用户名: 密码: 验证码:
温室栽培土壤硝酸盐累积的水、热、氮耦合效应及其神经网络预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
设施栽培中的土壤次生盐渍化、硝酸盐累积、土壤酸化等问题日益突出,已成为阻碍我国设施农业可持续性发展的瓶颈。针对这种现状,本文围绕着温室栽培中土壤硝酸盐累积这一主线,通过试验研究了温室栽培中水、热、氮对盐渍化土壤氮转化、硝酸盐运移和累积、作物生长发育以及作物氮吸收的影响。主要研究成果包括以下几个方面:
     1.温室栽培中土壤盐分状况调查及其理化特性分析
     武汉地区长年温室栽培中土壤的硝酸盐累积量、盐分含量和电导率均高于相邻露地土壤,0~20cm表层土的盐分累积量明显高于20~40cm深层土壤,并且其累积量随温室使用年限的增加而提高;各盐分离子的含量均较露地土壤有大幅度增加,其中以NO_3~-、Cl~-和Ca~(2+)的相对富集为主要特征。半年盖棚半年揭棚的塑料大棚中土壤由于在多雨季节受到雨水的淋溶作用,盐分累积量不十分明显,但仍高于相邻露地土壤。
     对土壤浸提液电导率和盐分化学性质进行了相关性分析。结果表明,土壤浸提液总盐含量(SSC)、Cl~-和Ca~(2+)是影响土壤浸提液电导率的主要因素,NO_3~-、K~+和Na~+对土壤浸提液电导率直接效应并不明显,而其主要是通过对其它各化学性质的影响对土壤浸提液电导率产生间接效应,这种关系的相关性显著;土壤浸提液离子强度与其电导率亦显著相关,并可表示为I=0.0176EC。
     2.温室栽培中土壤水、热基本特性
     利用混合法研究了土壤水分和土壤温度对土壤比热容的影响,结果表明:在不同温度条件下,土壤比热容均随土壤含水率的增加而增加,且在低含水率下比热容增加的速率高于高含水率的情况;土壤比热容亦是温度的函数,且低温时比热容增加速率低于高温时的增加速率。土壤水分和温度的一次项对土壤比热容的影响达极显著水平,但它们之间交互作用的影响并不明显。
     利用探针法研究了土壤含水率以及土壤初始温度对土壤导热系数的影响,结果表明:在试验因子设定的范围内,土壤导热系数随土壤含水率和土壤初始温度的增加而增加。土壤含水率和土壤初始温度的一次项对土壤导热系数的影响达极显著水平,含水率的二次项对土壤导热系数的影响达显著水平,但土壤初始温度的二次项对土壤导热系数以及它们之间交互作用的影响并不明显。
     利用压力膜仪测定了温室栽培中土壤的水力特性曲线,结果表明:在0~100kPa吸力范围内,土壤水分含量变化较大:在100~1500kPa吸力范围内,土壤水分特征曲线变化平缓;单位吸力变化引起的含水率变化小,土壤水分的移动能力、导水能力较弱,但土壤持水能力增强,在此基础上建立了水力特征曲线回归模型。
     3.水、热、氮耦合对温室栽培中土壤水、氮运移特性影响
     蒸发温度和土壤初始含水量明显影响NO_3~--N向土壤表层的迁移,并随蒸发温度和土壤初始含水量的增加而加强;通过正交回归分析得出影响NO_3~--N迁移速率的因素依次为初始含水量、蒸发温度以及温度与含水量的交互作用;土壤初始NO_3~--N含量以及它与蒸发温度、土壤初始含水量的交互作用对NO_3~--N迁移速率的影响不显著,但它影响土壤中各层的NO_3~--N绝对含量。经过5天蒸发后,NO_3~--N沿垂直剖面分布出现上高下低,并出现一小的回升后逐渐趋于稳定。
     在不同条件下,温室栽培中土壤垂直剖面的水分分布均表现为上低下高,表层土壤水分梯度变化大。随着蒸发温度的升高,表层土壤含水量逐渐降低,而水分梯度变化涉及到的土层深度越深;随着土壤初始含水量的增加,蒸发结束后表层土壤含水量也逐渐增加,表层土壤水分梯度却随土壤初始含水量的增加而减少;而土壤中的含水量则随土壤初始NO_3~--N含量的增加而增加。
     4.水、热、氮耦合对温室栽培中土壤硝态氮累积影响
     通过培养试验研究了温度、水分、施氮量及其耦合效应对温室土壤硝化作用和硝态氮累积的影响。结果表明:温室土壤硝态氮累积量可用“S”曲线Δ(NO_3~-)=e~((a+b/τ))进行定量描述,其硝化过程最大硝化速率、延迟期和最大可能累积量是参数a、b的函数;通过正交回归分析得出影响最大硝化速率的因素依次为温度、含水率、温度与含水率的交互作用、水肥的耦合作用以及施氮量;影响延迟期的因素依次为土壤水分、土壤温度、施氮量以及水肥耦合作用;最大可能累积量与温度、含水率及施氮量的关系呈指数变化,其中施氮量影响最大,温度次之,而这3因素之间的交互作用对最大可能累积量没有明显影响。利用回归模型,可为不同环境及水肥条件下硝态氮累积量及氮利用的有效性预测提供依据。
     5.水、热、氮耦合对温室栽培中土壤pH和EC影响
     通过培养试验,研究温度(T)、水分(W)、施氮量(N)及其耦合效应对温室土壤pH及EC的影响。结果表明:随着培养时间延长,温室土壤pH逐渐下降,下降速率可用一级反应模型进行定量描述,N、W、W×N以及T×W对其速度常数的影响大小依次为N>W>W×N>T×W;EC在培养的第1周内快速上升到最大值后略有下降,并在培养后期逐渐趋于稳态值(EC_(sty)),EC_(sty)受N、W、T×W、T以及W×N的影响,其中N、W、T×W和T的影响达到极显著水平,W×N的影响达到显著水平;通过减小施氮量及适当调亏灌溉可有效延缓温室土壤酸化和EC升高。建立的pH下降速率常数及EC_(sty)回归模型可为不同环境及水肥条件下土壤酸化及EC变化预测提供依据。
     6.硝酸盐累积、pH及EC对水、热、氮影响的敏感性
     选取同种土质的温室栽培土壤和露地耕作土壤进行培养试验,比较分析2种土壤在培养期土壤硝酸盐累积、pH和EC值变化对土壤水分和施氮量影响的敏感性差异。结果表明:在相同水肥条件下,温室土壤硝酸盐累积、pH下降速率及EC增量明显高于露地耕作土壤;温室土壤硝酸盐累积速率和pH下降速率随土壤水分含量和施氮量的增加而增加,当土壤水分含量为90%FC时2者的变化速率达最大值,而露地耕作土壤硝酸盐累积速率和pH下降速率随土壤水分含量增加先升高后降低,在70%FC处达最大值;温室栽培中土壤硝酸盐累积速率和pH下降速率对施氮量影响的敏感性高于露地土壤;2种土壤EC值均随土壤水分含量和施氮量的增加而增加,露地耕作土壤EC值增量对土壤水分和施氮量影响的敏感性高于温室土壤,但温室土壤在培养期EC绝对增量远高于露地耕作土壤,这种增加使温室土壤盐渍化日趋严重。
     7.水、氮耦合对温室作物氮吸收影响
     利用硝酸盐累积较为严重的温室栽培土壤进行番茄栽培试验。灌水量为100%FC、施氮量为150mg/kg的条件最有利番茄植株生长、发育,其植株体内硝酸还原酶活性(NRA)明显高于其它处理而累积的硝酸盐含量却低于其它各处理,且在作物收获后,该处理土壤中残留的硝酸盐及铵态氮含量也明显低于其它各处理。当灌水量为80%FC、施氮量为300mg/kg时,番茄植株生长发育迟缓,枯萎,死亡现象较为严重,其植株体内的NRA相比其它处理为最低,不论是土壤表层还是深层,作物收获后的硝酸盐和铵态氮残留量均处于一个较高水平。对于硝酸盐累积严重的土壤,足量灌溉比调亏灌溉更有利于番茄作物生长发育和氮的吸收。
     8.温室栽培中土壤硝酸盐积累积的BP神经网络模型
     采用引入附加动量和自适应学习率的BP神经网络构建了温室栽培中土壤硝酸盐累积的水、热、氮耦合作用模型;利用Matlab6.5对该模型进行了设计,并将设计好的模型对检验样本进行仿真,对BP网络模型仿真结果与回归方程拟合结果进行了比较。结果表明BP网络模型收敛速度快,拟合效果好,泛化能力(网络推广能力)强,预测精度高,完全可以用于温室栽培中土壤硝酸盐累积的水、热、氮耦合作用预测。
The phenomena of soil secondary salinization,nitrate accumulation and soil acidification in protected culture are very serious,and have changed into a bottleneck problem to hinder the sustaining development of greenhouse production in China.To meet these problems in this paper,the interaction effects of temperature,moisture and nitrogen on its transformation,transport and accumulation of NO_3~--N,growth and nitrate uptake of plant were studied in the laboratory around the subject of soil nitrate accumulation in greenhouse culture.The conclusion has been drawn as follows:
     1.The investigation of soil salt and analysis of its physico-chemical properties in greenhouse culture
     The soil nitrate content,salt content and electrical conductivity were higher under perennial protected condition than those under open-field one.The salt contents were significant higher in 0~20cm surface layer soil than those in 20~40cm depth layer soil and the salt accumulation increased with increase of greenhouse age under protected condition. Various salt ionic contents were significant larger in protected-field soil than in open-field soil,and the main characteristic was relative to enrichment of NO_3~-,Cl~-and Ca~(2+).The salt accumulation was no significant in semiannual-cover plastic greenhouse because of eluviations of rainwater in rainy season,but it was apparent higher than that in open-field. The relationships between electrical conductivity of soil extract(EC_(5:1)) and chemical properties were analyzed.The results indicated that total soluble salt concentration(SSC) and concentration of Cl~-and Ca~(2+) were the most primary factor to influence EC_(5:1).The direct effect of NO_3~-,K~+ and Na~+ to EC_(5:1) was not significant,but they were enlarged by influence of other chemical factors,such as Cl~-、Ca~(2+) and SSC,making the correlation coefficient between EC_(5:1) and these factors relatively higher.The ionic strength was related significantly to EC_(5:1) which could be estimated by I=0.0176EC.
     2.The soil hydraulic and thermal properties in greenhouse culture
     Effects of temperature and water content on the soil specific heat were studied by mixing method.The results indicated that the soil specific heat increased with increasing soil water content,and the increase rate was higher in low water content than that in high water content.The soil specific heat was also function of temperature,and its increase rate was lower under low temperature condition than that under high one.The linear function of soil temperature and water content had impact on soil specific heat in a highly marked level and their interaction had not attained a significant level.
     Effects of temperature and water content on the soil thermal conductivity were studied by heat-probe method.The results showed that soil thermal conductivity increased with increasing of soil water content and soil initial temperature in test level.The linear function of soil water content and initial temperature had impact on soil thermal conductivity in a highly marked level and square of soil water content in a significant level,but the square of soil initial temperature and their interaction in a no significant level.
     A pressure device was introduced to determine soil water retention curve.The results indicated that soil water content changed widely in 0~100kPa suction and it changed gently in 100~1500kPa suction.The change of water content resulted from change of unit suction was light,the mobility and conductivity of soil water were weaker but water retention capability of soil enhanced.A regression model for soil water retention curve was derived.
     3.Effects of moisture and temperature on water and NO_3~--N transport in greenhouse culture
     Vaporization temperature and initial soil moisture influenced significantly NO_3~--N transport from deep soil to top soil,and the transport rate increased with the increase of vaporization temperature and initial soil moisture.The effects on NO_3~--N transport rat were a descending order as initial soil moisture,vaporization temperature,and their interaction.The effects of initial NO_3-N contents in soil and its interactions with vaporization temperature and initial soil moisture on NO_3~--N transport rate were not significant,but it affected the absolute NO_3~--N contents of soils.After water was evaporated in soil for 5days,it showed that NO_3~--N content was higher in top layer soil and decreased with increase of soil depth,increased a little again and tended to an approximate steady value.
     The soil water distribution in vertical plane became low in surface layer and high in depth layer under different condition.Soil water contents decreased with increase of vaporization temperature and the soil depth to result form change of soil water gradient increased.Water contents increased after water was evaporated and soil water gradients decreased in surface layer soil with increase of soil initial water contents.Soil water contents increased with increase of soil initial NO_3~--N contents.
     4.Effects of moisture,temperature and nitrogen supply rate on NO_3~--N accumulation in greenhouse culture
     An incubation experiment was inducted to determined the changes of NO_3~--N accumulation with time during the process of nitrification under various soil moisture, soil temperature and nitrogen supply rate for greenhouse soil.The results indicated that equation△(NO_3~-)=e~((a+b/τ)) could be used to express the NO_3-N accumulation with time. The maximal rate of nitrification,delay period and maximal NO_3~--N mass of NO_3~--N accumulation were derived from the equation,and used to characterize quantitatively the nitrification process in different soil conditions.The effects on maximal rate of nitrification were a descending order as soil moisture,soil temperature,interaction between temperature and moisture,interaction of moisture between nitrogen supply rate, and nitrogen supply rate,and which was descending order of soil moisture,soil temperature,nitrogen supply rate and interaction of moisture and nitrogen supply rate on delay period.Maximal NO_3~--N mass of accumulation depended on nitrogen supply rate, moisture and temperature,and affected no significantly by their interactions.In greenhouse production systems,where moisture and temperature could be controlled,this model could be used to predict NO_3~--N accumulation and the effectiveness of N in the fertilizer management that considers both nitrogen supply rate and soil environment.
     5.Effects of moisture,temperature and nitrogen supply rate on pH and electric-conductivity in greenhouse culture
     The effects of temperature(T),moisture(W),nitrogen supply rate(N) and their interaction on pH and electrical conductivity of soil(EC) were studied in the laboratory incubation for the greenhouse culture soils.The results indicated that pH decreased with incubation time and first-order dynamic model could be used to express reduce rate.N,W, W×N and T×W sharply effected the pH reduce rate constant(k) which was descending order of N>W>W×N>T×W.EC increased quickly to the maximum in the first week in the incubation then decreased lightly,and changed in an approximate constant EC_(sty) at last time.N,W,T×W and T had impact on EC_(sty) in a highly marked level and W×N in a significant level.Soil acidification and EC increment could be controlled by reduction of nitrogen supply rate and regulated by deficit irrigation.The regression equations of k and EC_(sty) were found and the equations could be used to predict pH reduce and EC_(sty) in the fertilizer management that considers both nitrogen supply rate and soil environment.
     6.Sensitivity responses of soil nitrate accumulation,pH and EC to soil moisture and N application rate
     Soil incubation was conducted to evaluate the sensitivity responses of nitrate accumulation,pH and electrical conductivity(EC) to soil moisture and N application rate in an open field soil(clay loam) compared with the same soil that in an adjacent greenhouse.The results indicated that the additional nitrate accumulation arising from the treatments imposed,pH descending and increased EC were greater in the greenhouse soil than in the open-field soil under the same soil moisture and N application rates.The nitrate accumulation rate and pH descending rate were increased with increasing of soil moisture,and most enhanced at 90%water holding capacity in the glasshouse soil.By contrast,the nitrate accumulation and pH descending rate was greatest at 70%water holding capacity in the open field soil.The nitrate accumulation rate and pH descending rate in greenhouse soil was more sensitive to N application rate compared with that in the open field soil.Increasing soil moisture and N application rate enhanced the EC in greenhouse soil and in the open field soil.The impacts of soil moisture and N application rate on the EC increment in the open field soil were more significant than that in greenhouse soil.the EC absolute increments in greenhouse soil with incubation time were far exceed that in the open field soil,which lead to serious salinization in greenhouse soil.
     7.Effects of moisture and nitrogen interaction on plant nitrogen uptake in greenhouse culture
     A culture experiment was conducted with the soil in which nitrate was accumulated seriously.It was advantageous to tomato growth when soil moisture was 100%FC and N application rate was 150mg/kg.In this treatment,nitrate reductase activity(NRA) of plant was higher and nitrate accumulation was lower than that in other treatments.The residual soil nitrate in this treatment was lower than that in other treatments after tomato harvest. When soil moisture was 80%FC and N application rate was 300mg/kg,growth of tomato was delayed and tomato plant becamed fugacious.Nitrate reductase activity(NRA) of tomato in this treatment was lower and nitrate accumulation was lower than that in other treatments.The residual soil NO_3~--N and NH_4~+-N was in a high level after tomato harvest. Sufficient irrigation is more beneficial to tomato growth and nitrogen uptake than deficit irrigation for soil of nitrate accumulation seriously.
     8.BP Neural Network model for soil nitrate accumulation in greenhouse culture An improved BP Neural Network(BPNN) with additional momentum and adaptive learning rate was applied to set up the predictive model to interaction of moisture, temperature and nitrogen on soil nitrate accumulation in greenhouse culture.The model was designed applying Matlab 6.5 and the check samples was simulated with the designed model.The calculated precisions between BPNN model and regression model were compared.The result showed that the model was of rapid convergent speed,high precision and better fit effect.The model could be applied to forecast the interaction of moisture,temperature and nitrogen on soil nitrate accumulation in greenhouse culture.
引文
1.鲍士旦主编.土壤农化分析(第3版).北京:中国农业大学出版社.2000
    2.曹刚.基于神经网络的厌氧反应器模拟预测及其运行状态估计.[博士学位论文].杭州:浙江大学,2003
    3.陈孝超,鲁聪达,廖枝平.BP算法的改进及其在Matlab上的实现.控制工程,2005,12(增刊):96-98
    4.陈效民,邓建才,柯用春,张佳宝,朱安宁.硝态氮垂直运移过程中的影响因素研究.水土保持学报,2003,17(2):12-15
    5.陈新平,邹春琴,刘亚萍,张福锁.菠菜不同品种累积硝酸盐能力的差异及其原因.植物营养与肥料学报,2000,6(1):30-34
    6.陈阳,王贺,张福锁,郗金标,贾恢先.盐渍生境下野生琵琶柴盐分分布及泌盐特点.土壤学报,2004,41(5):774-779
    7.崔剑波,庄季屏.田间非饱和流条件下土壤硝态氮运移的模拟.应用生态学报,1997,8(1):49-54
    8.党菊香,郭文龙,郭俊炜,吕家珑,王军利.不同种植年限蔬菜大棚土壤盐分累积及硝态氮迁移规律.中国农学通报,2004,20(6):189-191
    9.邓建才,陈效民,柯用春,蒋新,卢信.土壤水分对土壤中硝态氨水平运移的影响.中国环境科学,2004,24(3):280-284
    10.邓玉龙,张乃明.设施土壤pH值与有机质演变特征研究.生态环境,2006,15(2):367-370
    11.杜连凤,刘建玲,刘文科,廖文华.河北省藁城市大棚土壤盐分累积状况研究.中国农学通报,2002,18(2):30-33
    12.杜连凤,张维理,武淑霞,黄锦法,张继宗.长江三角洲地区不同种植年限保护菜地土壤质量初探.植物营养与肥料学报,2006,12(1):133-137
    13.范爱武,刘伟,龙妍.基于BP网络的土壤水分预报研究.华中科技大学学报(自然科学版),2002,30(5):85-87
    14.范爱武,刘伟,许国良.土壤盐分运移温度效应的数值研究.工程热物理学报,2005,26(4):647-649
    15.樊军,郝明德,党廷辉.长期施肥条件下土壤剖面中硝态氮的分布.土壤与环境,2000,9(1):23-26
    16.冯宝平,陈守伦.用BPN络预测温度对士壤水分入渗的影响.水利学报,2003,2:6-9
    17.冯健美,高晓兵,屈宗长,王迪生.土壤热源热泵地下换热性能分析.太阳能学报,2002,23(3):349-352
    18.冯绍元.排水条件下饱和土壤中氮肥转化与运移模拟.水利学报,1995,22(6):29-33
    19.冯绍元,张瑜芳,沈荣开.非饱和土壤中氮素运移与转化试验及其数值模拟.水利学报,1996(8):8-15
    20.高祖明,张耀栋,严晓风,林柏森.几种叶菜的硝酸盐和亚硝酸盐积累及其与有关酶活性的关系.植物生理学通讯.1990,(3):21,24
    21.高鹏程,张一平.氨挥发与土壤含水率散失关系的研究.西北农林科技大学学报(自然科学版),2001,29(6):22-26
    22.高鹏程,张一平,张海,张国云,牛秀峰.水热耦合作用下尿素转化为铵态氮的动力学模型.植物营养与肥料学报,2005,11(1):21-26
    23.高瑞忠,朝伦巴根,贾德彬,朱仲元,柴建华.神经网络模型在根系带土壤水力特征参数空间变异性研究中的应用.水资源与水工程学报,2004,15(4):13-16
    24.高秀兰,肖千明,娄春荣.日光温室栽培番茄引起生理障碍NO_3~--N浓度的研究.辽宁农业科学,1997(1):8-12
    25.郭大应,熊清瑞,谢成春,冯艳.灌溉土壤硝态氮运移与土壤湿度的关系.灌溉排水,2001,20(2):66-69
    26.郭胜利,余存祖,戴鸣钩.有机肥对土壤剖面硝态氮淋失影响的模拟研究.水土保持研究,2000,7(4):123-126
    27.郭同章,张建勋,傅金镒.黄河上游水土流失预测模型。北京:科学出版社,1996:157-162.
    28.桂现才.BP神经网络在MATLAB上的实现与应用.湛江师范学院学报,2004,25(3):79-83
    29.黄元仿,李韵珠,陆锦文.田间条件下土壤氮素运移的模拟模型.水利学报,1996,6:9-14
    30.侯方卓.用探针法测定材料的导热系数.石油大学学报,1994,18(5):94-98
    31.侯媛彬,杜京义,汪梅.神经网络.陕西:西安电子科技大学出版社,2007
    32.胡金滨,唐旭清.人工神经网络的BP算法及其应用.信息技术,2004,28(4):1-4
    33.胡普辉,刘延风.浅析我国设施农业发展的若干问题.水土保持研究,2006,13(4):64-67
    34.胡承孝,邓波儿.氮肥对小白菜、蕃茄供食器官品质的影响.植物营养与肥料学报,1997,3(1):85-89
    35.胡大伟,卞新民,李思米,冯金飞,王书玉.基于神经网络的农田土壤重金属空间分布分析.农业环境科学学报,2007,26(1):216-223
    36.胡和平,雷志栋,杨诗秀.土壤冻结时水热迁移规律的数值模拟.水利学报,1992,7:1-8.
    37.贺发云,尹斌,金雪霞.南京两种菜地土壤氨挥发的研究.土壤学报,2005,42(2):253-259
    38.江培福,雷廷武,刘晓辉,武阳,李鑫,王全九.用毛细吸渗原理快速测量土壤田间持水量的研究.农业工程学报,2006,22(7):1-5
    39.巨晓棠,张福锁.中国北方土壤硝态氮的累积及其对环境的影响.生态环境,2003,12(1):24-28
    40.来剑斌,王全九.土壤水分特征曲线模型比较分析.水土保持学报,2003,17(1):137-140
    41.雷志栋,杨诗秀,谢森传.土壤水动力学.北京:清华大学出版社,1988:220-263
    42.李刚,张乃明,毛昆明,史静,佘丽娜.大棚土壤盐分累积特征与调控措施研究.农业工程学报,2004,20(3):44-47
    43.李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000:125-128
    44.李会合,王正银.施肥对叶类蔬菜硝酸盐含量的影响.磷肥与复肥,2001,16(3):65-67
    45.李建设,高艳明,孙权.氮肥形态与大白菜产量及硝酸盐累积的关系.长江蔬菜,2002,(6):39-40
    46.李俊良,张晓晨,孟祥霞,李晓林,张福锁.大白菜氮肥推荐施用技术的研究.莱阳农学院学报,2002,19(2):83-85
    47.李俊良,朱建华,张晓晨,孟祥霞,陈清,李晓林,张福锁.保护地番茄养分利用及土壤氮素淋失.应用与环境生物学报,2001,7(2):126-129
    48.李韵珠,李保国.土壤溶质运移.北京:科学出版社,1988
    49.李文庆,李光德,骆洪义.大棚栽培对土壤盐分状况影响的研究.山东农业大学学报,1995,26(2):165-169
    50.李文庆,张民,李海峰,咎林生.大棚土壤硝酸盐状况研究.土壤学报,2002,39(2):283-287
    51.李文娆,李建设,芦燕,张岁岐,山仑.不同施肥方式对温室樱桃番茄果实和土壤硝酸盐含量变化的影响.西北植物学报,2005,25(9):1798-1801
    52.李先珍,王耀林,张志斌.京郊蔬菜大棚土壤盐离子积累状况研究初报.中国蔬菜,1993(4):15-17
    53.李晓欣,胡春胜,陈素英.控制灌水对华北高产区土壤硝态氮累积的影响.河北农业科学,2005,9(3):6-10
    54.李兴旺,冯宝平.基于BP神经网络的土壤含水量预测.水土保持学报,2002,16(5):117-119
    55.李毅,王文焰,王全九,邵明安,张建丰,来剑斌.温度势梯度下土壤水平一维水盐运动特征的实验研究.农业工程学报,2002,18(6):4-8
    56.刘明池,陈殿奎.氮肥用量与黄瓜产量和硝酸盐积累的关系.中国蔬菜,1996,(3):26-28
    57.栗非时,陈克农,陈友,刘宏宇,吕楠.大白菜不同品种硝酸盐含量累积因素的探讨.东北农业大学学报,2000,1(2):141-146
    58.梁银丽,翟胜,陈志杰,徐福利,由海霞,杜社妮.黄土高原设施农业与土壤环境效应.沈阳农业大学学报,2004,35(5-6):580-582
    59.林培华,周梅素,李修海,郭东龙.蔬菜中硝酸盐的积累特征及其与人体健康.山东生物医学工程,2001,20(2):49-51
    60.刘方春,聂俊华,刘春生,付连刚,肖秋生.不同施肥措施对土壤硝态氮垂直分布的特征影响.土壤通报,2005,36(1):50-53
    61.刘广明,杨劲松,姚荣江.影响土壤浸提液电导率的盐分化学性质要素及其强度研究.土壤学报,2005,42(2):247-252
    62.刘光栋,吴文良.高产农田土壤硝态氮淋失与地下水污染动态研究.中国生态农业学报,2003,11:91-93
    63.刘洪斌,武伟,魏朝富.基于神经网络的土壤水分预测建模研究.水土保持学报,2003a,17(5):59-62
    64.刘洪斌,武伟,魏朝富,谢德体.土壤水分预测神经网络模型和时间序列模型比较研究.农业工程学报,2003b,19(4):33-36
    65.刘培斌,丁跃元,张瑜芳.田间一维饱和—非饱和土壤中氮素运移与转化的动力学模式研究.土壤学报,2000,37(4):490-498
    66.刘瑞文,陈世庆,董振国,鲁全国.温度条件对麦田土壤溶液养分浓度的影响.生态学报,1993,13(2):164-170
    67.毛创钊,田魁祥,松本聪,山崎素直.盐渍土盐分指标及其与化学组成的关系.土壤,1997,6:326-330
    68.茅国芳,陆利民,杨晓华,陈燕萍,朱萍.沪郊西瓜甜瓜设施栽培土壤次生盐渍化的基本特性与防治技术研究.上海农业学报,2005,21(1):58-66
    69.孟鸿光,李中,刘乙俭,金福兰,尹长安,姜文君,张基迁,王洪凤.沈阳城郊温室土壤特性调查研究.土壤通报,2000,31(2):70-72
    70.乔冬梅,史海滨,霍再林.浅地下水埋深条件下土壤水盐动态BP网络模型研究.农业工程学报,2005,21(9):42-46
    71.沈明珠,瞿宝杰.蔬菜硝酸盐积累研究.园艺学报,1982,9(4):41-48
    72.沈荣开,杨诗秀.土壤水动力学.北京:清华大学出版社.1988:304-323
    73.沈掌泉,施洁斌,王珂,Bailey J S.应用集成BP神经网络进行田间土壤空间变异研究.农业工程学报,2004,20(3):35-39
    74.施秀珠,奚振邦,朱建萍.上海郊区蔬菜塑料大棚的土壤障碍问题.上海农业科技,1991(1):28-30
    75.石玉,于振文.施氮量及底追比例对小麦产量、土壤硝态氮含量和氮平衡的影响.生态学报,2006,26(11):3661-3669
    76.孙宇瑞.土壤含水率和盐分对土壤电导率的影响.中国农业大学学报,2000,4:39-41
    77.孙治强,张楠,赵卫星.氮肥施用量对生菜产量、硝酸盐积累及土壤EC值、pH值的影响.江西农业学报,2007,19(4):44-45
    78.佟长福,郭克贞,佘国英,畅利毛,戴佳信,安国武.饲草料地土壤水分动态变化规律及其预测的人工神经网络模型的研究.土壤通报,2007,38(5):844
    79.王朝辉,田霄鸿,魏永胜.蔬菜的硝态氮累积及其营养调控.见:平衡施肥与可持续优质蔬菜生产,1998,115-127
    80.王朝辉,田霄鸿,李生秀.硝态氮累积对蔬菜水分、有机氮的影响.中国环境科学,2000,20(6):481-485
    81.王金满,杨培岭,任树梅,石懿.基于人工神经网络的土壤溶质运移模拟与预测.沈阳农业大学学报,2004,35(5-6):486-488
    82.王俊清.BP神经网络及其改进.重庆工学院学报(自然科学版),2007,21(3):75-77
    83.王立河,赵喜茹,王喜枝.有机肥与氮肥配施对日光温室黄瓜和土壤硝酸盐含量的影响.土壤通报,2007,8(3):472-476
    84.王少先,章和珍,张保根.蔬菜硝酸盐污染及其防治.江西农业学报,1998,10(4):86-90
    85.王文成.神经网络及其在汽车工程中的应用.北京:北京理工大学出版社,1998:247-250
    86.王晓雪.多年定位施肥对蔬菜生产、土壤肥力及氮素循环规律影响的研究.[博士学位论文].辽宁:沈阳学业大学,1994
    87.王钰,郭其一,李维刚.基于改进BP神经网络的预测模型及其应用.计算机测量与控制,2005,13(1):39-42
    88.王志良,李彦彬,付强,邱林.神经网络在土壤养分流失预测中的应用.农机化研究,2002(3):135-138
    89.汪涛,朱波,高美荣,徐泰平,况福虹.川中丘陵区典型小流域地下水硝酸盐污染分析.生态与农村环境学报,2006,22(3):84-87
    90.温俊明.城市生活垃圾热解特性试验研究及预测模型.[博士学位论文].杭州:浙江大学,2006
    91.闻新.MATLAB神经网络应用设计.北京:科学出版社,2001
    92.吴凤芝,刘德.哈尔滨市郊蔬菜大棚土壤盐分状况及其影响的研.“菜园土壤肥力与蔬菜合理施肥”论文集.河海大学出版社,1997
    93.吴军虎,费良军,李怀恩.灌施条件下波涌灌溉土壤间歇入渗硝态氮运移特性试验研究.灌溉排水学报,2004a,23(5):41-44
    94.吴军虎,费良军,李怀恩.灌施连续与间歇入渗硝态氮运移与土壤含水量的关系.水土保持学报,2004b,18(4):42-46
    95.武晓峰,谢森传.冬小麦田间根层中氮素迁移转化规律研究.灌溉排水,1996,15(4):10-15
    96.谢华清,王锦昌,程曙霞,刘岩.热针法测量材料导热系数的研究.应用科学学报,2002,20(1):6-9
    97.谢建昌,陈际型.菜园土壤肥力与蔬菜合理施肥.南京:河海大学出版社.1997:43-46
    98.谢玉珍.确保大棚蔬菜持续高产谨防土壤盐渍化.农业科技与信息,1999(8):14
    99.熊亚梅,梁银丽,周茂娟,陈甲瑞,杜社妮.氮肥水平对甘蓝产量和品质及土壤硝态氮含量的影响.西北植物学报,2007,27(4):839-843
    100.徐福利,郭劲松,王震,马涛,徐铭.设施条件下氮肥对大青菜硝酸盐及土壤矿质氮累积的影响.土壤通报,37,5:924-927
    101.徐福利,梁银丽,张成娥,杜社妮,陈志杰.施肥对日光温室土壤硝酸盐分布特征的影响.西 北植物学报,2003,23(10):1762-1767
    102.徐福利,梁银丽,张成娥,杜社妮,陈志杰.施肥对日光温室黄瓜和土壤硝酸盐含量的影响.植物营养与肥料学报,2004,10(1):68-72
    103.徐丽娜.神经网络控制.哈尔滨:哈尔滨工业大学出版社,1999
    104.徐坤,郑国生,王秀峰.施氮量对生姜群体光合特性及产量和品质的影响.植物营养与肥料学报,2001,7(2):189-193
    105.徐坤范,李明玉,艾希珍.氮对日光温室黄瓜呈味物质、硝酸盐含量及产量的影响.植物营养与肥料学报,2006,12(5):717-721
    106.许中坚,刘广深,俞佳栋.氮循环的人为干扰与土壤酸化.地质地球化学,2002,30(2):74-78
    107.薛继澄,毕德义,李家金,殷永娴,吴志行.保护地栽培蔬菜生理障碍的土壤因子与对策.土壤肥料,1994,1:4-9
    108.薛继澄,李家金,毕德义,马爱军,程平娥.保护地栽培土壤硝酸盐积累对辣椒生长和锰含量的影响.南京农业大学学报,1995,18(1):53-57
    109.许东,吴铮.基于MATLAB 6.x的系统分析与设计——神经网络(第二版).西安:西安电子科技大学出版社.2002
    110.杨丽娟,张玉龙.灌水方法对塑料大棚土壤—植株硝酸盐分配的影响.土壤通报,2000,31(2):63-65
    111.杨宇姝,王福林,许晓强.基于神经网络的模糊土壤平衡施肥模型系统的研究.农机化研究,2007,10:49-50
    112.杨珏,汪德爟.神经网络模型在预测土壤pH值中的应用研究.计算机仿真,2004,21(4):121-125
    113.於丽华,韩晓日,娄春荣,高晓宁,董环.不同灌溉方式和施肥处理对番茄氮素吸收及产量和品质的影响.沈阳农业大学学报,2005,36(3):286-289
    114.余海英,李廷轩.辽宁设施栽培土壤盐分累积变化规律研究.水土保持学报,2005,19(4):80-83
    115.余海英,李廷轩,周健民.典型设施栽培土壤盐分变化规律及潜在的环境效应研究.土壤学报,2006,43(4):571-576
    116.袁新民,同延安,杨学云,李晓林,张福锁.有机肥对土壤NO_3~--N累积的影响.土壤与环境,2000,9(3):197-200
    117.袁新民,杨学云,同延安,李晓林,张福锁.不同施氮肥量对土壤NO_3~--N累积的影响.干旱地区农业研究,2001,19(1):8-13
    118.张福墁.农业现代化与我国设施园艺工程.农业工程学报,2002,18(增):1-3
    119.张富仓.温度对土壤水分运动和保持的影响.[硕士学位论文].陕西杨林:西北农业大学,1993
    120.张富仓,张一平,王国栋,张君常.温度对土壤水分性状的影响研究.应用基础与工程科学学报,1996,4(2):144-151
    121.张建锋,孙启祥,Franz Makeschin.盐胁迫对柳树新无性系苗木生长和土壤酶活性的影响.水土保持学报,2005,19(3):125-129
    122.张金盛,任顺荣,赵振达.蔬菜保护地土壤硝酸盐积累及盐分变化.天津农业科学,1998,4(4):36-39
    123.张乃明,李刚,苏友波,毛昆明,邓玉龙.滇池流域大棚土壤硝酸盐累积特征及其对环境的影响.农业工程学报,2006,22(6):215-217
    124.张睿.神经网络在土壤有机质直接测定中的应用研究.[硕士学位论文].太原:山西农业大学,2005
    125.张树兰,杨学云,吕殿青,同延安.几种土壤剖面的硝化作用及其动力学特征.土壤学报,2000,37(3):372-379
    126.张树兰,杨学云,吕殿青,同延安.温度、含水率及不同氮源对土壤硝化作用的影响.生态学报,2002,22(12):2147-2153
    127.张漱茗,江丽华,闫华,闫晓松.济南市售蔬菜硝酸盐含量及施肥影响.土壤肥料,1997(5):22-24
    128.张新明,李华兴,吴文良.氮素肥料对环境与蔬菜的污染及其合理调控途径.土壤通报,2002,33(6):471-475
    129.张旭,高晓兵.华东地区土壤及土沙混合物导热系数的实验研究.暖通空调,2004,34(5):83-86
    130.张一平,白锦鳞,张君常等.温度对土壤水势影响的研究.土壤学报,1990,27(4):454-458
    131.张勇,唐树梅,孙桂芳,阮云泽.蕹菜的氮素、钼矿质元素营养与硝酸盐积累的关系.热带作物学报,2004,25(1):68-72
    132.张永帅,郭金强,王娟,彭振宝,宋风强,危常州.不同施氮量下氮肥在土壤中的空间分布与作物吸收后残留规律.西北农业学报,2007,16(2):70-74
    133.张瑜芳,刘培斌.不同渗漏强度条件下淹水稻田中氨态氮转化和运移的研究.水利学报,1994,(6):9-19
    134.张振华,姜泠若,胡永红,隆小华,徐刚.设施栽培大棚土壤养分、盐分调查分析及其调控技术.江苏农业科学,2003(1):73-75
    135.张志斌.关于我国设施蔬菜生产可持续发展的探讨.沈阳农业大学学报,2000,31(1):15-17
    136.张志涌.精通MATLAB6.5版.北京:北京航空航天大学出版社,2003
    137.张忠进,金文桂.探针法测量农副产品导热系数的研究.农业机械学报,1997,28(1):94-97
    138.赵凤艳,陈翠玲.氮肥用量对蔬菜产量和品质的影响.农业系统科学与综合研究,2001,17(1):43-44
    139.赵凤艳,魏自民,陈翠玲.氮肥用量对蔬菜产量和品质的影响.农业系统科学与综合研究, 2001,17(10):43-44
    140.赵建平.蔬菜硝酸盐积累生理机制研究进展.中国农学通报,2005,21(1):93-97
    141.赵同科,张成军,杜连凤,刘宝存,安志装.环渤海七省(市)地下水硝酸盐含量调查.农业环境科学学报,2007,26(2):779-783
    142.郑子成,李廷轩,何淑勤.保护地土壤生态问题及其防治措施的研究.水土保持研究,2006,13(1):18-21
    144.周才平,欧阳华.温度和湿度对暖温带落叶阔叶林土壤氮矿化的影响.植物生态学报,2001,25(2):204-209
    143.周良臣.土壤水分预测的BP神经网络方法及模型.西北农业学报.2004,13(4):130-133
    144.周娅,王昌全,陈远学,张锡洲,陈光辉.不同氮肥及肥料组合对芹菜生长和硝酸盐含量的影响.土壤肥料,2004,(1):10-14
    145.朱进,别之龙,袁尚勇.湖北省设施蔬菜发展现状、问题及对策.华中农业大学学报,2004,35(增刊):14-17
    146.庄舜尧,孙秀廷.氮肥对蔬菜硝酸盐积累的影响.土壤学进展,1995,23(3):29-35
    147.Agehara S,Warncke D D.Soil moisture and temperature effects on nitrogen release from organic nitrogen sources.Soil Sci.Soc.Am.J.,2005,69(6):1844-1855
    148.Ana Q,Belen M-A,Francisco L.Influence of irrigation system and fertilization management on seasonal distribution of N in the soil profile and on N-uptake by citrus trees.Agriculture,Ecosystems and Environment,2007,122:399-409
    149.Bear J,Gilman A.Migration of salts in the unsaturated zone caused by heating.Transp Porous media,1995,19:139-156
    150.Belanger G,Walsh J R,Richards J E,Milburn P H,Ziadi N.Nitrogen fertilization and irrigation affects tuber characteristics of two potato cultivars.Am.J.Potato Res,2002,79:267-279
    151.Belanger G,Ziadi N,Walsh J R,Richards J E,Milburn P H.Residual soil nitrate after potato harvest.Journal of Environmental Quality,2003,32(2):607-612
    152.Bergstrom L,B rink N.Effects of differentiated application of fertilizer N leaching losses and distribution of in organic N in soil.Plant and Soil,1986,93(3):333-3451
    153.Bilas S,Genda S.Effects of controlled irrigation on water potential,nitrogen uptake and biomass production in Dalbergia sissoo seedlings.Environmental and Experimental Botany,2006,55(1):209-219
    154.Blume E,Bischoff M,Reichert J M,Moorman T,Konopka A,Turco R F.Surface and subsurface microbial biomass,community structure and metabolic activity as a function of soil depth and season.Appl Soil Ecol.2002,20:171-181
    155.Bockman O C,Granli T.Human Health Aspects of Nitrate Intake from Food and Water.In Mervysn L.Richardson(eds).Chemistry Agricultural and the Environment.The Royal Society of Chemistry.1991:373-388
    156. Bowden R D, Newkirk K M, Rullo G M. Carbon dioxide and methane fluxes by a forest soil under laboratory-controlled moisture and temperature conditions. Soil Biol Biochem, 1998,30: 1591-1597
    157. Butiers G L, Jury W A. Field scale transport of bromide in and unsaturated soil: II Dispersion modeling. Water Resour Res, 1989,25:1575-1581
    158. Campbell C A, Biederbeck V O. Influence of fluctuating temperatures and constant soil moistures on nitrogen changes in amended and unamended loam. Canadian Journal of Soil Science,1972,52: 323-336
    159. Campbell C A, Read D W L, Biederbeck V O. The first 12 years of a long-term crop rotation study in southwestern Saskatchewan-nitrate-N distribution in soil and N uptake by the plant. Can. J. Soil Sci, 1983, 63:563-578
    160. Cassman K G, Munns D N. Nitrogen mineralization as affected by soil moisture, temperature, and depth. Soil Sci Soc Am J, 1980,44:1233-1237
    161. Chen B M, Wang Z H, Li S X, Wang G X, Song H X, Wang X N. Effects of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables. Plant Science, 2004,167(1): 635-643
    162. Churing Y. Back Propagation, Theory, Architecture and Applications. New York: Lawrence Erbaum Pulishers, 1995
    163. Coats K H, Smith B D. Dead-end pore volume and dispersion in porous media. Soc Pet Eng J, 1964,1:73-84
    164. Constants J, Murphy F. The temperature dependence of ponded infiltration under isothermal conditions. J. Hydrol., 1991,122:119-128
    165. Csonka L N. Physiological and genetic responses of bacteria to osmotic stress. Microbiol. Rev. 1989,52:121-147
    166. Das B S, Kluitenberg G J, Pierzynski G.M. Temperature dependence of nitrogen mineralization rate constant: a theoretical approach. Soil Science, 1995,159:294-300
    167. De Neve S, Hofman G. Quantifying soil water effects on nitrogen mineralization from soil organic matter and from fresh carrot residues. Biol. Fertil. Soils, 2002,35:379-386
    168. De Vries D A. The Thermal Conductivity of Soil. Meded. Landbouwhogesch, Wageningen, 1952. 52
    169. De Vries D A. Thermal Properties of Soils. In: Physics of Plant Environment (Van WijkWR, ed), North-Holland, Amsterdam .1963. 210-235
    170. Efimia M P, George P S, Anna G. Response of soil chemical and biological variables to small and large scale changes in climatic factors. Pedobiologia, 2004,48: 329-338.
    171. Eigenberg R A, Doran J W, Nienaber J A. Electrical conductivity monitoring of soil conditions and available N with animal manure and cover crop. Agriculture Ecosystems and Environment, 2002, 88(1): 183-193
    172. Ellert B H, Bettany J R. Temperature dependence of net nitrogen and sulfur mineralization. Soil Soc Am J, 1992, 56: 1133-1141
    173. Franzluebbers A J. Microbial activity in response to water-filled pore space of variably eroded southern Piedmont soils. Appl. Soil Ecol. 1999, 11: 91-101
    174. Gardenas A I, Hopmans J W, Hanson B R, Simunek J. Two-dimensional modeling of nitrate leaching for various fertigation scenarios under micro-irrigation. Agricultural Water Management, 2005, 74:219-242
    175. George R K. Prediction of soil temperature by using artificial neural networks algorithms. Nonlinear Analysis, 2001, 47:1737-1748
    176. Georgios C P, Constantinos D E, Victor A K. Effect of organic and inorganic fertilizers applied during successive crop seasons on growth and nitrate accumulation in lettuce. Scientia Horticulturae, 2007,111(1): 319-325
    177. Gilmour J T. The effect of soil properties on nitrification and nitrification inhibition. Soil Sci. Soc. Am. J., 1981,48(4): 1262-1266
    178. Grattan S R, Grieve C M. Salinity and mineral nutrient relations in horticultural crops. Scientia Horticulturae, 1998, 78 (1-4): 127-157
    179. Greenwood J. and Hunt J. Effect of nitrogen fertilizer on the nitrate contents of field vegetables grown in Britain. J Sci. Food Agric, 1986,37: 373-383
    180. Griffin D M. Water potential as a selective factor in the microbial ecology relations in soil microbiology. SSSA Spec. Publ. 9.SSSA.Madison, WI. 1981.141-151
    181. Griffin R A, Jurinak J J. Estimation of activity coefficients from the electrical conductivity of natural aquatic systems and soil extracts. Soil Science, 1973,116(1):26-30
    182. Guillard K, Griffin G F, Allinson D W. Nitrogen utilization of selected cropping system in the U. S. northeast: Soil profile nitrate distribution and accumulation. Agronomy Journal, 1995 , 87: 199-207
    183. Hadas A, Feigenbaum S, Feigin A. Nitrification rates in profiles of differently managed soil types. Soil Sci. Soc. Am. J., 1986,50(3): 633-639
    184. Han H, Felker P. Estimation of daily soil water evaporation using an artificial neural network. Journal of Arid Environments, 1997,37: 251-260
    185. Hanson B R, Simunek J, Hopmans J W. Evaluation of urea-ammonium-nitrate fertigation with drip irrigation using numerical modeling. Agricultural water management, 2006, 86:102 -113
    186. Heydari N, Gupta A D, Loof R. Salinity and sodicity influences on infiltration during surge flow irrigation. Irrig.Sci .2001, 20:165-173
    187. Honeycutt C W. Nitrogen mineralization from soil organic matter and crop residues: Field validation of laboratory predictions. Soil Sci. Soc. Am. J., 1999,63(1): 134-141
    188. Hongli J, William R C. Soil moisture estimation using an artificial neural network: A feasibility study. Canadian Journal of Remote Sensing, 2004,30 (5): 827-839
    189. Hopkins D G, Richardson J L. Detecting a salinity plumb in an unconfined sandy aquifer and asses- sing secondary soil salinization using electromagnetic induction techniques. Hydrogeology Journal, 1999, 7: 380-392
    190. Hopmans J W, Dane J H. Temperature dependence of soil water retention curves. Soil Sci. Soc. Am. J., 1986,50: 562-567
    191. Insam, H. Are the soil microbial biomass and basal respiration governed by the climate regime. Soil Biol. Biochem. 1990,22:525-532
    192. Isfan D, Zizka J, D'Avignon A, Deschenes M. Relationships between nitrogen rate, plant nitrogen concentration, yield and residual soil nitrate-nitrogen in silage corn. Commun. Soil Sci. Plant Anal.1995,26: 2531-2557
    193. Jiang H, Cotton W R. Soil moisture estimation using an artificial neural network: a feasibility study. Canadian Journal of Remote Sensing, 2004, 30 (5): 827-839
    194. Jiang Z, Sullivan W, Hull R. Nitrate uptake and metabolism in Kentucky bluegrass as affected by nitrate levels. International Turfgrass Society Research Journal, 2001,9:331-343
    195. Ju X T, Kou C L, Zhang F, Christie P. Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain. Environmental Pollution, 2006,143:117-125
    196. Jury W A, Sposito G, White R E. A transfer function model of solute transport through soil: I Fundamental concepts. Water Resour Res, 1986,22: 243-247
    197. Kadar I, Nemeth T, Kovacs G, Welte E, Szabolcs I. Nitrogen efficiency and nitrate leaching of a calcareous chernozem soil. Protection of water quality from harmful emissions with special regard to nitrate and heavy metals. Proceedings of the 5th International Symposium of CIEC. 1989.155-158
    198. Kaletunc G. Prediction of specific heat of cereal flours: A quantitative empirical correlation. Journal of Food Engineering, 2007,82:589-594
    199. Kamban P, Amin E, Bing C S. Estimating saturated hydraulic conductivity in spatially variable fields using neural network ensembles. Soil Science Society of America Journal, 2006,70(6): 1851-1859
    200. Kaushal K G, Madan K J, Kar S. Field investigation of water movement and nitrate transport under perched water table conditions. Biosystems Engineering, 2005,92 (1): 69-84
    201. Keith L B . Measurement of thermal properties and water content of unsaturated sandy soil using dual-probe heat-pulse probes. Agricultural and Forest Meteorology, 1998,89: 75-84
    202. Killham K, Amato A, Ladd J N. Effect of substrate location in soil and soil pore-water regime on carbon turnover. Soil Biol. Biochem. 1993, 25: 57-62
    203. Kirschbaum M U. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol Biochem., 1995, 27: 753-760
    204.Kladivko E J and Keeney D R.Soil nitrogen mineralization as affected by water and temperature interactions Biol Fertil Soils,1987,5:248-252
    205.Knoepp J D,Swank W T.Using soil temperature and moisture to predict forest soil nitrogen mineralization.Biol Fertil Soils,2002,36:177-182
    206.Kowalenko C G,Cameron D R.Nitrogen transformations in an incubated soil as affected by combinations of moisture content and temperature and adsorption-fixation of ammonium.Can J Soil Sci,1976,56:63-70
    207.Kowalenko C G,Ivarson K C,Cameron D R.Effect of moisture content,temperature and nitrogen fertilization on carbon dioxide evolution from field soils.Soil Biol Biochem,1978,10:417-423
    208.Krishnainh S.Determination of influence of various parameters on thermal properties of soils.Int.Comm.Heat Mass Transfer,2003,30(6):861-870
    209.Lavado Contador J F,Maneta M,Schnabel S.Prediction of near-surface soil moisture at large scale by digital terrain modeling and neural networks.Environmental Monitoring and Assessment,2006,121:213-232
    210.Levine E R,Kimes D S,Sigillito V G.Classifying soil structure using neural networks.Ecological Modelling,1996,92:101-108
    211.Liang B C,Remillard M,Mackenzie A F.Influence of fertilzer,irrigation,and non-growing season precipitation on soil nitrate-nitrogen under corn.Journal of Environmental Quality,1991,20(1):123-128
    212.Lim Y,Moon Y S,Kim T W.Artificial neural network approach for prediction of ammonia emission from field-applied manure and relative significance assessment of ammonia emission factors.Europ.J.Agronomy,2007,26:425-434
    213.Linn D M,Doran J W.Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils.Soil Sci.Soc.Am.J.,1984,48:1267-1272
    214.Liu Xuejun,Ju Xiaotang,Zhang Fusuo,Pan Jiarong,Christie P.Nitrogen dynamics and budgets in a winter wheat maize cropping system in the North China plain.Field Crops Research,2003,83:111-124.
    215.Li Y L,Stanghellini C,Challa H.Effect of electrical conductivity and transpiration on production of greenhouse tomato.Scientia Horticulturae,2001,88:11-29
    216.Maag M,Vinther F P.Nitrous oxide emission by nitrification and denitrification in different soil types and at different soil moisture contents and temperatures.Applied Soil Ecology,1996,4:5-14
    217.MacDonald N W,Zak D R,Pregitzer K S.Temperature effects on kinetics of microbial respiration and net nitrogen and sulfur mineralization.Soil Soc Am J.,1995,59:233-240
    218.Malhi S J,Nyborg M,Harapiak J T.Effects of long-term N fertilizer-induced acidification and liming on micronutrients in soil and in bromegrass hay.Soil Tillage Research,1998,48:91-101
    219. Malhi S S, Brandt S A, Ulrich D. Accumulation in the soil profile under various alternative cropping system. J. Plant Nutr., 2002, 25:2499-2520
    220. Malhi S S, Harapiak J T, Nyborg M. Light fraction organic N, ammonium, nitrate and total N in a thin black chernozemic soil under brome grass after 27 annual applications of different N rates. Nutr. Cycling Agroecosyst., 2003,65: 201-210
    221. Malkomes H P. Einfluss variierter temperatur und Feuchte of mikrobielle aktivitaten im Boden unter Laborbedingungen. Zeitschrift fur Plfanzenernahrung und Bodenkunde, 1991,154: 325-330
    222. May D M, Gonzales J, Bieche B J. Irrigation and nitrogen management as they affect fruit quality and yield of processing tomatoes. Acta Hort. 1994,376:227-234
    223. Mccall D, Willumsen J. Effects of nitrogen availability and supplementary light on the nitrate content of soil grown lettuce. Journal of Horticultural Science Biotechnology, 1999, 74(4): 458-463
    224. Mehdi S M, Hassan G, Shah A H. A new transplanting approach to enhance salt tolerance of tree saplings. Pedosphere. 2004,14(1): 77-84
    225. Minasny B, Hopmans J W, Harter T. Neural networks prediction of soil hydraulic functions for alluvial soils using multistep outflow method. Soil Sci. Soc. Am. J., 2004,68: 417-429
    226. Minasny B, McBratney A B. The neuro-m method for fitting neural network parametric pedotransfer functions. Soil Sci. Soc. Am. J., 2002,66:352-361
    227. Minasny B, McBratney A B, Bristow K L. Comparison of different approaches to the development of pedotransfer functions for water retention curves. Geoderma, 1999,93 : 225-253
    228. Molina J A E, Clapp C E, Shaffer M J. NCSOIL, a model of nitrogen and carbon transformations in soil: Description, calibration, and behaviour. Soil Sci Soc Am J, 1983,47:85-91
    229. Mosier A R. Nitrous oxide emissions from agricultural soils. Fertilizer Research, 1994, 37: 191-200
    230. Nassar I N, Horton R. Water transport in unsaturated, nonisothermal, salty soil: I Experimental results. Soil Sci Soc Am J, 1989a, 53:1323-1329
    231. Nassar I N, Horton R. Water transport in unsaturated, nonisothermal, salty soil: II Theoretical development. Soil Sci Soc Am J, 1989b, 53:1330-1337
    232. Nassar I N, Horton R. Simultaneous transfer of heat, water, and solute in porous media: I Theoretical development. Soil Sci, Soc Am J, 1992,56:1350-1356
    233. Nassar I N, Horton R. Heat, water, and solute transfer in unsaturated porous media: I Theory development and trans port coefficient evaluation. Transp Porous Media, 1997,27:39-55
    234. Nassar I N, Horton R, Globuts A M. Thermally induced water transfer in salinized, unsaturated soil. Soil Sci Soc Am J, 1997, 61: 1293-1299
    235. Nassar I N, Horton R, Flerchinger G N. Simultaneous heat and mass transfer in soil columns exposed to freezing/thawing conditions. Soil Sci, 2000,165: 208-216
    236. Nato A. Two localization sites of nitrate reductase responsible for different expression in tobacco cells during the growth cycle. In: Progress in Plant Cellular and Molecular and Molecular Biology. Kluwer Acad Pub. 1990. 349-354
    237. Ng S C, Cheung C C, Leung S H. Fast convergence for Back - Propagation network with magnified gradient function. IEEE, 2003, 9 (3): 1903 -1908
    238. Ngadi M O, Mallikarjunan P, Chinnan M S, Radhakrishnan S, Hung Y C. Thermal properties of shrimps, french toasts, and breading. Journal of Food Process Engineering, 2000, 23: 73-87
    239. Nidal H A. Thermal properties of soils as affected by density and water content. Biosystems Engineering, 2003, 86 (1): 97-102.
    240. Nicolardot B, Fauvet G, Cheneby D. Carbon and nitrogen cycling through soil microbial biomass at various temperatures. Soil Biol Biochem, 1994, 26: 253-261
    241. Noborio K, Mclnnes K J, Heilman J L. Two-dimensional model for water, heat, and solute transport in furrow-irrigated soil: I Theory. II Field evaluation. Soil Sci Soc Am J, 1996, 60: 1001-1021
    242. Ochsner T E, Horton R, Ren T. A new perspective on soil thermal properties. Soil Science Society of America Journal, 2001,65:1641-1647
    243. Olday F C. A Physiolov cal basis for diferent patterns of nitrate accumulation in two sninach cultivars. J. Amer. Soc. Hort. Sci.. 1976,101(3): 217-219
    244. Olsen R J, Hensler R F, Attoe Q J, Witzel S A. Peterson L A. Fertilizer nitrogen and crop rotation in relation to movement of nitrate-nitrogen through soil profiles. Soil Sci. Soc. Am. Proc, 1970, 34: 448-452
    245. Oshita S, Shimizu H, Kameoka T. Specific heat of rice and its prediction. Journal of Japanese Society of Agricultural Machinists, 1992,54(2), 67-74
    246. Pachepsky Y A, Timlin D , Varallyay G. Artificial neural networks to estimate soil water retention from easily measurable data. Soil Science Society of America Journal, 1996, 60: 727-733
    247. Pang X P. Irrigation quantity and uniformity and nitrogen application effects on crop yield and nitrogen leaching. Soil Sci. Sco. Am. J. 1997, 61:257-261
    248. Paolo Mantovi, Letizia Fumagalli, Giovanni Pietro Beretta, Marina Guermandi. Nitrate leaching through the unsaturated zone following pig slurry applications. Journal of Hydrology, 2006,316: 195-212
    249. Pascual I, Antolin M C, Garcia C, Polo A, Sanchez-Diaz M. Effect of water deficit on microbial characteristics in soil amended with sewage sludge or inorganic fertilizer under laboratory conditions. Bioresource Technology, 2007,98 (1) : 29-37
    250. Patel R M, Prasher S O, Goel P K. Soil salinity prediction using artificial neural networks. Journal of the American Water Resources Association, 2002, 38(1): 91-100
    251. Patriquin D G, Blaikie H, Patriquin M H. On farm measurements of pH, electrical conductivity and nitrate in soil extracts for monitoring coupling and decoupling of nutrient cycles. Biol Agric Hort, 1993, 9(1): 231-272
    252. Pelletier F, Prevost D, Laliberte, van Bochove E. Seasonal response of denitrifiers to temperature in a Quebec cropped soil. Can J Soil Sci, 1999, 79: 551-556
    253. Persson M, Sivakumar B, Berndtsson R, Jacobsen O H, Schj0nning P. Predicting the dielectric constant-water content relationship using artifical neural networks. Soil Science Society of America Journal, 2002,66(5): 1424-1429
    254. Raber F, Kunsch U. Uber den einfluss des erntezeitpunktes auf den nitrategehalt von karotten. Ind. Obst. Gemueseverwert. 1982, 67:5-9
    255. Raul C N, Stephane A, Paul R. Nitrate accumulation in plants: A role for water. Journal of Experimental Botany, 1999,50(334): 613-624
    256. Ren T, Ochsner T E, Horton R, Ju Z. Heat-pulse method for soil water content measurement: influence of the specific heat of the soil solid. Soil Science Society of America Journal, 2003, 67(6): 1631-1634
    257. Rhoades J D, Chanduvi F, Lesch S. Soil Salinity Assessment. FAO Irrigation and Drainage Papers, 1999,57: 3-7 .
    258. Robert H N. Theory of the back—propagation neural network. In: Proc IJCNN. Washington, 1989, 1: 593-605
    259. Ross D J, Kelliher F M, Tate K R. Microbial processes in relation to carbon, nitrogen and temperature regimes in litter and a sandy mineral soil from a central Siberian Pinus sylvestris L. forest. Soil Biol Biochem., 1999,31:757-767
    260. Roth G W, Fox R H. Soil nitrate accumulation following nitrogen-fertilized corn in Pennsylvania. J. Environ. Qual., 1990,19(1): 243-248
    261. Rumelhart D E. Learning rep resentation by BP errors. Natrue (London), 1986, 7: 64 - 70
    262. Sabey B R, Frederick L R, Bartholomew W V. The formation of nitrate from ammonium nitrogen in soils III. Influence of temperature and initial population of nitrifying organisms on the maximum rate and delay period. Soil Sci. Soc. Am. Proc., 1959,23(2): 462-465
    263. Sahrawat K L. Nitrification in some tropical soil. Plant and Soil, 1982,65: 281-286
    264. Sainju U M, Singh B P, Rahman S, Reddy V R. Soil nitrate-nitrogen under tomato following tillage, cover cropping, and nitrogen fertilization. J.Environ.Qual., 1999, 28:1837-1844
    265. Sarathchandra S U , Perrott K W, Littler, R A. Soil microbial biomass: Influence of simulated temperature changes on size, activity and nutrient content. Soil Biol. Biochem. 1989,21: 987-993
    266. Schaap M G, Bouten W. Modeling water retention curves of sandy soils using neural networks. Water Resources Research, 1996,32: 3033 - 3041
    267. Schaap M G, Leij F J. Using neural networks to predict soil water retention and soil hydraulic conductivity, Soil and Tillage Research , 1998 ,47: 37-42
    268. Schj0nning P, Thomsen I K, Moldrup P. Linking soil microbial activity to water- and air-phase contents and diffusivities. Soil Sci. Soc. Am. J., 2003, 67:156-165
    269. Schmidt I K, Jonasson S, Michelsen A. Mineralization and microbial immobilization of N and P in arctic soils in relation to season, temperature and nutrient amendment. Appl Soil Ecol, 1999, 11: 147-160
    270. Selim H M, Iskandar I K. Modelling nitrogen transport and transformations in soils. 1: Theoretical considerations. Soil Science, 1981, 131: 233-241
    271. Seyed M A R, Masoud T. The specific heat of pistachio nuts as affected by moisture content, temperature, and variety. Journal of Food Engineering, 2007, 79:158-167
    272. Shaffer M J, Halvorson A D, Pierce F J. Nitrate leaching and economic analysis package (NLEAP): Model description and application. In: Follett R F, ed. Managing Nitrogen for Groundwater Quality and Farm Profitability. Madison , WI: Soil Sci Soc Am, Inc. 1991, 285-322
    273. Shrivastava M, Datta A K. Determination of specific heat and thermal conductivity of mushrooms (Pleurotus florida). Journal of Food Engineering, 1999, 39: 255-260
    274. Sierra J, Fontaine S, Desfontaines L. Factors controlling N mineralization, nitrification, and nitrogen losses in an Oxisol amended with sewage sludge. Australian Journal of Soil Research, 2001, 39: 519-534
    275. Siena J. Temperature and soil moisture dependence of N mineralization in intact soil cores. Soil Biology and Biochemistry, 1997,29:1557-1563
    276. Siena J. Nitrogen mineralization and nitrification in a tropical soil: effects of fluctuating temperature conditions. Soil Biol. Biochem., 2002, 34:1219-1226
    277. Simon M, Garcia I. Physico-chemical properties of the soil-saturation extracts: estimation from electrical conductivity. Geoderma, 1999, 90(1): 99-109
    278. Singh K G, Sondhi S K. Validation of a Fertilizer Nitrogen Model during Crop Production. J. agric. Engng Res., 2001, 78 (3), 317-324
    279. Sinha S K, Wang M C. Artificial Neural Network Prediction Models for Soil Compaction and Permeability. Geotech Geol Eng, DOI 10.1007/sl0706-007-9146-3
    280. Somaratne S, Seneviratne G, Coomaraswamy U. Prediction of Soil Organic Carbon across Different Land-use Patterns: A Neural network approach. Soil Science Society of America Journal, 2005, 69(5): 1580-1589
    281. Sorensen J N, Bums I G, Bending G D, Mulholl B. Nitrogen effects on vegetable crop production and chemical composition. Acta Horticulturae. 1999,506:41-49
    282. Stanford G, Epstein E. Nitrogen Mineralization - Water Relations in Soils. Soil Sci. Soc. Amer. Proc, 1974, 38: 103 -107
    283. Stark J M, Firestone M K. Mechanisms for soil moisture effects on activity of nitrifying bacteria. Appl. Environ. Microbial., 1995, 61: 218-221
    284. Stark J M, Firestone M K. Kinetic characteristics of ammonium-oxidizer communities in a California oak woodland-annual grassland. Soil Biol Biochem, 1996, 28:1307-1317
    285. Tamari S , Wosten JHM, Ruiz - Suarez J C. Testing an artificial neural network for predicting soil hydraulic conductivity. Soil Science Society of America Journal, 1996%, 60 :1732-1741
    286. Tarkalson D D, Payero J O, Ensley S M, Shapi C A. Nitrate accumulation and movement under deficit irrigation in soil receiving cattle manure and commercial fertilizer. Agricultural Water Management, 2006, 85: 201 -210
    287. Taylor S A, Jackson R D. Heat Capacity and Specific Heat. SSSA Press, Madison, WI. 1986. 941-944
    288. Ten Berge H F M, Burgers S L G E, Van der Meer H G, Schroder J J, Van der Schoot J R, Van Dijk W. Residual inorganic soil nitrogen in grass and maize on sandy soil. Environmental Pollution, 2007,145: 22-30
    289. Thorburn P J, Biggs J S, Weier K L, Keating B A. Nitrate in groundwater of intensive agricultural areas in coastal Northeastern Australia. Agriculture, Ecosystems & Environment, 2003, 94:49-58
    290. Townsend M A, Sleezer R O, Macko S A. Effects of agricultural practices and vadose zone stratigraphy on nitrate concentration in groundwater in Kansas, USA. Water Science Technology 1996,33: 219-226
    291. Usowicz B, Iipiec J, Marczewski W, Ferrero A. Thermal conductivity modelling of terrestrial soil media-A comparative study. Planetary and Space Science, 2006,54:1086-1095
    292. Van Genuchten M T H, Wierenga P J. Mass transfer studies in sorbing porous media, I Analytical solutions. Soil Sci Soc Am J, 1976,40:473-480
    293. Van Genuchten M T H, Wierenga P J. Two-site / Two-region models for pesticide transport and degradation: theoretical development and analytical solution. Soil Sci Soc Am J, 1989,53: 1303-1310
    294. Vazquez N, Pardo A., Suso M L, Quemada M. Drainage and nitrate leaching under processing tomato growth with drip irrigation and plastic mulching. Agriculture, Ecosystems and Environment, 2006,112: 313-323
    295. Wagenet R J, Hutson J L. LEACHM: Leaching Estimation and Chemistry Model Continuum. Water Resources Inst., Cornell Univ., USA.1992,3
    296. Watts D C, Hanks R J. A soil nitrogen model for irrigated corn on sandy soils. Soil Science Society American Journal, 1978,42:492-499
    297. White R E. A transfer function model for the prediction of nitrate leaching under field condition. J Hydrology, 1987,82: 207-222
    298. Williams P H, Jarvis S C, Dixon E. Emission of nitric oxide and nitrous oxide from soil under field and laboratory conditions. Soil Biol. Biochem., 1998,14(5): 1885-1893
    299. Yukiko S B, Takayuki N, Atsushi K. Effect of warming on the temperature dependence of soil respiration rate in arctic, temperate and tropical soils. Applied Soil Ecology, 2003, 22: 205-210
    300. Zand-Parsa Sh, Sepaskhah A R, Ronaghi A. Development and evaluation of integrated water and nitrogen model for maize. Agricultural Water Management, 2006,81: 227-256
    
    301. Zhang R, Brian J W. The effect of soil moisture on mineral nitrogen, soil electrical conductivity, and pH. Nutrient Cycling in Agroecosystems, 2002, 63(1): 251-254

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700