF620362. Comparing the extron sequence 977 bp of ScPSi with that of ScP5CS mRNA (EU005373), it showed high identity (99.6%). And the length of ScPS_2 was the same as the transcribed sequence of ScPS_1, showing high identity with the transcribed sequence of ScPS_1 (99.6%) and with ScP5CS mRNA (EU005373) sequence (99.6%). But the introns were absent in the ScPS_2, which is the feature of the pseudogene. So the ScPS_2 was confirmed as the pseudogene.
     5. With the sugarcane variety ROC22 as experimental material, the cDNA sequence of ScP5CS gene in sugarcane with 2151 bp in length was isolated by homologous cloning, which contained an open reading frame encoding a protein of 716 amino acids, with GenBank accession number EF620362. Comparing the sequence of ScP5CS with that of ScP5CS (EF155655) reported, the nucleotide acid showed high identity (98%), but the deduced amino acid was only 92%. The deduced protein contains putative ATP-binding site, putative leucine domains, Glu-5-kinase domain, putative NADPH-binding domain, conserved GSA-DH domain and feedback inhibition site. Besides, there were more differences in Glu-5-kinase domain from the deduced amino acid of ScP5CS (EF155655), but less for the P5CSs from rice (Oryza sativa) and wheat (Triticum aestivum). So it is confirmed this gene is a new gene of sugarcane P5CS.
     6. The antisenced expression vectors pBI121/Sc-PCS_1 and pBI121/Sc-PCS_2 were constructed by respectively inserting two different fragments, which were 384 bp (position 1318-1701 bp) and 954 bp (position 1163-2166 bp), of ScP5CS gene, into the plant expression vector pBI121 downstream controlled by CaMV35S promoter. These fragments were contained in gamma-glutamyl phosphate reductase domain. The antisenced expression vectors of ScP5CS gene were used to transformed tobacco plants. The transformed antisence ScP5CS in tobacco inhibited the expression of tobacco P5CS. The transgenic plants grew slowlier, the leaves were easy to get etiolational and the root system development was stunted and the roots were shorter under the NaCl and PEG stress as compared with the control. And the same results were obtained for both the shorter sequence Sc-PCS_1 (384 bp) and the longer sequence SC-PCS2 (954 bp) after the stress treatment, but it was contrary for the plants with the transformed vector pBI121 and the non-transgenic (negative) control.
引文
1. Chiang HH, and Dandekar AM. Regulation of accumulation in Arabidopsis thaliana during developmentand in response to desiccation [J]. Plant Cell Environment, 1995,18: 1280-1290.
    
    2. Savoure A, Jaoua S, Hua XJ. Isolation, characterization, and chromosomal location of a gene encoding the P5CS in Arabidopsis thaliana [J]. FEBS Letters, 1995,372:13-19.
    
    3. Fujita T, Maggio A, Garcia-Rios M, Bressan RA, Csonka LN. Comparative analysis of the regulation ofexpression and structures of two evolutionarily divergent genes for A'-pyrroline-5-carboxylate synthetase from tomato [J]. Plant Physiology, 1998, 118: 661-674.
    
    4. Stines AP, Naylor DJ, H(?)j PB, van Heeswijck R. Proline accumulation in developing grapevine fruitoccurs independently of changes in the levels of A'-pyrroline-5-carboxylate synthetase mRNA or protein [J]. Plant Physiology, 1999, (120): 923-931.
    
    5. Boggess SF, Paleg LG, and Aspinall D. Δ~1-pyrroline-5-carboxylic acid dehydrogenase in barley, aproline-accumulating species[J]. Plant Physiology, 1975, 56: 259-262.
    
    6.王霞,侯平,尹林克,冯大千,潘伯荣.水分胁迫对柽柳植物可溶性物质的影响[J].干旱地区农 业研究,1999,16(2):6-11.
    
    7.夏爱,邓西平,薛菘.植物抗旱的分子生物学机制研究进展[J].乐山师范学院学报,2001,(4): 65-69.
    
    8.王邦锡,黄久常.不同植物在水分胁迫条件下脯氨酸的积累与抗旱性关系[J].植物生理学报,1989, 15(1):46-51.
    
    9.关义新,戴俊英,陈军,徐世昌.土壤干旱下玉米叶片游离脯氨酸的累积及其与抗旱性的关系[J]. 玉米科学,1996,4(1):43-45.
    
    10.王畅,林秋萍,贡冬花,李普安,张赞平,付国占.夏玉米的干旱适应性及其生理机制的研究[J]. 华北农学报,1990,5(4):54-60.
    
    11.黄建国,袁玲.CaCl_2对玉米种子的抗旱作用研究[J].西南农业大学学报,1990,12(4):192-195.
    
    12.洪法水,周谋文,董振吉.钙和聚二乙醇浸种对小麦幼苗水分胁迫的缓解效应[J].植物生理学通 讯,1995,31(3):202.
    
    13.王金胜,郭栋生,丁起盛,郭春绒.水分胁迫对玉米幼苗几种生理生化指标的影响及其与抗旱性 的关系[J].山西农业大学学报(自然科学版),1992,12(2):137-140.
    
    14.陈如凯,等编著.现代甘蔗育种的理论与实践[M].中国农业出版社,2003,151-152.
    
    15. Hong Z, Lakkineni K, Zhang Z, Verma DPS. Removal of feedback inhibition of Δ'-proline-5-carboxylate synthase results in increased proline accumulation and protection of plants from osmotic stress [J]. Plant Physiology, 2000,122: 1129-1136.
    
    16. Stewart CR, Lee JA. The role of proline accumulation in halophytes [J]. Planta, 1974,120: 279.
    
    17. Watad AA, Reinhold L, Lerner HR. Comparison between a stable NaCl-selected Nicotiana cell line andwild type [J]. Plant Physiology, 1983, 73: 624.
    
    18.汤章城.逆境条件下植物脯氨酸累积及其可能的意义[J].植物生理学通讯,1984,(1):15-21.
    
    19. Hanson A D, Nelsen C E, Everson E H. Evaluation of free proline accumulation as an index of drought resistance using two contrasting barley cultivars[J]. Crop Science, 1977,17: 720.
    
    20.汤华,柳晓磊.盐胁迫下玉米苗期农艺性状和脯氨酸含量变化的研究[J].中国农学通报,2007, 23(3):244-249.
    
    21. Hamilton EW, Heckathorn SA. Mitochondrial adaptations to NaCl, complex I s protected byanti-oxidants and small heat shock proteins, whereas Complex Ⅱsprotected by proline and betaine [J]. Plant Physiology, 2001, 126: 1266-1274.
    
    22.余叔文,汤章城主编.植物生理与分子生物学[M].科学出版社,2001,739-769.
    
    23. Khedr AHA, Abbas MA, Wahid AAA, Quick WP, Abogadallah GM. Proline induces the expression of salt-stress-responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress [J]. Journal of Experimental Botany, 2003, 54(392): 2553-2562.
    
    24. Delauncy AJ, Hu CAA, Kishor PBK, Verma DPS. Cloning of ornithine-aminotransferase cDNA from Vigna aconitifolia by trans-complementation in Escherichia Coli and regulation of proline biosynthesis [J]. Journal of Biological Chemistry, 1993,268(25): 18673-18678.
    
    25. Delauney A J, Verma D P S. Proline biosynthesis and osmoregulation in plants [J]. Plant Journal, 1993, 4(2): 215-223.
    
    26.苏金,朱汝财.渗透胁迫调节的转基因表达对植物抗旱耐盐性的影响[J].植物学通报,2001, 18(2):129-136.
    
    27.杜金友,陈晓阳,李伟,高琼.干旱胁迫诱导下植物基因的表达与调控[J].生物技术通报,2004, (2):10-14.
    
    28. Delauncy AJ, Verma DPS. A soybean gene encoding Δ'-pyrroline-5-carboxylate redutase was isolated by functional complementation in Escherichia Coli and is found to be osmoregulated [J]. Molecular &??general genetics, 1990,221(3): 299-305.
    
    29. Hua XJ, van de Cotte B, Van Montagu M, Verbruggen N. Developmental regulation of pyrroline-5-carboxylate reductase gene expression in Arabidopsis [J]. Plant Physiology, 1997, 114: 1215-1224.
    
    30. Guerrero FD, Jones JT, Muller FE. Turgor-responsive gene transcription and RNA levels increase rapidly when pea shoots are wilted: sequence and expression of three inducible genes [J]. Plant Molecular Biology, 1990, 15: 11-26.
    
    31. Szoke A, Miao GH, Hong Z, Verma DPS. Subcellular location of Δ'-pyrroline-5-carboxylate redutase in roots / nodule and leaf of soybean [J]. Plant Physiology, 1992, 99:1642-1649.
    
    32. Deuschle K, Funck D, Forlani G, Stransky H, Biehl A, Leister D, van der Graaff E, Kunze R, Frommer WR. The role of Δ'-Pyrroline-5-Carboxylate Dehydrogenase in proline degradation [J]. The Plant Cell, 2004, 16: 3413-3425.
    
    33. Nanjo T, Fujita M, Seki M, Kato T, Tabata S, Shinozaki K. Toxicity of free proline revealed in an Arabidopsis T-DNA-tagged mutant deficient in proline dehydrogenase [J]. Plant and Cell Physiology, 2003,44(5): 541-548.
    
    34. Peng Z, Lu Q, Verma DPS. Reciprocal regulation of Δ~1-pyrroline-5-carboxylate sythetase and proline dehydrogease genes controls proline levels during and after osmotic stress in plants [J]. Molecular & general genetics, 1996, 253: 334-341.
    
    35. Verbruggen N, Villarroel R, van Montagu M. Osmoregulation of a pyrroline-5-carboxylate reductase gene in Arabidopsis thaliana [J]. Plant Physiology, 1993,103: 771-781.
    
    36. Hayashi F, Ichino T, Osanai M, Wada K. Oscillation and regulation of proline content by P5CS and ProDH gene expressions in the light/dark cycles in Arabidopsis thaliana L. [J]. Plant and Cell Physiology, 2000,41 (10): 1096-1101.
    
    37. Murahama M, Yoshida T, Hayashi F, Ichino T, Sanada Y, Wada K. Purification and characterization of Δ~1-pyrroline-5-carboxylate reductase isoenzymes, indicating differential distribution in Spinach (Spinacia oleracea L.) Leaves [J]. Plant and Cell Physiology, 2001, 42(7): 742-750.
    
    38余光辉,刘正辉,曾富华,李玲,吴志华.脯氨酸累积与其合成关键酶活性的关系[J].湛江师范 学院学报,2002,23(6):57-60.
    
    39. Zhao FG, Sun C, Liu YL. Ornithine pathway in proline biosynthesis activated by salt stress in barley seedlings [J]. Acta Botanica Sinia, 2001,43(1): 36-40.
    
    40. Tripathi S, Gurumurthi K, Panigrahi A, Shaw B. Salinity induced changes in proline and betaine contents and synthesis in two aquatic macrophytes differing in salt tolerance [J]. Biologia Plantarum, 2007,51(1): 110-115(6).
    
    41. Stewart CR, Boggess SF, Aspinall D, Paleg LG. Inhibition of proline oxidation by water stress[J]. Plant Physiology, 1977, 59: 930-932.
    
    42. Boggess SF, Koeppe DE. Oxidation of proline by plant mitochondria[J]. Plant Physiology, 1978, 62: 22-25.
    
    43. Stewart CR, Boggess SF. Metabolism of [5-~3H] proline by barley leaves and its use in measuring the effects of water stress on proline oxidation[J]. Plant Physiology, 1978, 61: 654-657.
    
    44.马宗仁.植物在水分胁迫下脯氨酸积累的研究——Ⅵ.关于植物体内脯氨酸积累的直接触发因子 [J].草业科学,1994,11(1):17-18.
    
    45. Hu CAA, Delauney AJ, Verma DPS. A bifunctional enzyme (Δ~1-pyrroline-5-carboxylate sythetase) catalyzes the first two steps in proline biosynthesis in plants [J]. Plant Biology, 1992, 89: 9354-9358.
    
    46. Zhang CS, Lu Q, Verma DPS. Removal of feedback inhibition of Δ~1-proline-5-carboxylate synthase, a bifunctional enzyme catalyzing the first two steps of proline biosynthesis in plants[J]. The Journal of Biological Chemistry, 1995,270(35): 20491-20496.
    
    47. Garcia-Rios M, Fujita T, Larosa PC, Locy RD, Clithero JM, Bressan RA, Csonka LN. Cloning of a polycistronic cDNA from tomato encoding γ-glutamyl kinase and γ-glutamyl phosphate reductase [J]. Proc. Natl. Acad. Sci. USA, Plant Biology, 1997, 94: 8249-8254.
    
    48. Nakashima K, Satoh R, Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K. A gene encoding proline dehydrogenase is not only induced by proline and hypoosmolarity, but is also developmentally regulated in the reproductive organs of Arabidopsis [J]. Plant Physiology, 1998, 118: 1233-1241.
    
    49. Kiyosue T, Yoshiba Y, Yamaguchi-Shinozaki K, Shinozaki K. A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis [J]. The Plant Cell, 1996, 8: 1323-1335.
    
    50. Strizhov N, Abraham E, Okresz L, Blickling S, Zilberstein A, Schell J, Koncz C, Szabados L. Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABU and AXR2 in Arabidopsis [J]. The Plant Journal, 1997, 12(3): 557-569.
    
    51. Yu SW, Li RT, Zhang RD, Song YC, Zhang ZM, Zhang DP. Fluorescence in situ Hybridization of??Δ'-pyrroline-5-carboxylate Synthetase(P5CS)Gene on Rice Chromosome[J].华中农业大学学报, 2002,21(1):1-4.
    
    52. Ginzberg I, Stein H, Kapulnik Y, Szabados L, Strizhov N, Schell J, Koncz C, Zilberstein A. Isolation and characterization of two different cDNAs of Δ~1-pyrroline-5-carboxylate synthase in alfalfa transcriptionally induced upon salt stress [J]. Plant Molecular Biology, 1998,38: 755-764.
    
    53.王萍萍,马长乐,赵可夫,赵彦修,张慧.盐地碱蓬Δ’-二氢吡咯-5-羧酸合成酶基因(SsP5CS) 的克隆及表达特性[J].山东师范大学学报(自然科学版),2002,17(3):59-62.
    
    54.马丽清.小麦耐盐相关基因的作图及克隆.中国农业大学博士论文,2005,6.
    
    55. Ueda A, Shi WM, Sanmiya K, Shono M, Takabe T. Functional analysis of salt-inducible proline transporter of barley roots [J]. Plant and Cell Physiology, 2001,42(11): 1282-1289.
    
    56. Roosens NHCJ, Thu TT, Iskandar HM, Jacobs M. Isolation of the Ornithine-δ-Aminotransferase cDNA and effect of salt stress on its expression in Arabidopsis thaliana [J]. Plant Physiology, 1998,117: 263-271.
    
    57.韩素英,张守攻,汪泉,周春娥,刘国华,齐力旺.小叶杨Δ~1-吡咯琳-5-羧酸合成酶(P5CS)基因克 隆及在杂种落叶松中的转化.生物技术通报,2006,(3):88-92.
    
    58.张永恩.抗旱基因的序列分析及其玉米中的应用研究.河南农业大学,硕士论文,2005,5.
    
    59. Yang MZ, Bower R, Mark DB, Andrew HP, Mirkov TE. A rapid and direct approach to identify promoters that confer high levels of gene expression in monocots [J]. Crop Science, 2003, 43: 1805-1813.
    
    60.李志亮,黄丛林,张秀海,曹鸣庆,李征,王刚,吴忠义.利用基因枪法向高羊茅导入P5CS基 因的研究[J].园艺学报,2005,32(4):653-657.
    
    61.朱汝财.转突变型二氢毗咯-5-羧化物合成酶基因水稻的抗旱耐盐性研究[M].中国农业科学院, 硕士学位论文,2001.
    
    62.邵文杰.“转基因抗旱耐盐碱水稻”通过鉴定[J].中国农业信息快讯,2001,(4):38.
    
    63.支立峰,陈明清,余涛,曹军卫,朱英国,李阳生.p5cs转化水稻细胞系的研究[J].湖北师范学院 学报(自然科学版),2005,25(4):39-43.
    
    64.杨成民,王宏芝,孙振元,魏建华.利用基因枪共转化法获得转bar与P5CS基因黑麦草[J].草地 学报,2005,13(1):34-38.
    
    65. Yamada M, Morishita H, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Shinozaki K, Yoshiba Y. Effects of free proline accumulation in petunias under drought stress [J]. Journal of Experimental??Botany, 2005, 56(417): 175-1981.
    
    66. Yamchi A, Rastgar Jazii F, Ghobadi C, Mousavi A, Karkhanehee AA. Increasing of tolerance to osmotic stresses in tobacco Nicotiana tabacum cv. Xanthi through overexpression of p5cs gene [J]. Journal of Sciences and Technology of Agriculture and Natural Resources, 2005, 8(4): 40.
    
    67. Molinari HBC, Marur CJ, Filho JCB, Kobayashi AK, Pileggi M, Junior RPL, Pereira LFP, Vieira LGE. Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.) overproducting proline [J]. Plant Science, 2004, 167(6): 1375-1381.
    
    68. ATda H-S, Radhia G-B, Amira B, Leila J, Arnould S, Samir J. Overexpression of Δ~1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants [J]. Plant Science, 2005,169(4): 746-752.
    
    69.霍秀文,云锦凤,米福贵,魏建华,张辉.共转化法获得蒙农杂种冰草转基因植株[J].中国农业 科学,2006,39(10):1977-1983.
    
    70. Kavi Kishor PB, Hong Z, Miao GH, Hu CAA. Overexpression of A'-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants [J]. Plant Physiology, 1995, 108: 1387-1394.
    
    71. Zhu JK, Hasegawa PM, Bressan RA. Molecular aspects of osmotic stress in plants [J]. Critical reviews in plant sciences, 1997, 16: 253-277.
    
    72.王关林,方宏筠主编.植物基因工程原理与技术[M],北京:科学出版社,1998,27.
    
    73. De Ronder JA. Photosynthetic response of transgenic soybean, containing an Arabidopsis P5CR gene, during heat and drought stress [J]. Journal of Plant Physiology, 2004, 161(11): 1211-1224.
    
    74.支立峰,余涛,朱英国,李阳生.过量表达脯氨酸的转基因烟草细胞对毒性重金属的抗性增强 [J].湖北师范学院学报(自然科学版),2006,26(2):14-19.
    
    75. Siripornadulsil S, Traina S, Verma DPS, Sayre RT. Molecular mechanisms of proline-mediated tolerance to toxic heavy metal in transgenic microalgae[J]. Plant Cell, 2002,14: 2837-2847.
    
    76. Molinari HBC, Marur CJ, Daros E, de Campos MKF, de Carvalho JFRP, Filho JCB, Pereira LFP, Vieira LGE. Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress [J]. Physiologia Plantarum, 2007, 130(2): 218-229.
    
    77.陈少裕.甘蔗抗旱机理研究现状与展望[J].福建农学院学报,1991,20(1):12-17.
    
    78.梁广焜.论旱害对甘蔗生长和制糖工业的影响[J].甘蔗科技通讯,1981,(2):6-10.
    
    79.吴才文,王建光,陈学宽,刘学勇,夏红明.几种甘蔗品种(系)前期生长特性及抗旱性分析[J].甘 蔗糖业,2003,(1):10-15.
    
    80.轻工业部甘蔗糖业科学研究所,广东省农业科学院.中国甘蔗栽培学[M].北京:农业出版社, 1984,74.
    
    81. Koehler PH, Moore PH, Jones A. Response of drip-irrigated sugarcane to drought stress [J]. Agronomy,1982,74:906-911.
    
    82. Inman-Bamberng, Thompson GD. The reaction of two varieties of sugarcane to water stress [J]. Field Crop Research, 1986, 14: 15-28.
    
    83. Clements HF. Sugarcane crop logging and crop control principles and practices [M]. Hawaii University Press, Honolulu, 1980, pp.73-170.
    
    84. Venkataramana S, Gururaja Rao GCPN, Naidu KM. The effects of water stress during the formative phase on stomatal resistance and leaf water potential and its relationship with yield in ten sugarcane varieties [J]. Field Crop Research, 1986, (13): 345-353.
    
    85.Gesnell JM,陈代华译.收获前干旱处理对甘蔗产量和品质的影响[J].甘蔗糖业(甘蔗分刊),1978, (4):56-61.
    
    86.黄荣韶,莫家让.旱地甘蔗若干生理特性比较及其与抗旱的关系[J].广西农业大学学报,1995, 14(3):201-206.
    
    87.张木清,陈如凯.甘蔗抗旱性的遗传改良[J].中国农学通报,1994,10(1):29-33.
    
    88.叶燕萍,李杨瑞,李永健,黄诚梅,唐军.反复干旱法在甘蔗抗旱性研究中的应用[J].中国糖料, 2003,(3):12-16.
    
    89.杨生超.甘蔗抗旱栽培技术研究进展[J].中国糖料,2001,(3):34-37.
    
    90.叶燕萍,李杨瑞,李永健,梁娇莺.不同种茎处理对甘蔗品种萌芽幼苗期抗旱性的影响[J].中国 糖料,2002,(3):1-3.
    
    91.叶燕萍,李杨瑞,李永健,杨丽涛.不同种苗处理方式甘蔗对干旱条件的反应[J].热带作物学报, 2001,22(2):62-67.
    
    92.叶燕萍,李杨瑞,黄诚梅,李永健,邢永秀.下种方式和水分胁迫对甘蔗叶片光合特性的影响[J]. 甘蔗,2003,10(3):1-4.
    
    93.陈少裕.甘蔗水分胁迫的自由基机制研究[M].福建农学院博士论文,1990.
    
    94.周鸿凯,叶振邦.干旱对甘蔗叶片的细胞透性及脯氨酸积累效应的研究初报[J].甘蔗糖业,1988, (2):39-41.
    
    95.钟希琼,叶振邦.甘蔗不同品种(种)对干旱的生理反应[J].华南农业大学学报,1993,14(4): 138-144.
    
    96.钟希琼,林丽超.甘蔗品种抗旱力与生理指标的关系[J].佛山科学技术学院学报(自然科学版), 2002,20(3):59-62.
    
    97.陈如凯,张木清,陆裔波.干旱胁迫对甘蔗生理影响的研究[J].甘蔗,1995,2(1):1-6.
    
    98.梁丽琼,谭裕模,曾洁清,甘海鹏,梁朝旭,庞天.甘蔗叶片生态特征及脯氨酸含量、膜透性与 抗旱性关系研究[J].甘蔗,1995,2(4):14-19.
    
    99.Rutherford RS.甘蔗脯氨酸积累的抗旱作用的评价[J].国外农学——甘蔗,1990,(2):27-31.
    
    100.吴凯朝,叶燕萍,李杨瑞,李永健,杨丽涛.喷施乙烯利对甘蔗群体冠层结构及一些抗旱生理指 标的影响[J].西南农业学报,2004,17(6):724-729.
    
    101.廖北周,陈渐桂,金玉峰.甘蔗耐早与脯氨酸[J].甘蔗糖业(甘蔗分刊),1988,(4):22-23.
    
    102.罗明珠,刘子凡,梁计南,魏延明.甘蔗抗旱性与叶片某些生理、生化性状的关系.亚热带农业 研充2005,1(1):14-16.
    
    103.许文花,杨清辉.水分胁迫对斑茅不同无性系的影响[J].甘蔗,2004,11(3):13-17.
    
    104.丁灿,杨清辉,李富生,林位夫.低温胁迫对割手密和斑茅游离脯氨酸含量的影响(Ⅱ)[J].安徽 农业科学,2006,34(5):846-849.
    
    105.丁灿,杨清辉,李富生,林位夫.低温胁迫等对割手密和斑茅叶片游离脯氨酸含量的影响.热 带作物学报,2005,26(4):52-56.
    
    106.余爱丽.斑茅抗逆性评价及其BADH基因的克隆表达[M].福建农林大学博士学位论文,2004,4.
    
    107.陈晖,匡柏健,王敬驹.甘蔗抗逆细胞系选择及其生化特性的研究[J].生物工程学报,1995, 11(2):115-119.
    
    108.陆国盈,韩世健,韦恢乐,杨培忠,陈荣生,黄绍谦.甘蔗几个引进新品种抗旱性研究初报[J]. 广西蔗糖,1999,17(4):5-9.
    
    109.高三基,罗俊,陈如凯.甘蔗品种抗旱性光合生理指标及其综合评价[J].作物学报,2002,28(1): 94-98.
    
    110.黄荣韶.甘蔗叶片的几个生理特性与抗旱能力的关系[J].广西农业大学学报,1994,13(2): 151-154.
    
    111.刘海斌,何红,黄家雍,张革民,谭芳.几个甘蔗品种(品系)抗旱性能研究初报[J].广西蔗糖, 1997,8(3):24-27.
    
    112.黄有总,徐建云,陈超君,何雪银.几个甘蔗新品种的抗旱性和抗寒性比较研究[J].广西农业生??物科学,2002,21(2):101-104.
    
    113.李富生,何丽莲.植物对非生物胁迫的生理响应及甘蔗抗旱抗寒性研究进展[J].甘蔗,2004, 11(1):31-37.
    
    114.钟希琼,叶振邦.综合评价甘蔗的抗旱性及其抗旱生理指标[J].华南农业大学学报,1996,17(3): 81-84.
    
    115. Holmstrom KO, Welin B, Mandal A, Kristriandottir I, Teeri TH, Lamark T, Strom AR, Palva ET. Production of the Escherichia coli betaine-aldehyde dehydrogenase, an enzyme required for the synthesis of the osmoprotectant glycine betaine, in transgenic plants [J]. The Plant Journal, 1994, 6: 749-758.
    
    116.刘粉霞.农杆菌介导的玉米遗传转化的建立及拟南芥CBF1转基因玉米的研究[M].四川农业大 学,硕士学位论文,2003.
    
    117.边红武.脱水蛋白和CBF1转基因对植物抗旱性和抗冻性作用的研究[M].浙江大学,博士学位 论文,2003.
    
    118. Tran L-SP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress promoter [J]. Plant Cell, 2004, 16: 2481-2498.
    
    119.张树珍,郑学勤,林俊芳,郭丽琼,昝丽梅.海藻糖合酶基因的克隆及转化甘蔗的研究[J].农业 生物技术学报,2000,8(4):385-388.
    
    120.王自章,张树珍,杨本鹏,李杨瑞.甘蔗根癌农杆菌介导转化海藻糖合酶基因获得抗渗透胁迫 能力增强植株[J].中国农业科学,2003,36(2):140-146.
    
    121. Romero C,Belles JM, Vaya JL, Serrano R, Culianez-Macia FA. Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance [J]. Planta, 1997,201: 293-297.
    
    122. Goddijn OJM, Verwoerd TC, Voogd E, Krutwagen RWHH, de Graff PTHM, Poels J, van Dun K, Ponstein AS, Damm B, Pen J. Inhibition of trehalase activity enhances strehalose accumulation in transgenic plants [J]. Plant Physiology, 1997, 113: 181-190.
    
    123. Holmstrom KO. Engineering plant adaptation to water stress [J]. Acta universitatis Agriculture Sueciae Agraia, 1998, 84: 49.
    
    124. Smits PEAH, Terry N, Sears T, Kim H, Zayed A, Hwang S, Van Dun K, Voogd E, Verwoerd TC,??Krutwagen RWHH, GoddijnOJM. Trehalose-producing transgenic tobacco plants show improved growth performance under drought stress [J]. Journal of Plant Physiology, 1998,152: 525-532.
    
    125.汤火龙.海藻糖合成酶基因遗传转化烟草的研究[M].中国热带农业科学院,华南热带农业大学 硕士学位论文,2003.
    
    126.梁峥,骆爱玲.甜菜碱与甜菜碱醛脱氢酶[J].植物生理学通讯,1995,(1):1-8.
    
    127. Robinson PM, Roberts MF. Effects of osmolyte precursors on the distribution of compatible solutes in methanohalophilus portucalensis [J]. Applied and Environmental Microbiology, 1997, 63(10): 4032-4038.
    
    128.梁峥,骆爱玲,赵原,汤岚.干旱和盐胁迫诱导甜菜碱醛脱氢酶的积累[J].植物生理学报, 1996,22:161-164.
    
    129.侯彩霞,於新建,李荣,徐春和,汤章城,沈允钢.甜菜碱稳定PSⅡ放氧中心外周多肽机理[J]. 中国科学(C辑),1998,28(4):355-361.
    
    130. Hou CX, Yu XJ, Li R, Tang ZC, Shen YG, Xu CH. Mechanism of selective stabilization of extrinsic polypeptides in PSII particles by glycine betaine [J]. Science in China (Series C), 1998, 41(3): 278-285.
    
    131.侯彩霞,徐春和,汤章城,沈允钢.甜菜碱对PSⅡ放氧中心结构的选择性保护[J].科学通报, 1997,42(17):1857-1859.
    
    132. Papageorgiou GC, Murata N. The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem complex [J]. Photosynthesis Research, 1995,44:243-252.
    
    133. Incharoensakdi A, Takabe T, Akazawa T. Effect of betaine on enzyme activity and subunit interaction of ribulose-1,5-bisphosphate carboxylase/oxygenase from Aphanothece halophytica [J]. Plant Physiology, 1986, 81: 1044-1049.
    
    134.梁峥,赵原,汤岚.渗透调节对大麦幼苗生长和一些呼吸酶活性的影响[J].植物学集刊, 1994,7:217-222.
    
    135. Weretilnyk EA, Hanson AD. Molecular cloning of a plant betaine-aldehyde dehydrogenase, an enzyme implicated in adaptation to salinity and drought [J]. Proceedings of National Academy Sciences,USA, 1990, 87(7): 2745-2749.
    
    136. McCue KF, Hanson AD. Salt-inducible betaine-aldehyde dehydrogenase from sugar beet: cDNA cloning and expression [J]. Plant Molecular Biology, 1992, 18(1): 1-11.
    
    137.肖岗,张耕耘,刘风华,王军,陈受宜,李聪,耿华珠.山菠菜甜菜碱醛脱氢酶基因研究[J]. 科学通报,1995,40(8):741-745.
    
    138.郭北海,张艳敏,李洪杰,杜立群,李银心,张劲松,陈受宜,朱至清.甜菜碱醛脱氢酶(BADH) 基因转化小麦及其表达[J].植物学报,2000,42(3):279-283.
    
    139.曾华宗.甘蔗种质亲缘关系RAPD分析与抗旱相关性状测验[M].华南热带农业大学,硕士学位 论文,2002.
    
    140.曾华宗,郑成木.甘蔗抗旱生理测验及BADH基因PCR扩增的研究[J].热带作物学报,2003, 21(1):55-58.
    
    141. Sugiharto B, Ermawatil N, Mori H, Aoki K,Yonekura-Sakakibara K, Yamaya T, Sugiyama T, Sakakibara H. Identification and characterization of a gene encoding drought-inducible protein localizing in the bundle sheath cell of sugarcane [J]. Plant and Cell Physiology, 2002,43(3): 350-354.
    
    142.李杨瑞.对加入WTO后广西蔗糖业发展的几点意见[J].广西农业科学,2003,(1):1-4.
    
    143.张宪政.作物生理研究法[M].北京:农业出版社,1992,21-28.
    
    144.职明星,李秀菊.脯氨酸测定方法的改进[J].植物生理学通讯,2005,41(3):355-357
    
    145. Hayzer DJ, Leisinger T. The gene-enzyme relationships of proline biosynthesis in Escherichia Coli [J]. J. Gen. Microbiol., 1980, 118: 287-293.
    
    146.韩晓玲.小冠花抗L-羟基脯氨酸(Hyp)变异系离体筛选及其耐盐性研究[博士学位论文][J].西安: 西北大学,2006.
    
    147.赵福庚,孙诚,刘友良,章文华,刘兆普.ABA和NaCl对碱蓬多胺和脯氨酸代谢的影响[J].植物 生理与分子生物学学报,2002,28(2):117-120.
    
    148.黄诚梅,毕黎明,杨丽涛,李杨瑞.聚乙二醇胁迫对甘蔗伸长期间叶中脯氨酸积累及其代谢关 键酶活性的影响[J].植物生理学通讯,2007,43(1):77-80.
    
    149.曲东,王保莉,汪沛洪,李小平,山仑,苏佩.渗透胁迫下磷对玉米叶片有机渗透物质的影 响[J].干旱地区农业研究,1996,14(2):72-77.
    
    150. Hervieu F, Le Dily F, Huault C, Billard JP. Contribution of ornithine aminotransferase to proline accumulation in NaCl-treated radish cotyledons [J]. Plant cell and environment, 1995,18(2): 205-210.
    
    151.刘建新,赵国林.干旱胁迫下骆驼蓬抗氧化酶活性与渗透调节物质的变化[J].干旱地区农业研 究,2005,23(5):127-131.
    
    152.赵福庚,刘友良,章文华.大麦幼苗叶片脯氨酸代谢及其与耐盐性的关系[J].南京农业大学报, 2002,25(2):7-10.
    
    153.杨洪兵,韩振海,许雪峰.NaCl和等渗聚乙二醇对苹果属植物游离脯氨酸含量的影响[J].植物 生理学通讯,2005,41(2):157-162.
    
    154.王关林,方宏筠主编.植物基因工程[M].北京:科学出版社,2002,742-743.
    
    155.崔峰,夏家辉.关于假基因的研究进展[J].生命科学研究,1999,3(3):203-209.
    
    156.马长乐,周浙昆.ITS假基因对栎属系统学研究的影响及其对分子系统学研究的启示[J].云南植 物研究,2006,28(2):127-132.
    
    157. Bailey CD, Carr TG, Harris SA, Hughes CE. Characterization of angiosperm nrDNA polymorphyism, paralogy, and pseudogenes [J]. Molecular Phylogenetics and Evolution, 2003,29: 435-455.
    
    158. Flam F. Hints of a language in junk DNA [J]. Science, 1994, 266:1320.
    
    159. Makalowski W. Genomic scrap yard: genomes utilize all that junk [J]. Gene, 2000, 259(1-2): 61-67.
    
    160. Kohl DH, Kennelly EJ, Zhu Y, Schubert KY, Shearer G Proline accumulation, nitrogenase (C_2H_2 reducing) activities of enzymes related to proline metabolism in drought stressed soybean nodules [J]. Journal of Experimental Botany, 1991,42: 831-837.
    
    161. Zhang CS, Lu Q, Verma DPS. Characterization of A'-pyrroline-5-carboxylate synthetase gene promoter in transgenic Arabidopsis thaliana subjected to water stress [J]. Plant Science, 1997, 129: 81-89.
    
    162. Hu C-AA, Lin WW, Obie C, Valle D. Molecular enzymology of mammalian Δ~1-pyrroline-5-carboxylate synthase [J]. The Journal of Biological Chemistry, 1999,274(10): 6754-6762.
    
    163. Csonka AM, Gelvin SB, Goodner BV, Orser CS. Nucleotide sequence of a mutation in proB gene in E.coil that confers proline overproduction and enhanced tolerance of osmotic stress [J]. Gene, 1988, 64: 199-255.
    
    164. Dankebar AM, Uratsu SL. A single base pair change in proline biosynthesis genes causes osmotic stress tolerance [J]. Journal of Bacteriology, 1988,170(12): 5934-5945.
    
    165. Sekine T, Kawaguchi A, Hamano Y, Takagi H. Desensitization of feedback inhibition of the saccharomyces cerevisiae γ-glutamyl kinase enhances proline accumulation and freezing tolerance [J]. Applied and Environmental Microbiology, 2007,73(12): 4011-4019.