海洋酵母菌种资源库的建立及特殊类型海洋酵母菌的多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验室近年来从不同海洋环境中分离得到了551株酵母菌,经鉴定发现这些酵母菌分别属于22个属、58个种,并以此为基础建立了我国第一个海洋酵母菌种资源库,为每株酵母菌建立了电子档案。通过与中国海洋微生物菌种保藏管理中心合作实现了资源库内所有海洋酵母菌种的实物共享与信息共享,为研究者提供资源支撑平台。
     通过对本实验室保藏的海洋酵母菌种资源库中的酵母菌进行筛选,我们发现9株海洋酵母菌在含有橄榄油的培养基中能产脂肪酶。经过常规生理生化鉴定和分子生物学方法鉴定,这9株酵母菌分别属于间型假丝酵母(Candida intermedia),季也蒙毕赤酵母(Pichia guilliermondii),近平滑假丝酵母(Candida parapsilosis),长孢洛德酵母(Lodderomyces elongisporus),桔假丝酵母(Candida quercitrusa),普鲁兰短梗霉(Aureobasidium pullulans),解脂耶罗维亚酵母(Yarrowia lipolytica),胶红酵母(Rhodotorula mucilaginosa)和褶皱假丝酵母(Candida rugosa)。这些酵母菌所产的脂肪酶的最适作用pH值介于6.0-8.5之间,最适作用温度分别为35℃和40℃。本研究中的大多数酵母菌产的脂肪酶是与细胞壁结合的,只有普鲁兰短梗霉HN2.3产的脂肪酶只胞外酶。一些酵母菌株产的脂肪酶可以高效地水解不同的油脂,这表明这些菌株在工业上具有潜在的应用价值。
     通过对本实验室保藏的海洋酵母菌种资源库中的酵母菌进行筛选,我们发现17株海洋酵母菌能够向培养基中分泌嗜杀因子,从而杀死梭子蟹的一种致病菌——二尖梅奇酵母(Metschnikowia bicuspidate)WCY。其中有5株酵母菌(WC91-2,gao1zhong2,YF07b,hcx-1和HN2.3)的嗜杀活力比较高。常规生理生化鉴定和分子生物学鉴定的结果表明,这5株酵母菌分别属于土星拟威尔酵母(Williopsis saturnus),季也蒙毕赤酵母(Pichia guilliermondii),异常毕赤酵母(Pichia anomala),汉逊德巴利酵母(Debaryomyces hansenii)和普鲁兰短梗霉(Aureobasidium pullulans)。我们发现并不是所有的嗜杀因子的最适生产条件和嗜杀因子的最适作用条件与海洋环境及梭子蟹的养殖环境条件相一致。我们还发现由这些酵母菌所产的嗜杀因子能够杀死除了致病酵母WCY之外的其他酵母菌,而且培养基中的NaCl浓度对嗜杀作用有影响。所有的由这些酵母菌所产的嗜杀因子粗酶液均可以水解海带多糖,水解的终产物均为单糖。
     我们发现从中国东海分离得到的一株海洋酵母菌W14-3能够产核黄素。有趣的是,这株海洋酵母菌在振荡培养的条件下在分别含有木糖、蔗糖、半乳糖和麦芽糖的培养基中能够分泌大量的核黄素。经过常规生理生化鉴定和分子生物学方法鉴定,这株酵母菌是膜醭假丝酵母(Candida membranifaciens)的一个新亚种——Candida membranifaciens subsp. flavinogenie。这株菌中与核黄素生物合成有关的4个基因(分别编码GTP去环化酶II、DRAP脱氨基酶、3,4-二羟基-2-丁酮-4-磷酸合成酶及2,4-二氧四氢蝶啶合成酶)的部分序列被克隆,由这些基因序列推导出的氨基酸序列分别与其它酵母菌中的相关蛋白的氨基酸序列具有高度同源性。培养基中存在Fe3+离子会抑制核黄素的合成并抑制核黄素生物合成途径中相关基因的转录。该实验结果证明了海洋酵母菌W14-3中存在核黄素生物合成途径。这是首个关于从海洋环境中分离得到的C. membranifaciens subsp. flavinogenie W14-3产核黄素的报道。
Total 551 marine yeast strains from different marine environments were obtained. The results of routine identification and molecular methods show that they belonged to 22 genera, 58 species. The Marine Yeast Culture Collection, which was the first yeast culture collection in China, was established basing on these strains. An electronic file for each strain was recorded. All the information and strains collected can be shared at the website http://www.mccc.org.cn/ and the collection center.
     After lipase activity of the yeast cultures was estimated, we found that nine yeast strains obtained in the Marine Yeast Culture Collection grown in the medium with olive oil could produce lipase. The results of routine identification and molecular methods show that they belonged to Candida intermedia YA01a, Pichia guilliermondii N12c, Candida parapsilosis 3eA2, Lodderomyces elongisporus YF12c, Candida quercitrusa JHSb, Candia rugosa wl8, Yarrowia lipolytica N9a, Rhodotorula mucilaginosa L10-2 and Aureobasidium pullulans HN2.3, respectively. The optimal pHs and temperatures of lipases produced by them were between 6.0 and 8.5 and between 35 and 40℃, respectively. Majority of lipases from the yeast strains were cell-bound and only lipase from A. pullulans HN2.3 was extracellular. Some lipases from the yeast strains could actively hydrolyse different oils, indicating that they may have potential applications in industry.
     After killer toxin activity of the yeast cultures was determined, we found that 17 strains obtained in the Marine Yeast Culture Collection could secrete killer toxin into the medium and killed the pathogenic yeast Metschnikowia bicuspidate WCY in crab. However, only five strains (WC91-2,gao1zhong2,YF07b,hcx-1 and HN2.3) among them had higher killer toxin activity against the pathogenic yeast than others. The results of routine identification and molecular methods show that the five yeast strains belonged to Williopsis saturnus WC91-2, Pichia guilliermondii gao1zhong2, Pichia anomala YF07b, Debaryomyces hansenii hcx-1 and Aureobasidium pullulans HN2.3, respectively. We found that not all the optimal conditions for killer toxin production and action of killer toxin by the marine killer yeasts were in agreement with those of marine environments and for crab cultivation. It was found that the killer toxins produced by the killer yeast strains could kill other yeasts in addition to the pathogenic yeast and NaCl concentration in the medium could change killing activity spectra. All the crude killer toxins produced by them could hydrolyze laminarin and the hydrolysis end products were monosaccharides.
     We found that the marine yeast strain W14-3 isolated from seawater of China Eastern Sea could produce riboflavin. It is interesting to observe that the marine yeast strain produced a large amount of riboflavin in the medium containing xylose, sucrose, galactose and maltose, respectively under the conditions of vigorous shaking. The yeast strain was found to belong to Candida membranifaciens subsp. flavinogenie based on the results of routine and molecular identification. The protein sequences deduced from the partial genes encoding GTP cyclohydrolase II, DRAP deaminase, 3,4-dihydroxy-2-butanone -4-phosphate synthase and lumazine synthase in the yeast exhibited high identity with those of the corresponding enzymes for riboflavin biosynthesis in other yeasts, respectively. Fe3+ available in the medium repressed riboflavin production and expression of the genes responsible for riboflavin biosynthesis in the yeast. The results have evidenced that riboflavin synthesis pathway indeed existed in the yeast. This is the first time to report that C. membranifaciens subsp. flavinogenie W14-3 from the marine environment could produce riboflavin.
引文
Akiba S, Kimura Y, Yamamoto K, et al. (1995) Purification and characterization of a protease-resistant cellulase from Aspergillus niger. J Ferment Bioeng 79:125–30.
    Alongi DM (1987) The distribution and composition of deep-sea microbenthos in a bathyal region of the western Coral Sea. Deep Sea Res 34:1245–1254
    Alongi DM (1992) Bathymetric patterns of deep-sea benthic communities from bathyal to abyssal depths in the western South Pacific (Solomon and Coral Seas). Deep Sea Res 39:549–565
    Arella F, Lahely S, Bourguignon J, Hasselmann C (1996) Liquid chromatographic determination of vitamins B1 and B2 in foods: a collaborative study. Food Chem 56: 81-86.
    Bacher A (1991) Biosynthesis of flavins. In: Muller F Chemistry and biochemistry of flavoenzymes, vol 1. CRC, Boca Raton, pp 215-259
    Barnett JA, Payne RW, Yarrow D (2000) YEASTS, Characteristics and identification, Third Edition. Cambridge University Press.
    BASF (1996) Vitamin B2 production comes to Ludwigshafen. Press Release P 462, 11.8.96 Bigelis R (1989) Industrial products of biotechnology: application of gene technology. In: Rehm HJ, Reed G Biotechnology, vol 7b. VCH, Weinheim, p 243
    Bindu S, Somashekar D, Joseph R (1998) A comparative study on permeabilization treatments for in situ determination of phytase of Rhodotorula gracilis. Letters in Applied Microbiology, 27: 336–340.
    Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72: 248–253.
    Buchan A, Newell SY, Moreta JI, Moran MA (2002) Analysis of internal transcribed spacer (ITS) regions of rRNA genes in fungal communities in a southeastern U.S. salt marsh. Microb Ecol 43:329–340
    Burnett BR (1981) Quantitative sampling of nanobiota (microbiota) of the deep-sea benthos-III. The bathyal San Diego Trough. Deep-sea Res 28A:647–663
    Buzzini P, Rossi J (1998) Semi-continuous and continuous riboflavin production by Candida tropicalis in concentrated rectified grate calcium-alginate–immobilized must. World JMicrobiol Biotechnol 14: 377-381.
    Chen SC et al (2003) Metschnikowia bicuspidata and Enterococcus faecium co-infection in the giant freshwater prawn Macrobrachium rosenbergii. Dis Aquat Organ 55:161–167
    Chi Z, Liu J, Li J,et al. (2003) Enhanced conversion of starch to trehalose by a mutant of Saccharomycopsis fibuligera. J Biotechnol, 1022:135–41.
    Chi Z, Ma C, Wang P, Li H (2007) Optimization of medium and cultivation conditions for alkaline protease production by the marine yeast Aureobasidium pullulans. Biores Technol, 98: 534-538.
    Chi Z, Zhao S (2003) Optimization of medium and cultivation conditions for pullulan production by a new pullulan-producing yeast. Enzyme Microb Technol 33: 206–221.
    Chi ZM, Liu J, Ji JR, Meng Z (2001) Trehalose accumulation from starch by Saccharomycopsis fibuligera sdu, Enzyme Microb Technol, 28: 240-245.
    Chi ZM, Liu ZQ, Gao LM, Gong F, Ma CL, Wang XH, Li HF (2006) Marine yeasts and their applications in mariculture. J Ocean Univer China 5: 251-256.
    Chi ZM, Ma CL, Wang P, Li HF (2007) Optimization of medium and cultivation conditions for alkaline protease production by the marine yeast Aureobasidium pullulans. Biores Technol 98, 534-538
    Chi ZM., Liu Z, Gao L, Gong F, Ma C, Wang X, Li H (2006) Marine yeasts and their applications in mariculture. J Ocean Univ China 5: 251-256.
    Comitini F, De JI, Pepe L, Mannazzu I, Ciani M (2004) Pichia anomala and Kluyveromyces wickerhamii killer toxins as new tools against Dekkera/Brettanomyces spoilage yeasts. FEMS Microbiol Lett 238, 235–240
    Cowart RE, Marquardt MP, Foster BG (1980) The removal of iron and other trace elements from a complex bacteriological medium. Microbiol Lett 13: 117–122.
    De Araujo FV, Soares CA, Hagler AN, Mendon?a-Hagler LC (1995) Ascomycetous yeast communities of marine invertebrates in a southeast Brazilian mangrove ecosystem. Antonie van Leeuwenhoek 68:91–99
    Eggersdorfer M, Adam G, John M, Hahnlein W, Labler L, Baldenius RU, Bussche-Hunnefeld L, Hilgemann E, Hoppe P, Sturmer R, Weber F, Ruttimann A, Moine G, Hohmann HP, Kurth R, Paust J, Pauling H, Kaesler B, Oster B, Fechtel U, Kaiser K, Potzolli B, Cassut M, Koppe T,Schwarz M, Weimann BJ, Henngartner U, Saizieu AE, Wehrli C (1996) Vitamins, chapter. In: Ullmann's encyclopedia of industrial chemistry. VCH, Weinheim, A27: 443-613
    Fell JW (1976) Yeasts in oceanic regions. In: Jones EBG Recent advances in aquatic mycology. Elec, London, pp 93–124
    Fell JW, Ahearn DG, Meyers SP, Roth FJ Jr (1960) Isolation of yeasts from Biscayne Bay, Florida and adjacent benthic areas. Limnol Oceanogr 5:366–371
    Fell JW, van Uden N (1963) Yeasts in marine environments. In: Oppenheimer CH Symposium on marine microbiology. Thomas, Springfield, IL, pp 329–340 258 Takahiko Nagahama
    Felsenstein J (1995) PHYLIP (Phylogenetic Inference Package), Version 3.75. Distributed by author, Department of Genetics, University of Washinton, Seattle, WA.
    Fayura LR, Fedorovych DV, Prokopiv TM, Boretsky YR, Sibirny AA (2007) The pleiotropic nature of rib80, hit1, and red6 mutations affecting riboflavin biosynthesis in the yeast Pichia guilliermondii. Microbiol 76: 55–59.
    Fu XY, Xue CH, Miao BC, Li ZT, Gao X, Yang WG (2005) Characterization of protease from the digestive tract of sea cucumber (Stichopus japonicus): high alkaline protease activity. Aquaculture 246: 321–329.
    Gadanho M, Almeida JM, Sampaio JP (2003) Assessment of yeast diversity in a marine environment in the south of Portugal by microsatellite-primed PCR. Antonie van Leeuwenhoek 84:217-2-27
    Gao LM, Chi ZM, Sheng J, et al. (2007) Inulinase-producing marine yeasts: evaluation of their diversity and inulin hydrolysis by their crude enzymes. Microbial Ecology 54: 722-729.
    Gong F, Sheng J, Chi ZM, Li J (2007) Inulinase production by a marine yeast Pichia guilliermondii and inulin hydrolysis by the crude inulinase. J Ind Microbiol Biotechnol 34,179–185
    Haefner S, Knietsch A, Scholten E, et al. (2005) Biotechnological production and applications of phytases. Applied Microbiology and Biotechnology, 68: 588–597.
    Hagler AN, Ahearn DG (1987) Ecology of aquatic yeasts. In: Rose AH, Harrison JS The yeasts, vol 2, Yeasts and the environment. Academic, London, pp 181–205
    Hagler AN, de Oliveira RB, Mendon?a-Hagler LC (1982) Yeasts in the intertidal sediments of a polluted estuary in Rio de Janeiro, Brazil. Antonie van Leeuwenhoek 48:53–56
    Hagler AN, Mendon?a-Hagler LC (1981) Yeasts from marine and estuarine waters with different levels of pollution in the state of Rio de Janeiro, Brazil. Appl Environ Microbiol 41:173–178
    Hagler AN, Rosa CA, Morais PB, Mendon?a-Hagler LC, Franco GMO, Araujo FV, Soares CAG (1993) Yeasts and coliform bacteria of water accumulated in bromeliads of mangrove and sand dune ecosystems of southeast Brazil. Can J Microbiol 39:973–977
    Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Technol, 39: 235–251.
    Heefner D, Weaver CA, Yarus MJ, Burdzinski LA, Gyure DC, Foster EW (1988) Riboflavin producing strains of microorganisms, method for selecting, and method for fermentation. Patent WO 88/09822
    Hernandez-Saavedra NY, Hernandez-Saavedra D, Ochoa JL (1992) Distribution of Sporobolomyces (Kluyver et van Niel) Genus in the Western Coast of Baja California Sur, Mexico. Syst Appl Microbiol 15:319–322
    Hirimuthugoda NY, Chi Z, Li X, Wang L, Wu L (2006) Diversidad de levaduras marinas productoras de fitasas,Diversity of phytase-producing marine yeast. Ciencias Marinas, 32(4): 673-682.
    Hube B, Monod M, Schofield, et al. (1994) Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Mol Microbiol, 14: 87-99.
    Humbelin M, Griesser V, Keller T, Schurter W, Haiker M, Hohmann HP, Ritz H, Richter G., Bacher A, van Loon A (1999) GTP cyclohydrolase II and 3,4-dihydroxy-2-butanone 4-phosphate synthase are rate-limiting enzymes in riboflavin Bacillus subtilis strain used for synthesis of an industrial riboflavin production. J Indu Microbiol Biotechnol 22: 1–7.
    Ikeda Y, Park EY, Okida N (2006) Bioconversion of waste office paper to gluconic acid in a turbine blade reactor by the filamentous fungus Aspergillus niger. Bioresour Technol 97: 1030-1035.
    Kalingan AE, Liao CM (2002) Influence of type and concentration of flavinogenic factors on production riboflavin by Eremothecium ashbyii NRRL 1363. Bioresour Technol 82: 219-224.
    Kamada M, Oda K, and Murao S (1972) The purification of the extracellular acid protease of Rhodotorula glutinis K-24 and its general properties. Agric Biol Chem 36: 1095-1101.
    Karos M, Vilarino C, Bollschweiler C, Revuelta JL (2004) A genome-wide transcription analysisof a fungal riboflavin overproducer. J Biotechnol 113: 69–76.
    Kaur N, Gupta AK (2002) Applications of inulin and oligofructose in health and nutrition. J Biosci 27: 703–714.
    Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies on nucleotide sequences. J Mol Evol 2: 87–90.
    Kocabiyik S, Ozel H (2007) An extracellular-Pepstatin insensitive acid protease produced by Thermoplasma volcanium. Biores Technol, 98:112–117.
    Kohlmeyer J, Kohlmeyer E (1979) Marine mycology: the higher fungi. Academic, New York, pp 556–606
    Kudanga T, Mwenje E (2005) Extracellular cellulase production by tropical isolates of 479 Aureobasidium pullulans. Microbiol 51:773-776.
    Kurmar CG., Tagaki H (1999) Microbial alkaline protease: from bioindustrial Viewpoint. Biotechnol Adv 17:561–594.
    Kurth R, Paust W, Haenlein W (1996) Vitamins, Chapter 7. In: Ullmann's encyclopedia of industrial chemistry. VCH, Weinheim, A27: 521-530
    Kurtzman CP, Fell JW (2000) In: The yeasts. A taxonomic Study, Fouth Revised and enlarged edn. (Kurtzman, CP and Fell JW, Ed.), p 77-947. Elsevier. Amsterdam, Lausanne, New York, Oxford, Shannon, Singapore, Tokyo.
    Lachance M-A, Starmer WT (1998) Ecology and yeasts. In: Kurtzman CP, Fell JW The yeasts, a taxonomic study, 4th edn. Elsevier, Amsterdam, The Netherlands, pp 21–30
    Lago BD, Kaplan L (1981) Vitamin fermentations: B2 and B12. Adv Biotechnol 3: 241-246
    Li HF, Chi ZM (2006) Amylase production by the Marine Yeast Aureobasidium pullulans N13d. Journal of Ocean University of China, 5(3): 251-256.
    Li HF, Chi ZM, Wang XH, Duan XH, Ma LY, Gao LM (2007) Purification and characterization of extracellular amylase from the marine yeast Aureobasidium pullulans N13d and its raw potato starch digestion. Enzyme Microb Tech 40, 1006–1012
    Li XY, Chi ZM, Liu ZQ, et al. (2008) Purification and Characterization of Extracellular Phytase from a Marine Yeast Kodamaea ohmeri BG3. Marine Biotechnology, 10 (3): 190–197.
    Li XY, Chi ZM, Liu ZQ, et al. (In press) Phytase Production by a Marine Yeast Kodamaea Ohmeri BG3. Appl Biochem Biotechnol.
    Libkind D, Brizzio S, Ruffini A, Gadanho M, van Broock M, Sampaio JP (2003) Molecular characterization of carotenogenic yeasts from aquatic environments in Patagonia, Argentina. Antonie van Leeuwenhoek 84:313–322
    Liu ZQ, Chi ZM, Wang L, et al. (In press) Production,purification and characterization of an extracellular lipase from Aureobasidium pullulans HN2.3 with potential application for the hydrolysis of edible oils. Biochemical Engineering Journal.
    Llorente P, Marquina D, Santos A, Peinado JM, Spencer-Martins I (1997) Effect of salt on the killer phenotype of yeasts from olive brines. Appl Environ Microbiol 63, 1165–1167
    Lotti M, Monticelli S, Montesinos JL, Brocca S, Valero F, Lafuente J (1998) Physiological control on the expression and secretion of Candida rugosa lipase. Chem Phys Lipids 93: 143–148.
    Lu CC, Tang KFJ, Chen SN (1998) Identification and genetic characterization of yeasts isolated from freshwater prawns, Macrobrachium rosenbergii de Man, in Taiwan. J Fish Dis 21:185
    Ma CL, Ni XM, Chi ZM, et al. (2007) Purification and characterization of an alkaline protease from the marine yeast Aureobasidium pullulans for bioactive peptide production from different sources. Mar Biotechnol 9: 343–351.
    Maddox IS, Hough JS (1970) Proteolytic enzymes of Saccharomyces carlsbergensis. Biochem J, 117: 843- 852.
    Magliani W, Conti S, Gerloni M, Beretolotti D, Luciano PL (1997) Yeast killer systems. Clin Microbiol Rev 10, 369–400
    Magliani W, Conti S, Gerloni, et al. (1997) Yeast killer systems. Clin Microbiol, 10: 369–400.
    Marquina DB, Santos A, Peinado JM (2001) Production and characteristics of Debaryomyces hansenii killer toxin. Microbiol Res 156, 387–391.
    Mayer AF, Hellmuth K, Schlieker H, Lopez-Ulibarri R, Oertel S, Dahlems U, et al. (1999) Exchanging the active site between phytases for altering the functional properties of the enzyme. Biotechnology and Bioengineering, 63: 373–381.
    Meade RE, Pollard HL, Rodgers NE (1947) U.S. Patent 2,433,680
    Mendon?a-Hagler LC, Hagler AN, Kurtzman CP (1993) Phylogeny of Metschnikowia species estimated from partial rRNA sequences. Int J Syst Bacteriol 43:368–373
    Messner R, Prillinger HJ, Ibl M, et al. (1995) Sequences of ribosomal genes and internal transcribed spacers move three plant parasitic fungi, Eremothecium ashbyi, Ashbya gossypii,and Nematospora coryli, towards Saccharomyces cerevisiae. J Gen Appl Microbiol 41: 31-42
    Meyers SP, Ahearn DG, Alexander SK, Cook WL (1975) Pichia spartinae, a dominant yeast of the Spartina salt marsh. Dev Ind Microbiol 16:262–267
    Muèller F, Ghisla S, Bacher A (1988) Vitamin B2 und naturliche Flavine. In: Isler O, Brubacher G, Ghisla S, Krautler B (eds) Vitamine II. Thieme, Stuttgart, pp 50-142
    Murashima K, Nishimura T, Nakamura Y, et al. (2002) Purification and characterization of new endo-1,4-β-D-glucanses from Rhizopus oryzae. Enzyme Microb Technol 30: 319–326.
    Nagahama T, Hamamoto M, Nakase T, Horikoshi K (1999) Kluyveromyces nonfermentans sp. nov., a new yeast species isolated from the deep sea. Int J Syst Bacteriol 49:1899–1905
    Nagahama T, Hamamoto M, Nakase T, Horikoshi K (2001a) Rhodotorula lamellibrachii sp. nov., a new yeast species from a tubeworm collected at the deep-sea floor in Sagami bay and its phylogenetic analysis. Antonie van Leeuwenhoek 80:317–323
    Nagahama T, Hamamoto M, Nakase T, Horikoshi K (2003a) Rhodotorula benthica sp. nov. and Rhodotorula calyptogenae sp. nov., novel yeast species from animals collected from the deep-sea floor, and Rhodotorula lysiniphila sp. nov., which is related phylogenetically. Int J Syst Evol Microbiol 53:897–903
    Nagahama T, Hamamoto M, Nakase T, Takaki Y, Horikoshi K (2003b) Cryptococcus surugaensis sp. nov., a novel yeast species from sediment collected on the deep-sea floor of Suruga Bay. Int J Syst Evol Microbiol 53:2095–2098
    Nagahama T, Hamamoto M, Nakase T, Takami H, Horikoshi K (2001b) Distribution and identification of red yeasts in deep-sea environments around the northwest Pacific Ocean. Antonie van Leeuwenhoek 80:101–110
    Nagahama, T (2006) Yeast biodiversity in freshwater, marine and deep-sea environments. In: Biodiversity and Ecophysiology of Yeasts, The Yeast Handbook, Springer Berlin Heidelberg. pp: 241-269
    Nakamura T, Suzuki T, Tokuda, et al. (1999) Secretory manufacture of Schwanniomyces occidentalis phytase using a Candida boidinii host. Euro Patent Application EP: 931, 837.
    Ndaw S, Bergaertzle M, Aoude-werner D, Hasselmann C (2000) Extraction procedures for the liquid chromatographic determination of thiamin, riboflavin and vitamin B in foodstuffs. Food Chem 71: 129-138.
    Ni XM, Chi ZM, Ma CL, et al. (In press) Cloning, Characterization, and Expression of the Gene Encoding Alkaline Protease in the Marine Yeast Aureobasidium pullulans 10. Mar Biotechnol.
    Pagnocca FG, Mendon?a-Hagler LC, Hagler AN (1989) Yeasts associated with the white shrimp Penaeus schmitti, sediment, and water of Sepetiba Bay, Rio de Janeiro, Brasil. Yeast 5:S479–S483
    Pandey A, Szakacs G., Soccol CR, et al. (2001) Production, purification and properties of microbial phytases. Bioresource Technology, 77:203–214.
    Perkins JB, Sloma A, Hermann T, Theriault K, Zachgo E, Erdenberger T, Hannett N, Chatterjee NP, Williams V, Rufo GA, Hatch R, Pero J (1999) Genetic engineering of Bacillus subtilis for the commercial production of riboflavin. J Ind Microbiol Biotechnol 22: 8-18
    Perlman D (1979) Microbial Process for riboflavin production. In: Microbial technology, vol I. ed. H.J. Pepplev & D. Pevlman, Academic Press, New York pp 521-527
    Praphailong W, Gestel MV, Fleet GH, Heard GM (1997) Evaluation of the Biolog system for the identification of food and beverage yeasts. Lett Appl Microbiol 24: 455–459.
    Revuelta DJL, Buitrago SMJ, Santos GMA (1995) Riboflavin synthesis in fungi. Patent WO 9526406-A
    Roche (1998) Roche Media Release, Basel, April 23. Frankfurter Allgemeine Ztg 25.4.98
    Sabry SA, El-Refal AH, Gamati SY (1989) Physiological study on riboflavin production by a hydrocarbon-utilizing culture of Candida guilliermondii Wickerham. J Islamic Acad Sci 2: 27-30.
    Sambrook J, Fritsch EF, Maniatis T (1989) In: Molecular cloning: a laboratory manual, 2nd Edition, pp. 367-370. Cold Spring Harbor Laboratory Press, Beijing, (Chinese translating ed.). Sano K, Fukuhara H, Nakamura Y (1999) Phytase of the yeast Arxula adeninivorans. Biotechnology Letters, 21: 33–38.
    Santos A, Marquina D, Leal JA, Peinado JM (2000) (1,6)-β-D-glucan as cell wall receptor for Pichia membranifaciens killer toxin. Appl Environ Microbiol 66, 1809–1813
    Santos A, Sánchez A, Marquina D (2004) Yeasts as biological agents to control Botrytis cinerea. Microbiological Research 159: 331-338.
    Schmitt MJ, Breinig F (2002) The viral killer system in yeast: from molecular biology toapplication. FEMS Microbiol, 26:57-276.
    Schmitt MJ, Breinig F (2002) The viral killer system in yeast: from molecular biology to application. FEMS Microbiol Rev 26, 57–276.
    Sharma R, Chistib Y, Banerjee UC (2001) Production, purification, characterization and applications of lipases. Biotechnol Adv, 19: 627–662.
    Sheng J, Chi ZM, Li J, et al. (2007) Inulinase production by the marine yeast Cryptococcus aureus G7a and inulin hydrolysis by the crude inulinase. Process Biochemistry 42: 805-811.
    Silva SV, Malcata FX (2005) Caseins as source of bioactive peptides. Intern Dairy J 15: 1–15.
    Soares CAG, Maury M, Pagnocca FC, Araujo FV, Mendon?a-Hagler LC, Hagler AN (1997) Ascomycetous yeasts from tropical intertidal dark mud of southeast Brazilian estuaries. J Gen Appl Microbiol 43:265–272
    Stahmann KP, Revuelta JL, Seulberger H (2000) Three biotechnical processes Ashbya gossypii, Candida famata or Bacillus subtilis compete with using chemical riboflavin production. Appl Microbiol Biotechnol 53: 509-516.
    Sugita T, Takashima M, Kodama M, Tsuboi R, Nishikawa A (2003) Description of a new yeast species, Malassezia japonica, and its detection in patients with atopic dermatitis and healthy subjects. J Clin Microbiol, 40: 4695–4699.
    Sugita T, Takashima M, Kodama M, Tsuboi R, Nishikawa A (2003) Description of a new yeast species Malassezia japonica, and its detection in patients with atopic dermatitis and healthy subjects. J Clini Microbiol 41: 4695–4699.
    Vakhlu J, Kour A (2006) Yeast lipases: enzyme purification, biochemical properties and gene cloning. E J Biotechnol, 9: 1-17.
    Vakhlu J, Kour A (2006) Yeast lipases: enzyme purification, biochemical properties and gene cloning. E J Biotechnol, 9: 1-17.
    van Loon APGM, Hohmann HP, Bretzel W, Humbelin M, Pfister M (1996) Development of a fermentation process for the manufacture of riboflavin. Chimica 50: 410-412
    Vandamme EJ (1992) Production of vitamins, coenzymes and related biochemicals by biotechnological processes. J Chem Tech Biotechnol 53: 313-327
    Vohara A, Satyanarayana T (2004) A cost effective molasses medium for enhanced cell bound phytase production by Pichia anomala. Journal of Applied Microbiology, 97: 471–476.
    Volz PA, Jerger DE, Wurzburger AJ, Hiser JL (1974) A preliminary survey of yeasts isolated from marine habitats at Abaco Island, The Bahamas. Mycopathol Mycol Appl 54:313–316
    Wang L, Chi ZM, Wang XH, et al. (2007) Diversity of lipase-producing yeasts from marine environments and oil hydrolysis by their crude enzymes. Annals Microbiol, 57(4): 495-501.
    Wang X, Chi Z, Yue L, Li J (2007b) Purification and Characterization of Killer Toxin from a Marine Yeast Pichia anomala YF07b Against the Pathogenic Yeast in Crab. Curr Microbiol, 55:396–401.
    Wang XH, Chi ZM, Li J (2007a) Isolation and identification of a marine yeast Pichia anomala YF07b against the pathogenic yeast in crab.海洋学报, 26(6): 101-108.
    Wang XH, Chi ZM, Yue LX, et al. (2007) A marine killer yeast against the pathogenic yeast strain in crab (Portunus trituberculatus) and an optimization of the toxin production. Microbiological Research, 162: 77-85.
    Wen Z, Liao W, Chen S (2005) Production of cellulase by Trichoderma reesei from dairy manure. Bioresour Technol 96: 491-499.
    Wendland J, Walther A (2005) Ashbya gossypii: A model for fungal development biology. Nat Rev Microbiol 5: 421-429.
    Wickerham LJ, Flickinger MH, Johnsten RM (1946) The production of riboflavin by Ashbya gossypii. Arch Biochem 9: 95-98
    Wu XY, Jaaskelainen S, Linko Y (1996) An investigation of crude lipase for hydrolysis, esterization and transesterification. Enzyme Microb Technol, 19: 226-231.
    Xu WJ (2005) Studies on milky disease in crab. Master thesis. Ocean University of China 1-42.
    Xu WJ, Xu HX, Jin HW (2003) Studies on milky disease of Portunus trituberculatus. J Oceanol Zhejiang Province 3: 209-213.
    Zhang L, Chi ZM, Li J, et al. (In press) Cellulase production, purification and characterization of a new CMCase from the marine yeast Aureobasidium pullulans 98 and its CMC digestion. Journal of Ocean University of China.
    
    管华诗,海洋生物基因与生物工程技术.北京:海洋出版社,2001,p 17-21。
    郭尧君,蛋白质电泳技术,北京:科学出版社, 2001。
    刘志国,屈伸,基因克隆的分子基础与工程原理,化学出版社;2003。
    姜瑞波.微生物菌种资源描述规范,北京:中国农业科学技术出版社, 2001。
    靖德兵,李培军,台培东,刘宛,巩宗强彩绒革盖菌固体发酵生产木质素酶工艺优化研究。微生物学通报,2004,31:19-23。
    萨姆布鲁克著,黄培堂译,分子克隆实验指南(第三版);北京:科学出版社;2002
    史兆兴,简并PCR及其应用,生物技术通讯,2004,15:172-175。
    王洪振,周晓馥,宋朝霞,刘文广,曾宪录,简并PCR技术及其在基因克隆中的应用,遗传,2003,25:201-204。
    魏述众,生物化学,1996,中国轻工业出版社。
    周宇光.中国菌种目录,北京:化学工业出版社, 2007。