国人TKA术中胫骨假体旋转确定方法的比较及不同胫骨假体旋转对胫股关节的生物力学影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分国人胫骨前后轴与其它解剖标志点关系的影像学研究
     目的:通过对国人膝关节CT扫描片上髌腱内侧缘、髌腱中内1/3处、胫骨前后轴与髌腱相交点以及后交叉韧带中点等解剖标志点相互关系的研究,为国人全膝关节置换术中胫骨假体的旋转参照轴线提供参考。
     方法:40例青年健康志愿者于膝关节伸直中立位行CT检查。将垂直于经股骨上髁轴且经过后交叉韧带中点的直线定义为胫骨前后轴。于胫骨平台平面及预定截骨平面标记出胫骨前后轴及其与髌腱相交点、后交叉韧带中点分别与髌腱内侧缘及髌腱中内1/3连线,分别测量胫骨前后轴与髌腱相交点内侧髌腱占髌腱总宽度比例、后交叉韧带中点与髌腱内侧缘及髌腱中内1/3连线同胫骨前后轴之间的夹角。
     结果:胫骨平台平面,AP轴平均经过髌腱内侧缘外侧10.1%±8.3%处,预定截骨平面,AP轴平均经过髌腱内侧缘外侧0.2%±10%处。预定截骨平面,后交叉韧带中点与髌腱内侧缘连线和AP轴的平均夹角为0.1°±2.7°,后交叉韧带中点与髌腱中内1/3的连线和AP轴的平均夹角为10.3°±3.6°。
     结论:国人TKA术中,当以胫骨结节中内1/3为标准行胫骨假体旋转放置时,有导致胫骨假体相对于股骨假体外旋过度的可能。后交叉韧带中点与髌腱内侧缘的连线近乎与胫骨AP轴重叠,可以作为全膝关节置换术中胫骨假体旋转放置可靠的参照轴线。
     第二部分TKA术中胫骨假体旋转确定方法的比较研究
     目的:以胫骨前后轴为参照,于胫骨截骨平面,对目前全膝关节置换术中常用的两种确定胫骨假体旋转位置的方法进行了比较,以期为国人全膝关节置换术中胫骨假体的正确旋转放置提供参考。
     方法:连续30例行初次单侧全膝关节置换术的患者收入本研究。术中于胫骨截骨面上标识出胫骨前后轴、后交叉韧带中点与髌腱中内1/3连线、后交叉韧带中点与ROM技术确定的胫骨前方标志点连线。数码相机垂直于截骨面进行图像摄取后转移至电脑,借助于软件系统分别测量胫骨前后轴与上述两条连线的夹角。
     结果:髌腱中内1/3与后交叉韧带中点的连线同胫骨前后轴之间的平均夹角为11.3°±3.4°,ROM技术获得的前方标记点基本位于髌腱内侧缘,其与后交叉韧带中点连线同胫骨AP轴之间的平均夹角为0.8°±2.2°。
     结论:国人TKA术中,当以胫骨结节中内1/3为标准行胫骨假体旋转放置时,有导致胫骨假体相对于股骨假体外旋过度的可能。当术中进行了正确的股骨假体旋转放置及软组织松解和平衡后,采用ROM技术能够获得更为正确的胫骨假体旋转放置。
     第三部分旋转平台膝关节置换术中胫骨假体旋转中立位的比较研究
     目的:通过对旋转平台TKA术中胫骨假体自行确定的旋转中立位与胫骨结节内侧缘、胫骨结节中内1/3等解剖标志点相互位置关系的比较,为国人TKA术中胫骨假体的正确旋转放置提供参考。
     方法:30例行初次单侧全膝关节置换术的患者收入本研究。所有手术均采用旋转平台膝关节假体。术中胫骨假体的旋转放置以胫骨结节内侧缘与后交叉韧带中点的连线为参照。假体试件安装完毕、关节复位后,全范围内屈伸膝关节数次,使旋转平台在股骨假体的导引下自行确定其伸直位时的旋转中立位。借助于试件前方的刻度标志测量胫骨平台旋转试件相对于金属托中心(胫骨结节内侧缘)的旋转角度。
     结果:胫骨旋转平台试件的中点相对于胫骨结节内侧缘的平均旋转角度为外旋2.3°±3.4°。男女之间的数值无统计学差异,男性平均为2.2°±3.6°度,女性平均为2.4°±3.4°度。内翻膝较外翻膝有着更大的外旋,内翻膝平均外旋角度为2.9°±3.0°度,外翻膝平均外旋角度为1.4°±3.9°。当将本次测量的结果与国人胫骨前后轴与后交叉韧带中点髌腱中内1/3连线的夹角进行比较时,我们发现,该角度显著小于后者。
     结论:国人TKA术中,胫骨试件相对于胫骨结节内侧缘旋转以获得良好的胫股关节对位的位置位于胫骨结节内侧缘稍外侧。当采用固定平台膝关节假体时,以胫骨结节中内1/3为标准行胫骨假体旋转放置时,有导致胫骨假体相对于股骨假体外旋过度的可能。
     第四部分国人TKA术中胫骨假体的旋转位置对胫股关节的生物力学影响
     目的:通过对全膝关节置换术后膝关节标本行生物力学测试,比较同一屈膝角度下不同胫骨假体旋转错位对胫股关节接触压峰值和接触面积的影响。
     方法:5例新鲜冷冻膝关节标本予以行固定平台膝关节置换并以胫骨前后轴为胫骨假体的旋转中立位。将置换后标本安装至力学试验平台。借助于压力传感器测量不同屈膝角度(0°、30°、60°、90°、120°)下胫股关节接触压峰值和接触面积。调整胫骨假体至内旋15°、10°、5°及外旋5°、10°、15°,分别重复以上各个不同角度的测试过程并记录不同旋转错位情况下不同屈曲角度的胫股关节接触压峰值和接触面积。
     结果:膝关节0°伸直位,内外侧胫股关节接触压峰值均以胫骨假体旋转中立位时最小,胫骨假体的内外旋转错位时均导致了接触压峰值的显著升高(p<0.05)。膝关节屈曲过程中,胫股关节接触压峰值的最低值却并非一直出现在胫骨假体旋转中立位。同一屈曲角度下,当对相同角度内旋和外旋错位所导致的内、外侧胫股关节间隙接触压峰值进行比较时,内旋错位导致内侧胫股关节间隙接触压峰值的升高较外侧胫股关节间隙更为明显,而外旋错位导致外侧胫股关节间隙接触压峰值的升高较内侧胫股关节间隙更为明显。
     膝关节0°伸直位,内外侧胫股关节接触面积随胫骨假体旋转错位角度的增加均呈下降趋势。在关节屈曲的过程中,同一屈膝角度下,不同胫骨假体旋转错位所致胫股关节接触面积的变化虽不如0°位时规律,但总体而言,随着胫骨假体旋转错位角度的增加,胫股关节接触面积呈逐步下降趋势。
     结论:固定平台膝关节置换术后,膝关节伸直位,胫骨假体的内外选转错位将导致胫股关节接触压的升高和接触面积的下降。关节屈曲过程中,由于同时伴随的胫骨的旋转,使得胫股关节接触压峰值的最低值却并非一直出现在胫骨假体旋转中立位。因而对于固定平台膝关节假体而言,在关节全范围内活动时,不存在真正意义上固定的旋转中立位。
Part One Analysis of the relationship between tibial anteroposterior axis and other anatomies of Chinese
     Objective: To investigate the relationship between tibial anteroposterior axis and other anatomies in determining the rotation of tibial prothesis in total knee arthroplasty using computed tomography. Methods: Transverse CT scans of 40 volunteers' right knee with the knees in full extension were made. The anteroposterior axis of the tibia was defined as a line perpendicular to the transepicondylar axis and passing through the middle of the posterior cruciate ligament. At the tibial plateau and optimum resection level, the mean medial percentage width of intersection point of the patellar tendon and the anteroposterior axis was measured. The mean angle between the anteroposterior axis and a line connecting the middle of the posterior cruciate ligament and the medial of the patellar tendon and the medial 1/3 of the patellar tendon were measured. Results: At the tibial plateau level, the mean medial percentage width of intersection point of the patellar tendon was 10.1%±8.3%. At the optimum resection level, the mean medial percentage width of intersection point of the patellar tendon was 0.2%±10%. At the optimum resection level, the mean angle between the anteroposterior axis and a line connecting the middle of the posterior cruciate ligament and the medial of the patellar tendon was 0.1°±2.7°.The mean angle between the anteroposterior axis and a line connecting the middle of the posterior cruciate ligament and the medial 1/3 of the patellar tendon was 10.3°±3.6°. Conclusion: There was a tendency to align the tibial component in external rotation relative to the femoral component when the medial 1/3 of the patellar tendon was used. The line connecting the middle of the posterior cruciate ligament and the medial of the patellar tendon can be used as a reliable axis for correct rotational orientation of the tibial component.
     Part Two Comparison of two techniques determining the rotation of tibial component at TKA
     Objective: To compare two most commonly used techniques determining the rotational alignment of tibial component during total knee arthroplasty. Methods: 30 patients who had unilateral TKA were enrolled. On proximal tibial cut surface, the rotational orientation of the tibial trial determined by the ROM technique was marked on the anterior tibial cortex as well as the medial 1/3 of the patella tendon. The angles between the anteroposterior axis of tibia and lines connecting the middle of the posterior cruciate ligament and these two points were measured. Results: On proximal tibial cut surface, the mean angle between the anteroposterior axis and a line connecting the middle of the posterior cruciate ligament and the medial 1/3 of the patella tendon was 11.3°±3.4°.The mean angle between the anteroposterior axis and a line connecting the middle of the posterior cruciate ligament and the ROM mark was 0.8°±2.2°Conclusion: There is a tendency to align the tibial component in external rotation relative to the femoral component when the medial 1/3 of the patellar tendon is used. When the femoral component is set paralleling to the transepicondylar axis and correct soft tissue release has been done, the ROM technique can be used as a more reliable technique for correct rotational orientation of the tibial component.
     Part Three Determination of Neutral Tibial Rotational Alignment in Rotating Platform TKA
     Objective: To compare the neutral rotational position determined by the rotating platform TKA with the most medial aspect and 1/3 of the tibial tubercle during total knee arthroplasty. Methods: 30 patients who had unilateral TKA were enrolled. All the knees used rotating platform TKA. After trial components were inserted with the knee properly balanced, we recorded the neutral point of the rotating tibial insert, in extension, relative to the most medial aspect of the tibial tubercle. Divergence of the neutral point was recorded as being internal or external to the medial border of the tibial tubercle to the nearest 5°increment. Results: The neutral rotational position determined by the rotating platform TKA had a mean divergence of 2.3°±3.4°external to the medial border of the tubercle, which was typically smaller than the angle between the AP axis and the line connecting the middle of the PCL and 1/3 of the of the tibial patellar on CT. Conclusion: The neutral rotational position of the tibial prostheses is close to the medial aspect of the tibial tubercle. There is a tendency to align the tibial component in external rotation relative to the femoral component when the medial 1/3 of the tibial tubercle is used.
     Part Four Experimental Study on Rotational Alignment of Tibial Components in Total Knee Arthroplasty
     Objective: To investigate the effect of tibial rotational malalignment on tibiofemoral contact pressures and contact areas of fixed bearing TKA. Methods: We tested 5 fresh-frozen cadaveric knees using a custom knee jig which permited the simulation of static loading conditions. An electronic resistive pressure measuring sensor was used to detect the contact stress and areas between the tibilfemoral joints at deferent angles. The tibial rotation was first determined by the anteroposterior axis of the tibia and then was internally and externally rotated from 5°to 10°and 15°.Results: When the knee was at fully extension, both the lateral and medial tibiofemoral contact pressure was smallest and the contact area was largest when the tibial rotation was determined by the AP axis. The malrotation caused the decrease of the contact area and the improvement of the contact pressure. During the knee's flexion, the smallest contact pressures were not always obtained at the tibial neutral rotational position. When compared at the same flexion and tibial rotational angles, we found the internal rotation had larger influence on the medial tibiofemoral contact pressure than the lateral, and the external rotation had larger influence on the lateral tibiofemoral contact pressure the medial. Conclusion: To fixed bearing TKA, the malrotation of tibial prosthesis will increase the contact pressure and decrease the contact area between tibiofemoral joint when the knee was at fully extension. But during the flexion of the knee, the neutral rotational position of the tibial prostheses was not always the best, which suggests us that there is not the real neutral rotational position to the fixed bearing TKA.
引文
1,Monika SZ, Alex Stacoff, et al. Biomechanical background and clinical observations of rotational malalignment in TKA: Literature review and consequences. Clin Biomechanics. 2005,20:661-668.
    2,Uehara K, Kadoya Y, Kobayashi A, et al. Bone anatomy and rotational alignment in total knee arthroplasty. Clin Orthop. 2002,402:196-201.
    3, Akagi M, Masamichi Oh, Tohgo Nonaka, etc: An Anteroposterior Axis of the Tibia for Total Knee Arthroplasty. Clin Orthop. 2004,420:213-219.
    4,Miller MC, Berger RA, Petrella AJ, et al. Optimizing femoral component rotation in total knee arthroplasty. Clin Orthop. 2001,392:38-45.
    
    5, Moreland JR. Mechanisms of failure in total knee arthroplasty. Clin Orthop.1988,226:49-64.
    6,Boyd AD, Frederick CE, Thomas WH, Poss R, Sledge CB: Long-term complications after total knee arthroplasty with or without resurfacing of the patella. J Bone Joint Surg 1993, 75A: 674-681.
    7.Pagnano MW, Cushner FD, Scott WN: Role of the posterior cruciate ligament in total knee arthroplasty. J Am Acad Orthop Surg. 1998, 6: 176-87.
    
    8. Stiehl JB, Abbott BD. Morphology of the transepicondylar axis and its application in primary and revision total knee arthroplasty. J Arthroplasty. 1995,10:785-789.
    
    9. Barrack RL, Schrader T, Bertot AJ, Wolfe MW, Myers L. Component rotation and anterior knee pain after total knee arthroplasty. Clin Orthop 2001;392:46-55.
    
    10.Yoshino N, Takai S, Ohtsuki Y, et al. Computed tomography measurement of the surgical and clinical transepicondylar axis of the distal femur in osteoarthritic knees. J Arthroplasty. 2001,16:493-497.
    11, Insall JN. Surgical Techniques and Instrumentation in Total Knee Arthroplasty. In: Insall JN, Windsor RE, Scott WN, Kelly M, Aglietti P (eds). Surgery of the Knee. Ed 2. New York: Churchill-Livingstone; 1993:739-804.
    12,Dalury DF. Observations of the proximal tibia in total knee arthroplasty. Clin Orthop.2001;389:150-155.
    13, Eckhoff DG, Metzger RG, Vandewalle MV. Malrotation associated with implant alignment technique in total knee arthroplasty. Clin Orthop 1995,321:28-31.
    14, Ikeuchi M., Yamanaka N., Okanoue Y, et al. Determining the rotational alignment of the tibial component at total knee replacement: a comparison of two techniques. J Bone Joint Surg. 2007, 89(B):45-49,2007
    
    15, Eckhoff DQ Johnston RJ, Stamm ER, et al. Version of the osteoarthritic knee. J Arthroplasty. 1994,9:73-79.
    
    16,Yoshioka Y, Siu DW, Scudamore RA, et al. Tibial anatomy and functional axes. J Orthop Res. 1989,7:132-137.
    
    17,Moreland JR. Mechanisms of failure in total knee arthroplasty. Clin Orthop.1988,226:49-64.
    18,Merkow RL, Soudry M, Insall JN. Patellar dislocation following total knee replacement. J Bone Joint Surg [Am] 1985;67-A:1321-7.
    19.Berger RA, Crossett LS, Jacobs JJ, Rubash HE. Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop 1998;356:144-53.
    
    20. Lewis P, Rorabeck CH, Bourne RB, Devane P. Posteromedial tibial polyethylene failure in total knee replacements. Clin Orthop 1994;299:11-17.
    
    21. Wasielewski RC, Galante JO, Leighty RM, Natarajan RN, Rosenberg AG.Wear patterns on retrieved polyethylene tibial inserts and their relationship to technical considerations during total knee arthroplasty. Clin Orthop 1994;299:31-43.
    
    22.Takahashi T, Wada Y, Yamamoto H. Soft-tissue balancing with pressure distribution during total knee arthroplasty. J Bone Joint Surg [Br] 1997;79-B:235-9.
    
    23, Puloski SK, McCalden RW, MacDonald SJ, Rorabeck CH, Bourne RB: Tibial post wear in posterior stabilized total knee arthroplasty. An unrecognized source of polyethylene debris. J Bone Joint Surg 83A:390-397,2001.
    
    24, Barrack RL, Schrader T, Bertot AJ, et al. Component rotation and anterior knee pain after total knee arthroplasty. Clin Orthop, 2001, 392:46-55.
    
    25, Asano T, Akagi M, Tanaka K, et al. In vivo three-dimensional knee kinematics using a biplanar image-matching technique. Clin Orthop. 2001,388:157-166.
    
    26,Yagi T: Tibial torsion in patients with medial-type osteoarthrotic knees. Clin Orthop. 1994,302:52 - 56
    27, Akagi M, Mori S, Nishimura S, et al: Variability of extraarticular tibial rotation references for total knee arthroplasty. Clin Orthop.2005,436:172-176.
    
    28, Nagamine R, Whiteside LA, White SE, et al. Patellar tracking after total knee arthroplasty: The effect of tibial tray malrotation and articular surface configuration. Clin Orthop. 1994,304:262-271.
    1,Monika SZ, Alex Stacoff, et al. Biomechanical background and clinical observations of rotational malalignment in TKA: Literature review and consequences. Clin Biomechanics. 2005,20:661-668.
    2,Uehara K, Kadoya Y, Kobayashi A, et al. Bone anatomy and rotational alignment in total knee arthroplasty. Clin Orthop. 2002,402:196-201.
    3,Akagi M, Masamichi Oh, Tohgo Nonaka, etc: An Anteroposterior Axis of the Tibia for Total Knee Arthroplasty. Clin Orthop. 2004,420:213-219.
    4,Miller MC, Berger RA, Petrella AJ, et al. Optimizing femoral component rotation in total knee arthroplasty. Clin Orthop. 2001,392:38-45.
    
    5,Moreland JR. Mechanisms of failure in total knee arthroplasty. Clin Orthop. 1988,226:49-64.
    6,Stiehl JB, Abbott BD. Morphology of the transepicondylar axis and its application in primary and revision total knee arthroplasty. J Arthroplasty. 1995,10:785-789.
    7,Barrack RL, Schrader T, Bertot AJ, et al. Component rotation and anterior knee pain after total knee arthroplasty. Clin Orthop. 2001,392:46-55.
    8,Yoshino N, Takai S, Ohtsuki Y, et al. Computed tomography measurement of the surgical and clinical transepicondylar axis of the distal femur in osteoarthritic knees. J Arthroplasty. 2001,16:493-497.
    9,Insall JN. Surgical Techniques and Instrumentation in Total Knee Arthroplasty. In: Insall JN, Windsor RE, Scott WN, Kelly M, Aglietti P (eds). Surgery of the Knee. Ed 2. New York: Churchill-Livingstone; 1993:739-804.
    10,Dalury DF. Observations of the proximal tibia in total knee arthroplasty. Clin Orthop.2001,389:150-155.
    11,Akagi M, Mori S, Nishimura S, et al: Variability of extraarticular tibial rotation references for total knee arthroplasty. Clin Orthop.2005,436:172-176.
    12,Ikeuchi M., Yamanaka N., Okanoue Y., et al. Determining the rotational alignment of the tibial component at total knee replacement: a comparison of two techniques. J Bone Joint Surg. 2007, 89(B):45-49.
    13,Berger RA, Rubash HE, Seel MJ, et al. Determining the rotational alignment of the femoral component in total knee arthroplasty using the epicondylaraxis. Clin Orthop. 1993,286:40-47.
    14,Akagi M, Yamashita E, Nakagawa T, et al. Relationship between frontal knee alignment and reference axes in the distal femur. Clin Orthop. 2001,388:147-156.
    15,Lewis P, Rorabeck CH, Bourne RB, et al. Posteromedial tibial polyethylene failure in total knee replacements. Clin Orthop. 1994,299:11-17.
    16,Berger RA, Crossett LS, Jacobs JJ, et al. Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop. 1998,356:144-153.
    17,Merkow RL, Soudry M, Insall JN. Patellar dislocation following total knee replacement. J Bone Joint Surg. 1985,67(A):1321-1327.
    
    18,Nagamine R, Whiteside LA, White SE, et al. Patellar tracking after total knee arthroplasty: The effect of tibial tray malrotation and articular surface configuration. Clin Orthop. 1994,304:262-271.
    19,Chowdhury EA, Porter ML. How is the tibial tray aligned to the femoral prosthesis in a total knee arthroplasty?: a survey of opinion from BASK? Knee 2005,12:79-80.
    20,Eckhoff DG, Metzger RG, Vandewalle MV. Malrotation associated with implant alignment technique in total knee arthroplasty. Clin Orthop 1995,321:28-31.
    21, Eckhoff DG, Johnston RJ, Stamm ER, et al. Version of the osteoarthritic knee. J Arthroplasty. 1994,9:73-79.
    22, Yoshioka Y, Siu DW, Scudamore RA, et al. Tibial anatomy and functional axes. J Orthop Res. 1989,7:132-137.
    23,Moreland JR. Mechanisms of failure in total knee arthroplasty. Clin Orthop.1988,226:49-64.
    
    24, Scott RD, Volatile TB. Twelve years' experience with posterior cruciate retaining total knee arthroplasty. Clin Orthop. 1986,205:100-107.
    
    25, Asano T, Akagi M, Tanaka K, et al. In vivo three-dimensional knee kinematics using a biplanar image-matching technique. Clin Orthop. 2001,388:157-166.
    
    26, Yagi T: Tibial torsion in patients with medial-type osteoarthrotic knees. Clin Orthop. 1994,302:52-56.
    
    27, Puloski SK, McCalden RW, MacDonald SJ, Rorabeck CH, Bourne RB: Tibial post wear in posterior stabilized total knee arthroplasty: An unrecognized source of polyethylene debris. J Bone Joint Surg 83A:390-397,2001.
    
    28, Wasielewski RC, Galante JO, Leighty RM, Natarajan RN, Rosenberg AG. Wear patterns on retrieved polyethylene tibial inserts and their relationship to technical considerations during total knee arthroplasty. Clin Orthop 1994;299:31-43.
    
    29,Takahashi T, Wada Y, Yamamoto H. Soft-tissue balancing with pressure distribution during total knee arthroplasty. J Bone Joint Surg [Br] 1997;79-B:235-9.
    30, Pagnano MW, Cushner FD, Scott WN: Role of the posterior cruciate ligament in total knee arthroplasty. J Am Acad Orthop Surg. 1998, 6: 176-87.
    31,Boyd AD, Frederick CE, Thomas WH, Poss R, Sledge CB: Long-term complications after total knee arthroplasty with or without resurfacing of the patella. J Bone Joint Surg 1993, 75A: 674-681.
    32, James BS,Patric MC:Femoral Roatational Alignment Using the Tibial Shaft Axis in Total Knee Arthroplasty Clin Orthop 1996,331:47-55.
    
    33, Shuichi Matsuda,Hiromasa Miura,Ryuji Nagamine:A comparison of Rotational Landmarks in the Distal Femur and the Tibial Shaft. Clin Orthop 2003,414: 183 - 188.
    
    34, Arima J,Whiteside LA,McCarthy DS,White SE:Femoral roational alignment based on the anterposterior axis in total knee arthroplasty in valgus knee. J Bone Joint Surg 1995,77A:1331-1334.
    
    35, Canale ST,Arthroplasty of ankle and knee In Canale ST(ed)Campbell's Operative Orthopaedics.New York. Harcourt 1998 ,232-295.
    
    36, Eckhoff DG,Piatt BE,Gnadinger CA,Blaschke RC:Assessing roational alignment in total knee arthroplasty. Clin Orthop 1995,318:176-181.
    
    37,Anouchi YS,Whiteside LA,et al:The effects of axial roational alignment of the femoral component on knee stability and patellar tracking in total knee arthroplasty demonstrated on autospy specimens. Clin Orthop 1993,287:170-177.
    
    38,Rand JA:Patellar resurfacing in total knee arthroplasty. Clin Orthop 1990,260:110-117.
    
    39,Moussa M:Rotational malalignment and femoral torsion in osteoarthritic knees with patellofemoral jiont involvement. Clin Orthop 1994,304:176-183.
    1,Uehara K, Kadoya Y, Kobayashi A, et al. Bone anatomy and rotational alignment in total knee arthroplasty. Clin Orthop. 2002,402:196-201.
    2, Akagi M, Masamichi Oh, Tohgo Nonaka, etc: An Anteroposterior Axis of the Tibia for Total Knee Arthroplasty. Clin Orthop. 2004,420:213-219.
    3,Miller MC, Berger RA, Petrella AJ, et al. Optimizing femoral component rotation in total knee arthroplasty. Clin Orthop. 2001,392:38-45.
    
    4, Moreland JR. Mechanisms of failure in total knee arthroplasty. Clin Orthop.1988,226:49-64.
    
    5. Barrack RL, Schrader T, Bertot AJ, Wolfe MW, Myers L. Component rotation and anterior knee pain after total knee arthroplasty. Clin Orthop 2001;392:46-55.
    
    6. Merkow RL, Soudry M, Insall JN. Patellar dislocation following total knee replacement. J Bone Joint Surg[Am] 1985;67-A:1321-7.
    
    7, Berger RA, Crossett LS, Jacobs JJ, Rubash HE. Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop 1998;356:144-53.
    
    8. Lewis P, Rorabeck CH, Bourne RB, Devane P. Posteromedial tibial polyethylene failure in total knee replacements. Clin Orthop 1994;299:11-17.
    
    9. Wasielewski RC, Galante JO, Leighty RM, Natarajan RN, Rosenberg AG. Wear patterns on retrieved polyethylene tibial inserts and their relationship to technical considerations during total knee arthroplasty. Clin Orthop 1994;299:31-43.
    
    10.Takahashi T, Wada Y, Yamamoto H. Soft-tissue balancing with pressure distribution during total knee arthroplasty. J Bone Joint Surg [Br] 1997;79-B:235-9.
    11,Yoshino N, Takai S, Ohtsuki Y, et al. Computed tomography measurement of the surgical and clinical transepicondylar axis of the distal femur in osteoarthritic knees. J Arthroplasty. 2001,16:493-497.
    12,Insall JN. Surgical Techniques and Instrumentation in Total Knee Arthroplasty. In: Insall JN, Windsor RE, Scott WN, Kelly M, Aglietti P (eds). Surgery of the Knee. Ed 2. New York: Churchill-Livingstone; 1993:739-804.
    13,Dalury DF. Observations of the proximal tibia in total knee arthroplasty. Clin Orthop.2001;389:150-155.
    
    14,Eckhoff DG, Metzger RG, Vandewalle MV. Malrotation associated with implant alignment technique in total knee arthroplasty. Clin Orthop 1995,321:28-31.
    
    15, Akagi M, Mori S, Nishimura S, et al: Variability of extraarticular tibial rotation references for total knee arthroplasty. Clin Orthop.2005,436:172-176.
    
    16, Ikeuchi M., Yamanaka N., Okanoue Y, et al. Determining the rotational alignment of the tibial component at total knee replacement: a comparison of two techniques. J Bone Joint Surg. 2007, 89(B):45-49.
    
    17, Puloski SK, McCalden RW, MacDonald SJ, Rorabeck CH, Bourne RB: Tibial post wear in posterior stabilized total knee arthroplasty: An unrecognized source of polyethylene debris. J Bone Joint Surg. 2001,83A:390-397.
    
    18,Eckhoff DG, Johnston RJ, Stamm ER, et al. Version of the osteoarthritic knee. J Arthroplasty. 1994,9:73-79.
    19,Yoshioka Y, Siu DW, Scudamore RA, et al. Tibial anatomy and functional axes. J Orthop Res. 1989,7:132-137.
    20, Moreland JR. Mechanisms of failure in total knee arthroplasty. Clin Orthop.1988,226:49-64.
    21, Scott RD, Volatile TB. Twelve years' experience with posterior cruciate retaining total knee arthroplasty. Clin Orthop. 1986,205:100-107.
    
    22, Asano T, Akagi M, Tanaka K, et al. In vivo three-dimensional knee kinematics using a biplanar image-matching technique. Clin Orthop. 2001,388:157-166.
    
    23,Yagi T: Tibial torsion in patients with medial-type osteoarthrotic knees. Clin Orthop. 1994,302:52-56
    
    24. Liau JJ, Cheng CK, Huang CH, et al. The influence of contact alignment of the tibiofemoral joint of the Prostheses in in vitro biomechanical testing. Clin Biomech, 1999, 14: 717-721.
    
    25. Nakayama K, Matsuda S, Miura H, et al. Contact stress at the post-cam mechanism in posterior-stabilised total knee arthroplasty. J Bone Joint Surg [Br] 2005;87-B:483-8.
    
    26. Matsuda S, White SE, Williams VG 2nd, McCarthy DS, Whiteside LA. Contact stress analysis in meniscal bearing total knee arthroplasty. J Arthroplasty 1998; 13:699-706.
    
    27,Incavo SJ, Coughlin KM, Pappas C, et al. Anatomic rotational relationships of the proximal tibia, distal femur, and patella: implications for rotational alignment in total knee arthroplasty. J Arthroplasty, 2003, 18: 643-648.
    28,Siston RA, Goodman SB et al. The high variability of tibial rotational alignment in total knee arthroplasty. Clin Orthop. 2006,452:65-69.
    29,Jeffery RS, Morris RW, Deham RA. Coronal alignment after total knee replasty. J Bone Joint Surg [Br] 1991;73:709-714.
    1.Uehara K, Kadoya Y, Kobayashi A, et al. Bone anatomy and rotational alignment in total knee arthroplasty. Clin Orthop. 2002;402:196-201.
    2.Akagi M, Masamichi Oh, Tohgo Nonaka, etc: An Anteroposterior Axis of the Tibia for Total Knee Arthroplasty. Clin Orthop. 2004;420:213-219.
    3.Miller MC, Berger RA, Petrella AJ, et al. Optimizing femoral component rotation in total knee arthroplasty. Clin Orthop. 2001;392:38-45.
    
    4.MoreIand JR. Mechanisms of failure in total knee arthroplasty. Clin Orthop. 1988,226:49-64.
    5.Barrack RL, Schrader T, Bertot AJ, Wolfe MW, Myers L. Component rotation and anterior knee pain after total knee arthroplasty. Clin Orthop 2001;392:46-55.
    6.Yoshino N, Takai S, Ohtsuki Y, et al. Computed tomography measurement of the surgical and clinical transepicondylar axis of the distal femur in osteoarthritic knees. J Arthroplasty. 2001;16:493-497.
    7. Insall JN. Surgical Techniques and Instrumentation in Total Knee Arthroplasty. In: Insall JN, Windsor RE, Scott WN, Kelly M, Aglietti P (eds). Surgery of the Knee. Ed 2. New York: Churchill-Livingstone; 1993:739-804.
    8.Dalury DF. Observations of the proximal tibia in total knee arthroplasty. Clin Orthop.2001;389:150-155.
    9.Eckhoff DG, Metzger RG, Vandewalle MV. Malrotation associated with implant alignment technique in total knee arthroplasty. Clin Orthop 1995;321:28-31.
    10.Akagi M, Mori S, Nishimura S, et al: Variability of extraarticular tibial rotation references for total knee arthroplasty. Clin Orthop.2005;436:172-176.
    11.Ikeuchi M., Yamanaka N., Okanoue Y, et al. Determining the rotational alignment of the tibial component at total knee replacement: a comparison of two techniques. J Bone Joint Surg. 2007; 89(B):45-49.
    12.Berger RA, Crossett LS, Jacobs JJ, Rubash HE: Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop Relat Res.1998;356:144-153,
    13.Berger RA, Rubash HE: Rotational instability and malrotation after total knee arthroplasty. Orthop Clin North Am.2001;324-.639-647.
    14.Barrack RL, Schrader T, Bertot AJ, Wolfe MW, Myers L: Component rotation and anterior knee pain after total knee arthroplasty. Clin Orthop Relat Res.2001;392:46-55.
    15.Berger RA, Rubash HE, Seel MJ, Thompson WH, Crossett LS: Determining the rotational alignment of the femoral component in total knee arthroplasty using the epicondylar axis. Clin Orthop Relat Res.1993;286:40-47.
    16.Yagi T: Tibial torsion in patients with medial-type osteoarthrotic knees. Clin Orthop. 1994;302:52 - 56.
    17.Lewis P, Rorabeck CH, Bourne RB, Devane P: Posteromedial tibial polyethylene failure in total knee replacements. Clin Orthop Relat Res. 1994;299:11-17.
    18.Puloski SK, McCalden RW, MacDonald SJ, Rorabeck CH, Bourne RB: Tibial post wear in posterior stabilized total knee arthroplasty: An unrecognized source of polyethylene debris. J Bone Joint Surg.2001;83A:390-397.
    19.Wasielewski RC, Galante JO, Leighty RM, Natarajan RN, Rosenberg AG: Wear patterns on retrieved polyethylene tibial inserts and their relationship to technical considerations during total knee arthroplasty. Clin Orthop Relat Res. 1994;299:31-43.
    1,William G. Hamilton, Wear in total-knee arthroplasty, Curr Opinion in Orthopaedics.2006;17:38-42.
    2,Monika Silvia Zihlmann, Alex Stacoff, et al.Biomechanical background and clinical observations of rotational malalignment in TKA: Literature review and consequences. Clinical Biomechanics.2005;20:661-668.
    3,Konig,A., Kirschner, S.,. Long-term results in total knee arthroplasty. Orthopade.2003;32 (6):516-526.
    
    4,Wright RJ, Sledge CB, Poss R, et al. Patient-reported outcome and survivorship after Kinemax total knee arthroplasty. J Bone Joint Surg.(Am).2004;86-A: 2464-2470.
    
    5, Fehring TK, Murphy JA, Hayes TD, et al. Factors influencing wear and osteolysis in press-fit condylar modular total knee replacements. Clin Orthop Relat Res.2004; 428:40-50.
    
    6, Dixon MC, Brown RR, Parsch D, Scott RD. Modular fixed-bearing total knee arthroplasty with retention of the posterior cruciate ligament. A study of patients followed for a minimum of fifteen years. J Bone Joint Surg Am.2005; 87:598-603.
    
    7, Elkus M, Ranawat CS, Rasquinha VJ, et al. Total knee arthroplasty for severe valgus deformity. Five to fourteen-year follow-up. J Bone Joint Surg Am.2004; 86-A:2671-2676.
    
    8, Sharkey,P.,Hozack, W.,Rothman, R.,Shastri, S., Jacoby, S.; Insall award paper. Why are total knee arthroplasties failing today?Clin Orthop.2002;404:7-13.
    
    9, Rand JA, Bryan RS: Revision after total knee arthroplasty. Orthop Clin North Am. 1982, 13: 201-212.
    
    10, Fehring TK, Odum S, Griffin WL et al: Early failures in total knee arhtroplasty. Clin Orthop.2001;392: 315-318.
    
    11, Bargren, J., Blaha, J., Freeman,M., Alignment in total knee arthroplasty. Correlated biomechanical and clinical observations. Clin. Orthop.1983;173:178-183.
    
    12, Liau,J.,Cheng,C.,Huang, C.,Lo, W.. The effect of malalignment on stresses in polyethylene component of total knee Prostheses-A finite element analysis. Clin. Biomech. (Bristol,Avon).2002;17 (2):140-146.
    
    13, Eckhoff DG, Metzger RG, et al. Malro tation Associated With Implant Alignment Technique in Total Knee Arthroplasty. Clin. Orthop.1995;321:178-183.
    
    14,Hoffman, S.,Romero,J.et al. Rotational malalignment of thecomponents may cause chronic pain or early failure in total knee arthroplasty. Orthopaede.2003, 32 (6):469-476.
    
    15, Eckhoff DG, Johnson RJ, et al:Version of the osteoarthritic knee. J Arthroplasty.1994;9:73-79.
    16,Figgie HE, Goldberg VM, Figgie MP, et al: The effect of alignment of the implant on fractures of the patella after condylar total knee arthroplasty. J Bone Joint Surg. 1989; 71A:1031-1039,.
    17,Miller MC, Berger RA, Petrella AJ, et al. Optimizing femoral component rotation in total knee arthroplasty. Clin Orthop. 2001;392:38-45.
    18, Barrack RL, Schrader T, Bertot AJ, Wolfe MW, Myers L. Component rotation and anterior knee pain after total knee arthroplasty. Clin Orthop .2001;392:46-55.
    19,Yoshino N, Takai S, Ohtsuki Y, et al. Computed tomography measurement of the surgical and clinical transepicondylar axis of the distal femur in osteoarthritic knees. J Arthroplasty. 2001; 16:493-497.
    20,Matsuda, S., Miura, H., Nagamine, R., Urabe, K., Hirata, G., Iwomoto,Y.. Effect of femoral and tibial component position on patellartracking following total knee arthroplasty: 10-year follow-up of Miller-Galante I knees. Am. J. Knee Surg. 2001;14 (3):152-156.
    21, Uehara, K., Kadoya, Y., Kobayashi, A., Ohashi, H., Yamano, Y., Bone anatomy and rotational alignment in total knee arthroplasty. Clin. Orthop.Relat. Res.2002;402:196-201.
    22,Akagi M, Masamichi Oh, Tohgo Nonaka, etc: An Anteroposterior Axis of the Tibia for Total Knee Arthroplasty. Clin Orthop.2004;420:213-219.
    23,Ikeuchi M., Yamanaka N., Okanoue Y., et al. Determining the rotational alignment of the tibial component at total knee replacement: a comparison of two techniques. J Bone Joint Surg. 2007, 89(B):45-49.
    24,Lewis P, Rorabeck CH, Bourne RB, et al. Posteromedial tibial polyethylene failure in total knee replacements. Clin Orthop.1994;299:11-17.
    25,Berger RA, Crossett LS, Jacobs JJ, et al. Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop.1998;356:144-153.
    26,Merkow RL, Soudry M, Insall JN. Patellar dislocation following total knee replacement. J Bone Joint Surg. 1985;67(A):1321-1327.
    
    27,Nagamine R, Whiteside LA, White SE, et al. Patellar tracking after total knee arthroplasty: The effect of tibial tray malrotation and articular surface configuration. Clin Orthop. 1994;304:262-271.
    
    28, Rose, R.M., Goldfarb, H.V., Ellis, E., Crugnola, A.M.. On the pressure dependence of the wear of ultra-high molecular weight polyethylene. Wear 1980;181-183, 250-257.
    
    29, Wright, TM., Bartel, D.L.. The problem of surface damage in polyethylene total knee components. Clin. Orthop. 1986; 205: 67-74.
    
    30, Buehler KO, Venn-Watson E, D'Lima DD, et al: The press-fit condylar total knee system: 8- to 10-year results with a posterior cruciate-retaining design. J Arthroplasty. 2000; 15:698-701.
    
    31, Ranawat CS, Boachie-Adjei O: Survivorship analysis and results of total condylar knee arthroplasty: Eight- to 11-year follow-up period. Clin Orthop. 1988:226:6-13.
    32, Ranawat CS, Flynn WFJ, Saddler S, et al: Long-term results of the total condylar knee arthroplasty: A 15-year survivorship study. Clin Orthop. 1993;286:94-102.
    
    33, Dorr, L., Ochsner ,J., Gronley,J., Perry,J.. Functional comparison of posterior cruciate-retained versus cruciate-sacrificed total knee arthroplasty. Clin. Orthop. 1988;236,36-43.
    
    34, Perka,C., Mockel,G., Boenick,U.. Kinetic and kinematic gait analysis before and after total knee endoprosthesis implantation.Z Orthop. Ihre Grenzgeb.2000;138 (3):191-196.
    
    35, Townley,C. The anatomic total knee resurfacing arthroplasty. Clin. Orthop. 1985; 192:82-96.
    
    36, Romero,J.,Sta "helin,T.,Wyss,T.,Hofmann ,S.. Significance of axial rotation alignment of components of knee Prostheses. Orthopa¨de.2003; 32:461-468.
    
    37,Coventry MB: Two-part total knee arthroplasty. Evolution and present status.Clin Orthop.1973;145:29-36.
    38,Lotke PA, Ecker ML: Influence of positioning of prosthesis in total knee replacement. J Bone Joint Surg.1977;59A:77-79.
    
    39, Berger RA, Rubash HE: Rotational instability and malrotation after total knee arthroplasty. Orthop Clin North Am. 2001;324:639-647.
    
    40, Dalury DF, Jiranek W, Pierson J, Pearson SE: The long-term outcome of total knee patients with moderate loss of motion. J Knee Surg.2003;16:215-220.
    
    41, Arima, J., Whiteside, L.A., McCarthy, D.S., White, S.E.. Femoral rotational alignment, based on the anteroposterior axis, in total knee arthroplasty in a valgus knee. A technical note. J. Bone Joint Surg Am. 1995;77(9):1331-1334.
    
    42, Jenny, J.Y., Boeri, C. Low reproducibility of the intra-operative measurement of the transepicondylar axis during total knee replacement. Acta Orthop. Scand. 2004;75 (1):74-77.
    43,Chowdhury EA, Porter ML. How is the tibial tray aligned to the femoral prosthesis in a total knee arthroplasty?: a survey of opinion from BASK? Knee. 2005;12:79-80.
    44,Insall JN. Surgical Techniques and Instrumentation in Total Knee Arthroplasty. In: Insall JN, Windsor RE, Scott WN, Kelly M, Aglietti P (eds). Surgery of the Knee. Ed 2. New York: Churchill-Livingstone; 1993:739-804.
    45,Dalury DF. Observations of the proximal tibia in total knee arthroplasty. Clin Orihop.2001;389:150-155.
    
    46, Akagi M, Mori S, Nishimura S, et al: Variability of extraarticular tibial rotation references for total knee arthroplasty. Clin Orthop.2005,436:172-176.
    
    47, Scott RD, Volatile TB. Twelve years' experience with posterior cruciate retaining total knee arthroplasty. Clin Orthop. 1986,205:100-107.
    
    47,Cheng-Kung Cheng, Chang-Hung Huang, Jiann-Jong Liau, et al. The influence of surgical malalignment on the contact pressures of fixed and mobile bearing knee prosthesis-a biomechanical study. Clin Biomechanics.2003,18:231-236.
    48,Shuichi Matsuda, Stephen E. White, Victor G. Williams, et al. Contact stress analysis in meniscal bearing total knee arthroplasty. J Arthroplasty 1998;13(6):699-706,.
    49,Kei Shiramizu, Frank Vizesi, Warwick Bruce, et al. Tibiofemoral contact areas and pressures in six high flexion knees. International Orthopaedics.2007
    
    50, Bartel D L, Bicknell V L, Wright T M. The effect of conformity,thickness, and material on stresses in ultra-high molecular weight components for total joint replacement.J Bone Joint Surg (Am) 1986; 68: 1041-51.
    
    51, Collier J P, Mayor M B, McNamara J L. Analysis of the failure of 122 polyethylene inserts from uncemented tibialknee components. Clin Orthop 1991; 273: 232-42.
    
    52, Bartel D L, Rawlinson J J, Burstein A H, Ranawat C S,Flynn W F Jr. Stresses in polyethylene components of contemporary total knee replacements. Clin Orthop. 1995;317: 76-82.
    
    53, McNamara J L, Collier J P, Mayor M B, Jensen R E. A comparison of contact pressures in tibial and patellar total knee components before and after service in vivo. Clin Orthop.1994; 299: 104-13.
    
    54, Harris M L, Morberg P, Bruce W J M, Walsh W R. An improved method for measuring tibiofemoral contact areas in total knee arthroplasty: a comparison of I-scan sensor and Fuji . lm. J Biomech 1999; 32: 951-8.
    
    55,Write T M, Rimnac C M, Stulberg S D, et al. Wear of polyethylene in total joint replacements. Observations from retrieved PCAknee implants. Clin Orthop 1992;276:126-134.
    
    56, Szivek J A, Cutignola L, Volz R G. Tibiofemoral contact stress and stress distribution evaluation of total knee arthroplasties. J Arthroplasty 1995; 10: 480-91.
    
    57, Szivek J A, Anderson P L, Benjamin J B. Average and peak contact stress distribution evaluation of total knee arthroplasties. J Arthroplasty 1996; 11: 952-63.
    
    58, D'Lima, D.D., Hermida, J.C., Chen, P.C., Colwell, C.W..Polyethylene wear and variations in knee kinematics. Clin Orthop.2001;392:124-130.
    
    59, Matsuda, S., Whiteside, L.A., White, S.E.. The effect of varus tilt on contact stress in total knee arthroplasty. Orthopedics. 1999;22 (3):303-307.
    
    60, Frederick W. Werner, David C. Ayers, Lorin P. Maletsky, et al. The effect of valgus/varus malalignment on load distribution in total knee replacements. Journal of Biomechanics. 2005;38: 349-355.
    
    61, Wasielewski RC, Galante JO, Leighty RM, Natarajan RN, Rosenberg AG. Wear patterns on retrieved polyethylene tibial inserts and their relationship to technical considerations during total knee arthroplasty. Clin Orthop 1994;299:31-43.
    
    62, Puloski SK, McCalden RW, MacDonald SJ, Rorabeck CH, Bourne RB: Tibial post wear in posterior stabilized total knee arthroplasty: An unrecognized source of polyethylene debris. J Bone Joint Surg.2001;83A:390-397.
    
    63, Chang-Hung Huang,l Jiann-Jong Liau,2 Chun-Hsiung Huang, 1,3 Cheng-Kung Cheng. Stress Analysis of the Anterior Tibial Post in Posterior Stabilized Knee Prostheses. J Orthropaedic.2007;Aprial:442-449.
    
    64, R. Klein, L. Serpe, M. A. Kester, A. Edidin, et al.Rotational Constraint in Posterior-Stabilized Total Knee Prostheses.Clin Orthop.2003; 410:82-89.
    
    65, Oliver Kessler a, Elvis Lacatusu b, Mark B. Sommers b, Eckard Mayr c, Michael Bottlang Malrotation in total knee arthroplasty: Effect on tibial cortex strain captured by laser-based strain acquisition.Clinical Biomechanics.2006;21:603-609.
    
    66, Noble, B., 2003. Bone microdamage and cell apoptosis. Eur. Cell Mater. 6,46-55, discusssion 55.
    
    67, Moran, C.G., Pinder, I.M., Lees, T.A. Survivorship analysis of the uncemented porous-coated anatomic knee replacement. J. Bone Joint Surg.1991;73A:848-857.
    
    68, Matsuda S, Williams V G, Whiteside L A, et al. Comparison of pressure-sensitive . film and digital electronic sensors to measure contact area and contact stress. 41~(st) Annual Meeting, Orthopaedic Research Society, February 13-16, Orlando, 1995: 743.
    
    69, Matsuda S, White S E, Williams V G, McCarthy D S, Whiteside L A. Contact stress analysis in meniscal bearing total knee arthroplasty. J Arthroplasty. 1998; 13: 699-706.
    1.Wright RJ, Sledge CB, Poss R, et al. Patient-reported outcome and survivorship after Kinemax total knee arthroplasty. J Bone Joint Surg Am 2004; 86(A):2464-2470.
    
    2.Fehring TK, Murphy JA, Hayes TD, et al. Factors influencing wear and osteolysis in press-fit condylar modular total knee replacements. Clin Orthop Relat Res 2004; 428:40-50.
    3.Dixon MC, Brown RR, Parsch D, Scott RD. Modular fixed-bearing total knee arthroplasty with retention of the posterior cruciate ligament. A study of patients followed for a minimum of fifteen years. J Bone Joint Surg Am.2005; 87:598-603.
    4.Elkus M, Ranawat CS, Rasquinha VJ, et al. Total knee arthroplasty for severe valgus deformity. Five to fourteen-year follow-up. J Bone Joint Surg Am.2004; 86-A:2671-2676.
    5.Gioe TJ, Killeen KK, Grimm K, et al. Why are total knee replacements revised? analysis of early revision in a community knee implant registry. Clin Orthop Relat Res 2004; 428:100-106.
    6.Berry DJ. Recognizing and identifying osteolysis around total knee arthroplasty. Instr Course Lect 2004; 53:261-264.
    
    7.Kellett CF, Short A, Price A, et al. In vivo measurement of total knee replacement wear. Knee 2004; 11:183-187.
    
    8.Fregly BJ, Sawyer WG, Harman MK, Banks SA. Computational wear prediction of a total knee replacement from in vivo kinematics. J Biomech 2005;38:305-314.
    9.McEwen HM, Barnett PI, Bell CJ, et al. The influence of design, materials and kinematics on the in vitro wear of total knee replacements. J Biomech.2005; 38:357-365.
    10.Lee SY, Matsui N, Kurosaka M, et al. A posterior-stabilized total knee arthroplasty shows condylar lift-off during deep knee bends. Clin Orthop Relat Res 2005; 435:181-184.
    11 .Li G, Papannagari R, Most E, et al. Anterior tibial post impingement in a posterior stabilized total knee arthroplasty. J Orthop Res 2005; 23:536-541.
    
    12.Bradley MP, Mayor MB, Collier JP. Differences in articular track area of posterior-stabilized and cruciate-retaining retrieved total knee implants. Orthopedics 2004; 27:1273-1278.
    13.Sansone V, da Gama Malcher M. Mobile-bearing total knee prosthesis: a 5-9-year follow-up of the first 110 consecutive arthroplasties. J Arthroplasty.2004; 19:678-685.
    14.Komistek RD, Dennis DA, Mahfouz MR, et al. In vivo polyethylene bearing mobility is maintained in posterior stabilized total knee arthroplasty. Clin Orthop Relat Res 2004; 428:207-213.
    15.Minoda Y, Kobayashi A, Iwaki H, et al. Characteristics of polyethylene wear particles isolated from synovial fluid after mobile-bearing and posterior-stabilized total knee arthroplasties. J Biomed Mater Res B Appl Biomater 2004;71:l-6.
    16.Berend ME, Ritter MA, Meding JB, et al. Tibial component failure mechanisms in total knee arthroplasty. Clin Orthop Relat Res 2004; 428:26-34.
    17.Lombardi AV Jr, Berend KR, Mallory TH. Pop-top tibial component: elimination of back-side wear with potential modularity. Surg Technol Int 2004; 13:253-260.
    18.Conditt MA, Thompson MT, Usrey MM, et al. Backside wear of polyethylene tibial inserts: mechanism and magnitude of material loss. J Bone Joint Surg.Am 2005; 87:326-331.
    19.Ezzet KA, Hermida JC, Colwell CW Jr, D'Lima DD. Oxidized zirconium femoral components reduce polyethylene wear in a knee wear simulator. Clin Orthop Relat Res. 2004; 428:120-124.
    20.Minoda Y, Kobayashi A, Iwaki H, et al. Polyethylene wear particle generation in vivo in an alumina medial pivot total knee prosthesis. Biomaterials 2005; 26:6034-6040.
    21.Muratoglu OK, Bragdon CR, Jasty M, et al. Knee-simulator testing of conventional and cross-linked polyethylene tibial inserts. J Arthroplasty 2004;19:887-897.
    22.Ries MD. Highly cross-linked polyethylene: the debate is over - in opposition. J Arthroplasty 2005; 20(Suppl 2):59-62.
    23.Wasielewski RC, Galat DD, Komistek RD. Correlation of compartment pressure data from an intraoperative sensing device with postoperative fluoroscopic kinematic results in TKA patients. J Biomech 2005; 38:333-339.
    24.Werner FW, Ayers DC, Maletsky LP, Rullkoetter PJ. The effect of valgus/varus malalignment on load distribution in total knee replacements. J Biomech 2005; 38:349-355.