海洋季也蒙毕赤酵母菊粉酶的发酵生产、纯化、特性、基因克隆与表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菊粉作为植物的一种贮存性多糖,主要存在于如菊芋(或称洋姜,Helianthus tuberosus)、菊苣(Cichorium endivia)、大丽花(Dahlia pinnata)、牛蒡(Arctium lappa)等尚未开发利用的植物根茎中。菊粉酶是一种主要来源于微生物的多糖水解酶,它可以在一定的温度条件下水解菊粉为果糖和低聚果糖等,其水解产物在食品发酵、医药卫生等方面都有广泛的应用。菊粉酶的来源广泛,包括霉菌、酵母菌、细菌和放线菌等,但是对于海洋酵母菌产菊粉酶的情况了解甚少,本实验室获得了一株高产菊粉酶的海洋酵母菌strain 1,通过生物学鉴定方法确定该株海洋酵母菌属于季也蒙毕赤酵母(Pichia. guilliermondii)。
     本实验首先对季也蒙毕赤酵母(P. guilliermondii)strain 1产菊粉酶的液体发酵培养基和发酵条件进行了优化,发现其产酶的最优培养基为4%菊粉,0.5%酵母粉,初始pH值为8.0,海水配制,培养条件为接种量10%(v/v)(OD600nm=20.0),最适温度28 oC ,170 rpm培养,得到的最高菊粉酶活力达到了61.5U/mL。同时,对strain 1菊粉酶粗酶水解底物菊粉水解菊粉的产物进行了薄层层析检验,发现该酶能够充分水解菊粉,得到的终产物以单糖为主,证明了strain 1菊粉酶具有较高的外切菊粉酶活力。
     在最适产酶条件下培养,将获得的季也蒙毕赤酵母(P. guilliermondii)strain 1胞外菊粉酶粗酶进行超滤浓缩,通过分子筛SephadexTM G-75和阴离子交换层析柱DEAE Fast Flow分离纯化,纯化后蛋白酶SDS- PAGE凝胶电泳显示分子量约为50kDa。对纯化后的菊粉酶进行了一系列酶学性质的研究,发现纯化后的菊粉酶最适反应pH和最适反应温度分别为6.0和60oC,该酶对温度不敏感,并具有热稳定性,对pH较敏感,只在5-7范围内活力稳定。另外,很多金属离子对纯酶活力有一定程度的激活作用;当存在Hg2+、Mg2+、Ag+时,菊粉酶活明显降低。蛋白抑制剂PMSF和碘乙酸能够强烈抑制菊粉酶活力。纯化后的菊粉酶对底物菊粉的动力学常数Km值和Vmax分别是21.1 mg/mL和0.082 mg min-1蛋白,说明其与底物亲和力较高。纯化菊粉酶对底物菊粉也具有很高的外切菊粉酶活力,水解底物层析发现产物只有单糖。
     克隆得到了季也蒙毕赤酵母(P. guilliermondii)strain 1胞外菊粉酶基因INU的全长(登陆号EU195799),共1542bp,无内含子,根据DNA序列推导出该了菊粉酶前体肽的氨基酸序列,共514个氨基酸,推导分子量为58042Da。利用生物学软件分析菊粉酶基因INU及其上下游碱基序列,推导出其启动子和终止子位置及结构特点等。分析菊粉酶前体肽氨基酸序列,推测出N端有18个氨基酸残基的信号肽,并含有10个可能的N端糖基化位点,对菊粉酶前体肽氨基酸序列的保守区进行了分析,推测出约在20-300个氨基酸处具有糖苷酶家族N端特性。同时构建pPICZαAINU表达载体,将克隆得到的strain 1菊粉酶基因INU在巴斯德毕赤酵母真核表达体系中进行了功能表达。对重组酶进行了进行SDS-PAGE检测和Western blotting分析,得到了大小为60kD的重组酶条带,并通过免疫印迹证实了菊粉酶基因在真核表达系统中的表达。诱导48h的重组菊粉酶粗酶液酶活为30.7±0.12 U/ml,使用薄层层析方法检测重组酶对底物菊粉的水解作用,证明了重组酶对菊粉有一定的水解作用。
     同时还利用响表面方法(RSM)对海洋季也蒙毕赤酵母strain 1的高产菊粉酶突变株M-30的固体发酵条件进行了优化,得到最终的最优条件为初始湿度60.5%,接种量2.5%,麸皮:稻糠=0.42,30 oC培养,初始pH6.5。在最优条件下,突变株M-30固体发酵酶活达到455.9 U/gds,明显高于原始菌株(291.0 U/gds),说明通过诱变方法确实使突变株的酶活力明显得到了提高,具有稳定的较高的外切菊粉酶活力。
     综上所述,本实验对于海洋季也蒙毕赤酵母(P. guilliermondii)strain 1菊粉酶的研究较全面系统,对于开发利用海洋酵母菌菊粉酶具有积极意义。
Inulin is a fructose polymer that occurs as a reserve carbohydrate in Jerusalem artichoke, dahlia tubers and chicory root. This polymer is a recognized source for the production of either ultra-high fructose syrups, with D-fructose content over 95% or for production of oligofructose syrups. Inulinase (β-2,1-D-fructan fructanohydrolase, EC 3.2. 1.7) targets on theβ-2,1 linkage of inulin and hydrolyzes it into fructose. Inulinase is produced by many microorganisms, including fungi, yeasts and bacterias. But little is known about inulinase produced by marine yeasts. Marine yeast strain 1 which was found to secrete a large amount of inulinase into the medium was selected from the collection culture of marine yeasts available in this laboratory. This marine yeast strain was identified to be a strain of Pichia guilliermondii according to the results of routine yeast identification and molecular methods.
     The optimal medium and cultivation conditions for inulinase production were determined first. Seawater containing 4.0% (w/v) inulin and 0.5% (w/v) yeast extract , cultivated under the optimal condition of pH 8.0, 28 oC and 170 rpm. Over 60 U ml-1 of inulinase activity was produced within 48 h of fermentation at shake flask level. A large amount of monosaccharides and a trace amount of oligosaccharides were detected after the hydrolysis, indicating that the crude inulinase had a high exoinulinase activity.
     The extracellular inulinase in the supernatant of cell culture of the marine yeast Pichia guilliermondii strain 1 was purified to homogeneity with a 7.2-fold increase in inulinase activity as compared to that in the supernatant by ultrafiltration, concentration, gel filtration chromatography (SephadexTM G-75) and anion-exchange chromatography (DEAE-Sepharose Fast Flow Anion-Exchange). The molecular mass of the purified enzyme was estimated to be 50.0 kDa. The optimal pH and temperature of the purified enzyme were 6.0 and 60 (C, respectively. The enzyme was activated by Mn2+, Ca2+, K+, Li+, Na+, Fe3+, Fe2+, Cu2+, and Co2+. However, Mg2+, Hg2+ and Ag+ acted as inhibitors in decreasing activity of the purified inulinase. The enzyme was strongly inhibited by Phenylmethanesulphonyl fluoride (PMSF), iodoacetic acid. The Km and Vmax values of the purified enzyme for inulin were 21.1 mg ml-1 and 0.082 mg min-1, respectively. A large amount of monosaccharides were detected after the hydrolysis of inulin.
     The inulinase structural gene was isolated from genomic DNA of P. guilliermondii strain 1. The gene had an open reading frame of 1542 bp long encoding an inulinase (accession number EU195799). The coding region of the gene had no intron. It encoded 514 amino acid residues of a protein with a putative signal peptide of 18 amino acids. The protein sequence deduced from the inulinase structural gene contained the consensus sequence of glycosyl hydrolases family 32 N terminal and ten conserved putative N-glycosylation sites. The inulinase encoding DNA was subcloned into pPICZαA expression vector and the resulting recombinant plasmid was named pPICZαAINU. The recombinant plasmid was expressed in Pichia pastoris X-33. The expressed fusion protein was analyzed by SDS-PAGE and western blotting and a specific band with molecular mass of about 60 kDa was found. Enzyme activity assay verified the recombinant protein as an inulinase. A maximum activity of 30.71 U/mL was obtained from supernatant of P. pastoris X-33 harboring pPICZαAINU. The crude recombinant inulinase had hydrolytic activity towards inulin.
     One mutant (M-30) with enhanced inulinase production was obtained by treating P. guilliermondii strain 1 with UV light and LiCl2. Response surface methodology (RSM) was used to optimize the medium compositions and cultivation conditions for inulinase production by the mutant in solid-state fermentation. The initial moisture, inoculum, the amount ratio of wheat bran to rice bran, temperature, pH for maximum inulinase production by mutant M-30 were found to be 60.5%, 2.5%, 0.42, 30 oC and 6.50, respectively. Under the optimized conditions, 455.9 U/gram of dry substrate (gds) of inulinase activity was reached in the solid state fermentation culture of mutant M-30 whereas the predicted maximum inulinase activity of 459.2 U/gds was derived from RSM regression. Under the same conditions, its wild-type only produced 291.0 U/ gds of inulinase activity. This is the highest inulinase activity produced by the yeast strains reported so far.
引文
Allais. J. J, Hoyos-Lopez. G., Kammoun. S and Baratti, J. C, Isolation and characterization of thermophilic bacterial strains with inulinase activity. Appl. Environ Microbiol.1987,53 (5), 942–945.
    Ashok Pandey,Carlos R. Soccol, et al .Recent Developments in Microbial Inulinases,Its Production, Properties, and Industrial Applications, Applied Biochemistry and Biotechnology, 1999,Vol. 81.
    Azhari R ,A M Szlak. Purification and characterization of endo- and exo-inulinase. Biotechnol .Appl .Biochem.1989 ,11 :105 - 117.
    Baion A M, Guirand J P , Galzy P. Isolation of an inulinase derepressed mutant of Pichia polymorpha for the production of fructose,Biotechnol Bioeng .1984 (26) : 128-133.
    Barth G, Gaillardin C .Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol .1997, Rev 19: 219-237
    Berry DF, Tomkinson RA, Hetzel GH, Mullins DE, Young RW. Evaluation of solid state fermentation techniques to dispose off atrazine and carbofuran. J Environ Qual , 1993, 22:366–374.
    Bourgi J.,Guiraud J. P., and Galzy, P. A similar protocal involving ethylmethyl sulfonate mutagenesis and 2-DG selection was used to obtain a higher-yielding, partially derepressed mutant of K.(fragilis) marxianus , J. Ferment. Technol.1986 64(3), 239–243.
    Bradford M M. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976。72: 248-253.
    Buchan A, Newell SY, Moreta JI, Moran MA .Analysis of internal transcribed spacer (ITS) regions of rRNA genes in fungal communities in a southeastern U.S. salt marsh. Microb Ecol, 2002,43:329-340.
    Carolina Botella , Ana Diaz, Ignacio de Ory, Colin Webb, Ana Blandino. Xylanase and pectinase production by Aspergillus awamori on grape pomace in solid state fermentation .Process Biochemistry, 2007, 42 :98–101.
    Cazetta ML, Martins PMM, Monti R, Contiero J.Yacon (Polymnia sanchifolia) extract as a substrate to produce inulinase by Kluyveromyces marxianus var. bulgaricus. J Food Engineer,2005, 66: 301–305
    Charles M, James1, P. Dias1, Assad E Salman. The use of marine yeast (Candida sp.) and bakers' yeast (Saccharomyces cerevisiae) in combination with Chlorella sp. for mass culture of the rotifer Brachionus plicatilis. Hydrobiologia, 1987,147:1573-5117.
    Chen Xiong , Wang Jinhua, Li Dongsheng,Optimization of solid-state medium for the production of inulinase by Kluyveromyces S120 using response surface methodology. Biochemical Engineering Journal, 2007, 34:179–184
    Cruz - Guerrero A ,Garcia - Pena I ,Barzana E. Kluyveromyces marxianus CDBB - L - 278 :a wild inulinase hyperproducing strain. J. Ferment. Bio eng. 1995 ,80 (2) :159– 163
    Deshpande MV. Mycopesticide production by fermentation: potential and challenges. Crit Rev Microbiol ,1999, 25:229–243.
    Elyachioui M., Hornez, J. P.and Tailliez, R, General properties of extracellular bacterial inulinase. , J. Appl. Bacteriol.1992,73(6), 514–519.
    Ettalibi M, Baratti J C. Molecular and kinetic properties of Aspergillus ficuum inulinases . Agric Biol Chem. 1990 , 54 (1) :61-68.
    Fang Gong Jun Sheng Zhenming Chi, et al. Inulinase production by a marine yeast Pichia guilliermondii and inulin hydrolysis by the crude inulinase.J.ind.MicrobioloBiotechnol, 2007, 34:179-185.
    Fell JW, Kurtzman CP, Nucleotide sequence analysis of a variable region of the large subunit rRNA for identification of marine-occurring yeasts. Curr Microbiol, 1990, 21:295-300
    Fell JW. Yeasts in oceanic regions . In: Jones EBG (ed) Recent advances in aquaticmycology. Elec, London, 1976, pp 93–124.
    Fontana J D , Baron M, Microbial inulinase secretion using chemically modified inulins[J ] . Appl . Biochem Biotechnol .1994 , 45/ 46 :257 - 268.
    Gadanho M, Almeida JM, Sampaio JP. Assessment of yeast diversity in a marine environment in the south of Portugal by microsatellite-primed PCR. Antonie van Leeuwenhoek.2003, 84:217-227.
    George V, Diwan A M . Simultaneous staining of proteins during polyacrylamide gel electrophoresis in acidic gels by countermigration of Coomassie brilliant blue R-250. Anal Biochem ,1983,132: 481–483
    Goto S, Yamasato K, Iizaka H. Identification of yeasts isolated from the Pacific Ocean. J Gen Appl Microbiol.1974 20:309–316.
    Gupta A K, Singh D P. Production ,purification and immobilization of inulinase from Kluyveromyces f ragilis . J. Chem. Tech. Biotechnol . 1994 ,59 :377 - 385.
    Li Haifeng, Chi Zhenming. Amylase production by the Marine Yeast Aureobasidium pullulans N13d . Journal of Ocean University of China, 2006,5(3):251-256.
    Haifeng Li, Zhenming Chi , Xiaohong Wang, et al. Purification and characterization of extracellular amylase from the marine yeast Aureobasidium pullulans N13d and its raw potato starch digestion .Enzyme and Microbial Technology ,2007,40: 1006–1012.
    Hendry, G. The ecological significance of fructan in a contemporary flora. New Phytologist, 1987, 106, 201–216.
    Hensing, M., Vrouwenvelder, H., Hellinga, C., Baartmans,R., and van-Dijken, H, Production of extracellular inulinase in high-cell-density fed-batch cultures of Kluyveromyces marxiamus. Appl. Microbiol. Biotechnol. 1994,42(4), 516–521.
    Hermandez MRT, Raimbault M, Roussos S, Lonsane BK. Potential of solid state fermentation for the production of ergot alkaloids. Lett Appl Microbiol ,1992, 15:156-159.
    Jain M R ,Zinjarde S S,Deobagkar D,Deobagkar D N,2,4,6-Trinitrotoluene transformation by a tropical marine yeast, Yarrowia lipolytica NCIM 3589. Marine pollution bulletin 2004, 49:783-788
    Josefa Maria Clemente-Jimenez, Lydia Mingorance-Cazorla, Sergio Martinez-Rodr?guez, Francisco Javier Las Heras-Vazquez, Felipe Rodriguez Vico. Molecular characterization and oenological properties of wine yeasts isolated during spontaneous fermentation of six varieties of grape must .Food microbiology.2004, 21:149-155.
    Joshi VK, Sandhu DK. Composition of distillates from the solid state fermentation of apple pomace by different yeasts. Natl Acad Sci Lett 1996, 19:219–224.
    Jun Sheng, Zhenming Chi, Jing Li, et al. Inulinase production by the marine yeast Cryptococcus aureus G7a and inulin hydrolysis by the crude inulinase .Process Biochemistry, 2007, 42: 805-811.
    Kaustav Aikat, Bimal Chandra Bhattacharyya. Protease extraction in solid state fermentation ofwheat bran by a local strain of Rhizopus oryzae and growth studies by the soft gel technique. Process Biochemistry 2000, 35:907-914.
    Kamp RM, Choli-Papadopoulou T, Wittmann-Liebold B. Protein Structure Analysis: Preparation, Characterization and Microsequencing. Berlin: Springer-Verlag Berlin Heidelberg, 1997.
    Kang Su , Chang Yung ,Jim. Purification and properties of an endo - inulinase from an Athrobacter sp. Biotechnol .Lett , 1998 ,20 (10) :983 -986.
    Kim D H, Choi Y J , Song S K. Production of inulooligosaccharides using endo - inulinase from an Pseudomonas sp . Biotechnol . Lett, 1997 ,19(4) :369 - 371.
    Kurtzman, C.P, J. W. Fell, The Yeasts, a taxonomic study, 4th edition. Elsevier, 1998, 915-947.
    Kushi RT, Monti R, Contiero J . Production, purification and characterization of an extracellular inulinase came from Kluyveromyces marxianus var. bulgaricus. J Ind Microbiol Biotechol, 2000, 25: 63-69
    LaemmLi UK. Cleavage of structural proteins during assembly of head of bacteriophage T4.Nature ,1970, 227: 680-685.
    Laloux O , Cassart J P,Delcour J et al. Cloning and sequencing of the inulinuase gene of Kluyveromyces marxianus var. marxianus ATCC 12424. FEBS Letters 1991, 289: 64-68
    Larcher G, Cimon B, Symoens F, Tronchin G, Chabasse D, Bouchara JP. A 33 kDa serine proteinase from Scedosporium apiospermum. Biochem J, 1996, 315:119–126
    Lingmei Gao , Zhenming Chi, Jun Sheng, et al. Inulinase-producing marine yeasts: evaluation of their diversity and inulin hydrolysis by their crude enzymes. Microbiol Ecology, 2007, 54: 722-729.
    Ma CL, Ni XM, Chi ZM, et al. Purification and characterization of an alkaline protease from the marine yeast Aureobasidium pullulans for bioactive peptide production from different sources . Mar Biotechnol 2007, 9:343–351
    Marcio Mazutti, Joao Paulo Bender, Helen Treichel, Marco Di Luccio,Optimization of inulinase production by solid-state fermentation using sugarcane bagasse as substrate,Enzyme and Microbial Technology, 2006,39:56–59.
    Margaritis A , Bajpai P. Ethanol production from Jeruslem artichoke tubers (Helianthus tuberosus) using Kluyveromyces marxianus and Saccharomyces rosei . Biotechnol . Bioeng. , 1982 , 24 :941 - 953.
    Marshak D R,Kadonaga J T, Burgess R R, Knuth M W., Brennan W A, Lin SH. Strategies for Protein Purification and Characterization: A Laboratory Course Manual. USA: Cold Spring Harbor Laboratory Press, 1976.
    Martin I, DebarbouilleM , Ferrari E et al. Characterizat ion of the levanase gene of
    Bacillus subtilis which shows homology to yeast invertase. Mol. Gen. Genet. ,1987, 208: 177-184
    Mazutti M, Bender JP, Treichel H, Luccio MD. Optimization of inulinase production by solid-state fermentation using sugarcane bagasse as substrate. Enzy and Microb Technol .2006, 39: 56–59.
    M L Cazetta , P.M.M. Martins , R. Monti b, J. Contiero,Yacon (Polymnia sanchifolia) extract as a substrate to produce inulinase by Kluyveromyces marxianus var. bulgaricus,Journal of Food Engineering ,2005, 301–305
    Mukherjee K, Sengupta S. Purification and properties of a nonspecific belta - frucofu ranosidase (inulinase) fromthe mushuroom Panaeolus papillonaceus. Can J Microbiol , 1987 (33) :5202524.
    Murthy MVR, Mohan EVS, Sadhukhan AK. Cyclosporin, A production by Tolypocladium inflatum using solid state fermentation. Process Biochem 1999, 34:269–280.
    Nagadi MO, Correia LR. Kinetics of solid state ethanol fermentation from apple pomace. J Food Eng ,1992, 17:97–116.
    Nagahama T, Hamamoto M, Nakase T, Horikoshi K. Kluyveromyces nonfermentans sp. nov., a new yeast species isolated from the deep sea. Int J Syst Bacteriol 1999,49:1899–1905
    Nagahama T, Hamamoto M, Nakase T, Horikoshi K. Rhodotorula lamellibrachii sp. nov., a new yeast species from a tubeworm collected at the deep-sea floor in Sagami bay andits phylogenetic analysis. Antonie van Leeuwenhoek.2001, 80:317–323
    Nagahama T, Hamamoto M, Nakase T, Horikoshi K. Rhodotorula benthica sp. nov. and Rhodotorula calyptogenae sp. nov., novel yeast species from animals collected from the deep-sea floor, and Rhodotorula lysiniphila sp. nov., which is related phylogenetically. Int J Syst Evol Microbiol. 2003, 53:897–903
    Nakamura T ,Nakatsu S. General properties of extracellular inulase from Penicillium . Nippon Nogei Kagakku Kaishi , 1977 ,51 :681 - 689.
    Nakamura T , Kurokawa T ,Nakatsu S. Crystallization and general properties of an extracellularinlase form Aspergillus sp . Nippon Nogei Kagakku Kaishi ,1978 ,52(4) :159 - 166.
    Nakamura T, Hoashi S , Nakatsu. Culture conditions for inulase production by Aspergillus. Nippon Nogei. Kagakku Kaishi , 1987 ,52(3) :1052110.
    Nakamura T, Nagatomo Y, and Hamda S. Occurrence of two forms extracellular endoinulinase from Aspergillus niger mutant 817 . J Ferment Bioeng, 1994 ,78 (2) :134-139.
    Nakamura T , Shitara A ,and Matsuda S. Production ,purification and properties of an endo - inulinase of Penicillium sp. TN - 88 that liberates inulinase . J. Ferment. Bioeng. , 1997, 84 (4) :313 - 318
    Nakayama S, Takahashi S, Hirai M, Shoda M. Isolation of new variants of surfactin by a recombinant Bacillus subtilis. Appl Micobiol Biotechnol 1997, 48:80–82.
    Nalarmura J . Continuous production of fructose syrups from inulin by immobilized inulinase from Aspergillus niger mutant 817 . J Ferment Bioeng , 1995 ,80 (1) : 164 -169.
    Ododera S , Shiomi N. Purification and substrate specificity of endo -type inulinase from Penicillium purpurogenum. Agric. Biol Chem., 1988 ,52(10) :2569 - 2576.
    Ohno A, Ano T, Shoda M. Effect of temperature on production of lipopeptide antibiotics iturin A and surfactin by a dual producer, Bacillus subilis RB 14, in solid state fermentation. J Ferment Bioeng 1995, 80:517–519.
    Ohno A, Ano T, Shoda M. Use of soybean curd residue, okara, for the solid state substrate in the production of lipopeptide antibiotic, iturin a by Bacillus subtilis NB22. Process Biochem 1996,31: 801–806.
    Ohta K, A kimoto H, Matusda et al. Molecular cloning and sequence analysis of two endoinulinase genes from Aspergillus niger. Biosci. Biotechnol. Biochem, 1998,62: 1731-1738
    Ohta K,Akimoto H. Production of high concentrations of ethanol from inulin by simultaneous saccharification and fermentation using Aspergillus niger and Saccaromyces cerevisiae. Appl Enviroment Microbiol ,1993 ,59 :729-733.
    Ongen,Baysal G, Sukan S S, VassilevN. Production and properties of inulinase from Aspergillus niger. Biotechnology Letters, 1994, 16: 275~280.
    Onodera S, Murakami T , Ito H et al. Molecular cloning and nucleotide sequences of cDNA and gene encoding endoinulinuase from P enicillium purpurogenum.Biosci. Biotech. Biochem. 1996, 60: 1780-1785
    Pandey A, Radhakrishnan S. The production of glucoamylase by Aspergillus niger NCIM 1245. Process Biochem 1993,28(3):305–309.
    Pandey. A. Solid-state fermentation. (pp.3–10 ). New Delhi: Wiley Eastern Publishers, 1994.
    Pandey A, Selvakumar P, Soccol CR, Nigam P. Solid state fermentation for the production of industrial enzymes. Curr Sci 1999, 77(1):149–162.
    Pandey, A. , Microbial Inulinases, 1998,a report to the Department of Biotechnology, Pandey A, Soccol CR, Selvakumar P, Soccol VT, Krieger N, Jose D, Fontana JD . Recent developments in microbial inulinases, its production, properties and industrial applications. Appl Biochem Biotechnol ,1999,81: 35-52.
    Park J P ,Bae J T and You DJ . Production of inulo-oligosaccharides from inulin by a novel endoinulinase from Xanthomous sp. Biotechnol. Lett. ,1999,21:1043 - 1046.
    Passador-G.urgel , G. C., Furian, S. A., Meller, J. K., and Jonas, R. ,Inulinase synthesis from a mesophilic culture in submerged cultivation.Appl. Microbiol. Biotechnol. 1996,45(1–2), 158–161.
    Pessoa A Jr, Hartmann R ,Vitolo M. Recovery of extracellular inulinase by expanded ed absorption . J. Biotechnol .1996 ,51 (1) :89 - 95.
    Plackett RL, Burman JP. The design of optimum multifactorial experiments. Biometrica, 1944, 33: 305–325.
    Poorna Viswanathan, Kulkarni. P. R. Full factorial design to study fermentative production of inulinase using inulin from kuth (Saussurea lappa) root power by Aspergillus niger van Teighem UV11 mutant .Bioresource Technology, 1995, 54 (2): 117-121
    Poorna V , P R. Kulkarni .A study of inulinase production in Aspergillus niger using fractional factorial design . Bioresour Tech., 1995 , 54 :315 - 320.
    Rouwenhorst, R. J., Visser, L. E., van der Baan, A. A., Scheffers, W. A., and van Dijken,J. P. Production,Distribution,and Kinetic Properties of Inulinase in Continuous Culture of Kluyveromyces marxianus CBS 6556, Appl. Environ. Microbiol.1988, 54(5), 1131–1137.
    Sawabe T, Takahashi H, Ezura Y, Gacesa P .Cloning, sequence analysis and expression of Pseudoalteromonas elyakovii IAM 14594 gene (alyPEEC) encoding the extracellular alginate lyase. Carbohydrate Research , 2001,335: 11–21
    Sawabe T, Takahasi H, Saeki, H, Niwa K, Aonob H . Enhanced expression of active recombinant alginate lyase AlyPEEC cloned from a marine bacterium Pseudoalteromonas elyakovii in Escherichia coli by calcium compounds. Enzy Microb Technol , 2006,online
    Schorr Galindo S , Fontana A , Guiraud J P. Fructose syrups and ethanol production by selective fermentation of inulin. Current. Microbiol, 1995 ,30 :325 - 330.
    Selvakumar, P. and Pandey, A. , Paper presented at International Conference on Frontiers in Biotechnology, 1997,Nov. 26–29, Trivandtum, India, p. 65.
    Selvakumar P, Pandey A. Solid state fermentation for the syntesis of inulinase from Staphylococcus sp. and Kluyveromyces marxianus. Process Biochem 1999, 34:851–857
    Shankaranand VS, Lonsane BK. Coffee husk—an inexpensive substrate for production of citric acid by Aspergillus niger in a solid state fermentation system. World. J Microbiol Biotechnol 1994, 10:165–168.
    Sharon C, Furugoh S, Yamakido T, Ogawa H, Kato Y .Purification and characterization of a lipase from Pseudomonas aeruginosa KKA-5 and its role in castor oil hydrolysis. J Ind Microbiol Biotechnol .1998, 20: 304–307
    Sibirnyi, A.A., Zharova, V.P., Kshanovskaia, B.V., Shavlovskii, G.M. Selection of a genetic line of Pichia guilliermondii yeasts capable of forming a significant quantity of spores. Tsitol. Genet,1977, 11, 330–333 (In Russian).
    Sibirny, A.A. Pichia guilliermondii. In: Wolf, K. (Ed.), Nonconvential Yeasts in Biotechnology. Springer-Verlag Berlin, Heidelberg, 1996, pp. 255–272.
    Singh RS, Dhaliwal R, Puri M . Production of inulinase from Kluyveromyces marxianus YS-1 using root extract of Asparagus racemosus. Proc Biochem .2006,41: 1703–1707
    Soccol CR. Biotechnology products from cassava root by solid state fermentation. J Sci Ind Res 1996,55:358–364.
    Spiro RG. Analysis of sugars found in glycoproteins. Methods Enzymol ,1966, 8:3–26
    Sreeja Chellappan, C. Jasmin, Soorej M. Basheer, K.K. Elyas,Sarita G. Bhat, M. Chandrasekaran. Production, purification and partial characterization of a novel protease from marine Engyodontium album BTMFS10 under solid state fermentation. Process Biochemistry 2006
    Takase K,M izuno H, Yamane K, Effect of mutation of an amino acid residue near the catalytic site on the activity of Bacillus stearothermophilusα-amylase. J. Biol. Chem. , 1988,263: 548~553
    Tang X J,He G Q,Chen Q H,et al. Medium optimization for the production of thermal stable β-glucanase by Bacillus subtilis ZJF-1 using response surface methodology . Biores Technol, 2004, 93:175-181.
    Taussig R, Carlson M. Nucleotide sequence of the yeast SUC2 gene for invertase. Nucleic Acids Res., 1983, 11:1943-1954.
    Tengerdy R P. Cellulase production by solid state fermentation. J Sci Res 1996, 55: 313–316.
    Thanh V N, Van D M S, Wingfield M J. Debaryomyces mycophilus sp., a siderophore-dependent yeast isolated from woodlice. FEMS Yeast Research , 2002, 2: 415-427
    Thouart P H, Roblain D .Rikir R. Improvement of inulin hydrolysis yeast cell reactor by mutants selection . Appl Biochem. Biotechnol , 1988 , 17 :193 -202.
    Tong SL, Miao H Z . A new species of marine yeast Kluyveromyces penaeid isolated from the heart of penaeid shrimp Penaeus chinensis. J Marine Biol Assoc , 1999, 79:559–561.
    Uhm T B, Byum S M, Thermal stability of the multiple charge isoforms of inulinase from Aspegilius niger.Biotechnol Lett.,1987,9:287-289.
    Uhm T B, Chae K S, Lee D W ,et al. Cloning and nucleotide sequence of the endo-inulinase2encoding gene inu2 from Aspergillius ficuum. Biotechnology Let ters,1998, 20: 809~812
    Vandamme EJ, Derycked G. Microbial inulinases: fermentation process, properties, and applications. Adv Appl Microbiol ,1983, 29:139–76.
    Viswanathan P, Kulkarul P R. Enhancement of inulinase production by Aspergillus niger van Teighem . J Appl Bacteriol , 1995, 78 :384-386.
    Viswanathan, P, Kulkarni P R. Saussurea lappa (kuth) as a new source of inulin for fermentative production of inulinase in a laboratory stirred fermenter, Bioresource Technology, 1995 , 52 (2),181-184.
    V L.Papinutti, F Forchiassin. Lignocellulolytic enzymes from Fomes sclerodermeus growing in solid-state fermentation. Journal of Food Engineering, 2007, 81:54–59.
    Wicklow D T, Dowd P F, Alfatafta A, Gloer J B. Ochratoxin A: an antiinsectan metabolite from the sclerotia of Aspergillus carbonarius NRRL 369. Can J Microbiol 1996, 42:1100–1103.
    Xavier S, Lonsane BK. Sugarcane press-mud as novel and inexpensive substrate for production of lactic acid in a solid state fermentation system. Appl Microbiol Biotechnol, 1994, 41: 291–295.
    Xianghong Wang,Zhenming Chi,Li Jing,Isolation and identification of a marine yeast Pichia anomala YF07b against the pathogenic yeast in crab .Acta Oceanologica Sinica,2007,26(6): 101-108.
    Yamasato K, Goto S, Ohwada K, Okuno D, Araki H, Iizaka H . Yeasts from the Pacific Ocean. J Gen Appl Microbiol, 1974, 20: 289-307.
    Yuriy R. Boretsky, Yuriy V. Pynyaha, Volodymyr Y. Boretsky, et al . Development of a transformation system for gene knock-out in the flavinogenic yeast Pichia guilliermondii,Journal of Microbiological Methods ,2007,70 (1) : 13-19.
    Zhang L, Zhao C, Wang J, Ohta Y, Wang Y . Inhibition of glucose on an exoinulinase from Kluyveromyces marxianus expressed in Pichia pastoris. Proc Biochem, 2005, 40: 1541–1545
    Zhang L, Wang J, Ohta Y, Wang Y .Expression of the inulinase gene from Aspergillus niger in Pichia pastoris. Proc Biochem, 2003, 38: 1209-1212
    Zinjarde S S, Pant A A. Hydrocarbon degraders from tropical marine environments. Mar Pollut Bull, 2002, 44(2): 118-121.
    Z M Chi, Z Q Liu, L M GAO, et al. Marine yeasts and their applications in mariculture .Journal of Ocean University of China, 2006, 930:251-256.
    Zittan L. Enzymatic hydrolysis of inulin-an alternative way to fructose production. Starch, 1981, 33: 373 - 377.
    蔡复礼.果糖的应用特性及其分离.精细化工, 1996, 13 (2) : 22- 24
    陈雄,王金华,李世杰.克鲁维酵母固体发酵高产菊粉酶的研究.食品科学,2005,Vol .26, No.10
    郭尧君.蛋白质电泳技术.北京:科学出版社, 2001
    郝林华,王晓滨,陈靠山,李光友.功能性寡糖的研究进展与应用.饲料工业,2005,12期。
    金树人,李瑛.高纯果糖与结晶果糖的研制.淀粉与淀粉糖, 1999, (4) : 17- 20。
    李晶,赵晓祥,沙长青等.甲醇酵母基因表达系统的研究进展.生物工程进展, 1999,19(2):17-20
    罗英,李俊刚,易林.激光复合诱变黑曲霉原生质体选育热稳定性菊粉酶高产菌.四川师范大学学报,1998 ,21 (5) :581-586
    欧阳立明,张惠展,张嗣同.巴斯德毕赤酵母的基因表达系统研究进展.生物化学与生物物理进展,2000,27(2):151-154
    萨姆布鲁克著,黄培堂译,分子克隆实验指南(第三版).北京:科学出版社;2002
    苏纪兰,李炎,王启.我国21世纪海洋科学研究中的若干重要问题.地球科学进展, 2001, 15 (5) : 658– 663
    孙枢,李晓波.我国资源与环境科学近期发展战略.地球科学进展, 2001, 16 (5) : 726– 733
    王惠莲,宋国勇,李虹.黑曲霉Aspergillus niger No.26菊粉酶的研究. 食品与发酵工业,1994,3:16-20
    王静,金征宇.微生物菊粉酶的研究进展.生物技术,2002,12:42-45.
    魏文铃,刘三震,叶剑敏,等.青霉菌( Penicillium sp. 9124)合成菊粉酶的调节.厦门大学学报,1998 ,37(4) :582-588
    严慧如,黄绍华,余迎利.菊糖的提取、性质和应用,西部粮油科技,2001年第26卷第五期
    杨晟,黄鹤,章如安。重组人血清蛋自在Pichia pastoris中分泌表达影响因素的研究。生物工程学报2000,16 (6):675-678
    诸以文.微生物培养基优化方法及其OPTI优化软件,国外医药抗生素杂志分册,1999, 20(2):58-61
    郑建仙.功能性食品.北京:中国轻工工业出版社,1995. 120 - 131.