海洋细菌(Agarivorans albus YKW-34)产生的褐藻胶裂解酶及琼胶酶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从韩国东海岸的蝾螺(Turbinidae batillus cornutus)肠道中筛选出的菌株YKW-34,能够有效降解一些褐藻和红藻的细胞壁多糖。通过分析其16S rRNA基因序列,将该菌株鉴定为Agarivorans albus,命名为Agarivorans albus YKW-34 (中文名暂定为白色琼胶贪食菌YKW-34)。A. albus YKW-34在其生长培养基marine broth中不产生多糖降解酶;但在以多糖作为碳源的培养基中可产生1种褐藻胶裂解酶和2种琼胶酶。本研究旨在对A. albus YKW-34产生的褐藻胶裂解酶和琼胶酶进行生产优化、分离纯化、性质研究及基因克隆,以便为两种酶的工业化应用提供理论依据和实践基础。
     通过单因子和正交实验,对A. albus YKW-34产褐藻胶裂解酶的培养条件进行了优化。结果表明,其最适碳源为海带粉0.5% (w/v),氮源为KNO3 0.1% (w/v),最佳种龄为12h,接种量为10%,最适培养基初始pH值为8.0,培养温度为25°C。在上述条件下,110rpm震荡培养48h,褐藻胶裂解酶产量达到最大值5U/ml。在发酵培养基中添加过量的多糖或单糖可抑制产酶;增加氮源的浓度或种类有利于菌株的生长,但也会抑制产酶。通过聚醚酰亚胺沉淀,阴离子交换、疏水及凝胶过滤色谱,进行了A. albus YKW-34产褐藻胶裂解酶的纯化。其回收率为7%,纯化倍数为25倍。SDS-PAGE和凝胶过滤色
     谱表明此酶由单一肽链组成,分子量为60kDa。等电聚焦实验表明其等电点为5.5-5.7。此酶的最适pH为7.0,在pH 7.0?10.0稳定;最适温度为30?40°C,低于50°C时稳定。此酶具有钠/钾离子依赖性。透析除去反应体系中钠/钾离子后,酶活力丧失;添加钠/钾离子后,酶活力可完全恢复。此酶对还原剂如β-巯基乙醇和DTT、金属离子络合剂如EDTA和EGTA具有耐受性;变性剂如SDS和尿素可使酶活力提高30%。底物专一性实验表明,此酶能同时降解甘露糖醛酸和古罗糖醛酸片断。
     通过单因子实验、Plackett-Burman设计及响应面设计实验,对A. albus YKW-34发酵产琼胶酶的条件进行了优化。单因子实验表明,最佳碳源和氮源分别为琼胶和酵母浸膏,最适培养温度为25°C。在此条件下,确定最适培养时间为12h。Plackett-Burman设
     计表明琼胶、酵母浸膏及初始pH三个因素对琼胶酶产量具有显著影响(P<0.05)。响应面设计实验确定此三个因素的最适水平为:琼胶0.23%,酵母浸膏0.27%,初始pH为7.81。经优化后,琼胶酶产量由0.23U/ml提高至0.87U/ml。用活性染色法对琼胶酶进行了原位测定,结果表明,琼胶酶为培养液中的主要蛋白质组分,其分子量约为50kDa。
     离子交换色谱表明,A. albus YKW-34能产生两种琼胶酶,将其分别命名为AgaA34和AgaB34,其中AgaA34产量为747U/l,AgaB34产量为83U/l。AgaA34进一步通过凝胶过滤色谱得以纯化。SDS-PAGE和凝胶过滤色谱表明此酶由单一肽链组成,分子量为50kDa。纯化的回收率为7%,纯化倍数为25倍。经测定,AgaA34的N端氨基酸序列为ASLVTSFEEA,与糖基水解酶家族50的琼胶酶相似;AgaB34的N端氨基酸序列为ADWDNIPIPAELDAG,与糖基水解酶家族16的琼胶酶相似。AgaA34的酶学性质分析表明,此酶的最适pH为8.0,在pH 6.0-11.0稳定;最适温度为40°C,在温度≤50°C时稳定。MALDI-TOF MS和13C NMR分析表明AgaA34的琼胶酶解产物为75mol%新琼二糖和25mol%新琼四糖。薄层色谱表明此酶能将新琼四糖降解为新琼二糖。以琼脂糖和新琼四糖为底物,此酶的催化效率分别为4.04×103和8.1×102s–1M–1。海水中的常见金属离子对AgaA34的酶活力无显著影响。此酶对SDS和尿素具有耐受作用;β-巯基乙醇和DTT可提高酶活力。
     本研究建立了A. albus YKW-34的基因组文库,并从此文库中克隆出琼胶酶基因(agaB34)。此基因长1362bp,编码453个氨基酸。根据同源性分析,判断其氨基酸序列1-23aa为信号肽,25-297aa为糖基水解酶家族16催化组件,316-452aa为碳水化合物结合组件。成熟蛋白的分子量预测为48,637Da,等电点预测为6.34。通过构建N端包含信号肽序列及C端镶嵌6个组氨酸的琼胶酶重组质粒,以大肠杆菌DH5α为宿主对该酶进行了重组表达。结果表明,重组琼胶酶(rAgaB34)可分泌至胞外,最高产量为1670U/l。rAgaB34可经亲和色谱进行一步纯化,回收率为80%,纯化倍数为15倍。rAgaB34分子量为49kDa,其终产物为新琼四糖。其结构域及终产物表明其属于糖基水解酶家族16成员。此酶的最适pH为7.0,在pH 5.0-9.0稳定;最适温度为30°C,在温度≤50°C时稳定。以琼脂糖为底物,此酶的比活力和催化效率分别为242U/mg和1.7×106s–1M–1。此酶对EDTA和EGTA、SDS和尿素及β-巯基乙醇和DTT具有耐受性。
A marine bacterium strain YKW-34 that degrades the cell wall of some seaweed including Laminaria japonica and Gelidium amansii was isolated from the gut of a turban shell. This strain was identified as Agarivorans albus based on 16S rRNA gene sequence analysis. This paper describes the optimization of production, purification, and characterization of an alginate lyase and an agarase, as well as gene cloning and expression of an agarase from this strain. The effects of medium composition and culture condition on the production of alginate lyase by A. albus YKW-34 were investigated using batch shake flasks. No alginate lyase was produced in the marine broth medium. After optimization, the activity of the alginate lyase reached 5 U/ml. The optimal production conditions for alginate lyase by A. albus YKW-34 were: inoculum volume, 10%; inoculum age, 12 h; initial pH of the medium, 8.0; culture temperature, 25°C; carbon source, 0.5% Laminaria powder; nitrogen source, 0.1% KNO3. Alginate could induce alginate lyase production, but not as efficient as did Laminaria powder. The addition of fucoidan, cellulose, and glucose had negative effect on the production of alginate lyase. Other kinds of nitrogen sources such as yeast extract, beef extract, and peptone affected positively the growth of the microorganism, but negatively the alginate lyase production. In addition, the optimal harvest time was 48 h based on the time course of alginate lyase production.
     An alginate lyase with high specific enzyme activity was purified from A. albus YKW-34 by in order of ion exchange, hydrophobic, and gel filtration chromatographies to homogeneity with a recovery of 7% and a fold of 25. It was composed of a single polypeptide chain with molecular mass of 60 kDa and isoelectric point of 5.5–5.7. The optimal pH and temperature for the activity of the alginate lyase were pH 7.0 and 40°C, respectively. It was stable over pH 7.0–10.0 and at temperature below 50°C. The enzyme had substrate specificity for both poly-guluronate and poly-mannuronate units. The kcat/Km value for alginate (heterotype) was 1.7×106 s-1M-1. The enzyme activity was completely lost by dialysis and restored by addition of Na+ or K+. The optimal activity exhibited in 0.1 M of Na+ or K+. This enzyme was resistant to denaturing reagents (SDS and urea), reducing reagents (β-mercaptoethanol and DTT), and chelating reagents (EGTA and EDTA).
     Effects of medium composition and culture conditions on agarase production by A. albus YKW-34 were investigated in shake flasks. Effects of carbon and nitrogen sources and culture temperature on agarase production were evaluated by one-factor-at-a-time design. Agar, yeast extract, and 25°C were found to be most suitable for agarase production. The most important nutritional components and culture conditions influencing agarase production were selected by Plackett-Burman design. Among the nine factors studied, agar, yeast extract, and initial pH had significant effect on agarase production. The optimum levels of these variables were further determined using a central composite design. The highest agarase production was obtained in the medium consisting of 0.23% agar and 0.27% yeast extract at initial pH 7.81. The whole optimization strategy resulted in the enhancement of agarase production from 0.23 U/ml to 0.87 U/ml. The activity staining of crude agarase preparation after electrophoresis revealed the presence of an agarase with molecular mass of 50 kDa.
     An extracellularβ-agarase, AgaA34, was purified from A. albus YKW-34 by ion exchange and gel filtration chromatographies to homogeneity with a recovery of 30% and a fold of 10. AgaA34 was composed of a single polypeptide chain with the molecular mass of 50 kDa. N-terminal amino acid sequencing revealed a sequence of ASLVTSFEEA, which exhibited a high similarity (90%) with those of agarases from glycoside hydrolase family 50. The pH and temperature optima of AgaA34 were pH 8.0 and 40°C, respectively. It was stable over pH 6.0–11.0 and at temperature below 50°C. Hydrolysis of agarose by AgaA34 produced neoagarobiose (75 mol%) and neoagarotetraose (25 mol%), whose structures were identified by MALDI-TOF MS and 13C NMR. AgaA34 cleaved both neoagarohexaose and neoagarotetraose into neoagarobiose. The kcat/Km values for agarose and neoagarotetraose were 4.04×103 and 8.1×102 s–1M–1, respectively. AgaA34 was resistant to denaturing reagents (SDS and urea). Metal ions were not required for its activity, while reducing reagents (β-Me and DTT) increased its activity by 30%.
     Aβ-agarase gene, agaB34, was functionally cloned from the genomic DNA of a marine bacterium Agarivorans albus YKW-34. The nucleotide sequence of agaB34 consisted of 1362 bp and encoded a protein of 453 amino acids. The deduced amino acid sequence, consisting of a typical N-terminal signal peptide followed by a glycoside hydrolase family 16 (GH-16) domain and a carbohydrate-binding module (CBM), showed 37–86% identity to those of known agarases in glycoside hydrolase family 16. The recombinant enzyme (rAgaB34) with a molecular mass of 49 kDa was produced extracellularly using Escherichia coli DH5αas a host. The purified rAgaB34 was aβ-agarase yielding neoagarotetraose (NA4) as the main product. It acted on neoagarohexaose to produce NA4 and neoagarobiose, while it could not further degrade NA4. The maximal activity of rAgaB34 was observed at 30°C and pH 7.0. It was stable over pH 5.0–9.0 and at temperature up to 50°C. Its specific activity and kcat/Km value for agarose were 242 U/mg and 1.7×106 s-1M-1, respectively. The activity of rAgaB34 was not affected by metal ions commonly existing in seawater. It was resistant to chelating reagents (EDTA, EGTA), reducing reagents (DTT,β-Me), and denaturing reagents (SDS and urea).
引文
[1]纪明侯.海藻化学.北京:科学出版社,1997
    [2] McHugh DJ. A guide to the seaweed industry. Rome, Italy: Food and Agriculture Organization of the United Nations, 2003
    [3]牟海津,江晓路,刘志鸿.利用微生物开发海洋多糖降解酶的研究.海洋科学,2003,27:10?14
    [4]刘翼翔,吴永沛.褐藻胶裂解酶在制备海洋寡糖中的应用.食品工业科技,2007,28: 220?222
    [5] Uchida M, Nakata K, Maeda M. Introduction of detrital food webs into an aquaculture system by supplying single cell algal detritus produced from Laminaria japonica as a hatchery diet for Artemia nauplii. Aquaculture 1997,154: 125–137
    [6]陈菊琦.活体生物酶分离石花菜原生质体的研究.厦门水产学院学报,1995,17:1?7
    [7]吴淑魁,罗进贤,陈海滨,等.固定化“双功能”酵母基因工程菌在酒精工业生产中的应用.酿酒科技,2004,122:61?64
    [8]龚毅,陈燕,杨胜利.非随机方法构建酿酒酵母基因工程菌.生物工程学报,1998,14:332?335
    [9]王志林,王捷,张宏斌,等.木瓜凝乳酶基因克隆及毕赤酵母分泌型重组表达载体构建.中国生化药物杂志,2004,35:74?77
    [10]李作为,张立彦,芮汉明,等.微生物来源的食品酶制剂的安全特性评价.食品工业科技,2005,26:172?174
    [11] Kurahashi M, Yokota A. Agarivorans albus gen. nov., sp. nov., aγ-proteobacterium isolated from marine animals. Int J Syst Evol Microbiol 2004,54: 693–697
    [12] Ohta Y, Hatada Y, Ito S, Horikoshi K. High-level expression of a neoagarobiose-producing beta-agarase gene from Agarivorans sp. JAMB-A11 in Bacillus subtilis and enzymic properties of the recombinant enzyme. Biotechnol Appl Biochem 2005, 41: 183–191
    [13] Lee DG, Park GT, Kim, NY; Lee EJ, Jang MK, Shin YG, Park GS, Kim TM, Lee JH, Lee JH, Kim SJ, Lee SH. Cloning, expression, and characterization of a glycoside hydrolase family 50β-agarase from a marine Agarivorans isolate. Biotechnol Lett 2006,28:1925–1932
    [14]杜宗军,赵苑,李美菊,等.青岛近海琼胶降解细菌的筛选和多样性分析.中国海洋大学学报,2007,37:277–282
    [15] Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST. Bergey's Manual of Determinative Bacteriology, 9th edn. Baltimore, MD, USA: Williams & Wilkins, 1994
    [16] Bold HC, Wynne MJ. Introduction to the algae. Englewood Cliffs, NJ, USA: Prentice-Hall, 1985.516
    [17] Davis TA, Volesky B, Mucci Alfonso. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 2003,37: 4311–4330
    [18] McHugh DJ. Production and utilization of products from commercial seaweeds. Rome, Italy: Food and Agriculture Organization of the United Nations, 2001
    [19] Ian WS. Polysaccharide lyases. FEMS Microbiol Revs 1995,16: 323–347
    [20] Kennedy L, McDowell K, Sutherland IW. Alginases from Azotobacter species. J General Microbiol1992,138: 2465–2471
    [21] Schiller NL, Monday SR, Boyd C, Keen NT, Ohman DE. Characterization of the Pseudomonas alginate lyase gene (algL): Cloning, sequencing and expression in Escherichia coli. J Bacteriol 1993,175: 780–789
    [22] Zhang ZQ, Yu GL, Guan HS, Zhao X, Du Y, Jiang X. Preparation and structure elucidation of alginate oligosaccharides degraded by alginate lyase from Vibrio sp. 510. Carbohydr Res 2004,339: 1475–1481
    [23]李京宝,于文功,韩峰,等.海洋弧菌褐藻胶裂解酶的分离纯化及性质研究.生物化学与生物物理学报,2003,35:473?477
    [24]李京宝,于文功,韩峰,等.从海洋中分离的弧菌QY102褐藻胶裂解酶的纯化和性质研究.微生物学报,2003,43:753?757
    [25]江晓路,刘岩,胡晓珂,等. Vibrio sp. 510产褐藻胶裂合酶的底物专一性分析.中国海洋大学学报,2004,34:55?59
    [26]傅晓妍,李京宝,韩峰,等.褐藻胶裂解酶产生菌Vibrio sp . Q Y102的发酵条件优化.中国海洋大学学报,2007,37:432?436
    [27] Iwamoto Y, Araki R, Iriyama K, Oda T, Fukuda H, Hayashida S, Muramatsu T. Purification and characterization of bifunctional alginate lyase from Alteromonas sp. strain No. 272 and its action on saturated oligomeric substrates. Biosci Biotechnol Biochem 2001,65: 133–142
    [28] Momma K, Okamoto M, Mishima Y, Mori S, Hashimoto W, Murata K. A novel bacterial ATP-binding cassette transporter system that allows uptake of macromolecules. J Bacteriol 2000,182: 3998–4004
    [29] El-Katatny, MH, Hetta AM, Shaban GM, El-Komy HM. Improvement of cell wall degrading enzymes production by alginate encapsulated Trichoderma spp. Food Technol Biotechnol 2003, 41: 219–225
    [30] Hu XK. Industrialization for alginate lyase from Vibrio sp. 510-64 and their applications. A Ph. D. dissertation. Qingdao: Ocean Univ China, 2004
    [31] Kitamikado M, Tseng CH, Yamaguchi K, Nakamura T. Two types of bacterial alginate lyases. Appl Envir Microb 1992,58: 2474–2478
    [32] Miyazaki M, Obata J, Iwamoto Y, Oda T, Muramatsu T. Calcium-sensitive extracellular poly(α-L-guluronate)lyase from a marine bacterium Pseudomonas sp. strain F6: Purification and some properties. Fisheries Sci 2001,67: 956–964
    [33] Alekseeva SA, bakunina IY, Nedashkovskaya OI, Isakov VV, Mikhailov VV, Zvyagintseva TN. Intracellular alginolytic enzymes of the marine bacterium Pseudoalteromonas citrea KMM 3297. Biochem (Mosc) 2004,69: 262–269
    [34] Hu XK, Jiang XL, Hwang HM. Purification and characterization of an alginate lyase from marine bacterium Vibrio sp. mutant strain 510-64. Curr Microbiol 2006,53: 135–140
    [35] Yonemoto Y, Yamaguchi H. Cloning of a gene for intracellular alginate lyase in a bacterium isolated from a ditch. J Ferment Bioeng 1992,73: 225–227
    [36] Natsume M, Kamo Y, Hirayama M. Isolation and characterization of alginate derived oligosaccharideswith root growth-promoting activities. Carbohydr Res 1994,258: 187–197
    [37] Fujihara M, Nagumo T. An influence of the structure of alginate on the chemotactic activity of macrophages and the antitumor activity, Carbohydr Res 1993,243: 211–216
    [38] Kawada A, Hiura N, Shiraiwa M, Tajima S, Hiruma M, Hara K, Ishibashi A, Takahara H. Stimulation of human keratinocyte growth by alginate oligosaccharides, a possible co-factor for epidermal growth factor in cell culture. FEBS Lett 1997,408: 43–46
    [39] Wang Y, Han Fe, Hu B, Li J, Yu W. In vivo prebiotic properties of alginate oligosaccharides prepared through enzymatic hydrolysis of alginate. Nutr Res 2006,26: 597–603
    [40]孙丽萍,薛长湖,许家超,等.褐藻胶寡糖体外清除自由基活性的研究.中国海洋大学学报,2005,35:811?814
    [41]欧昌荣,薛长湖,汤海青,等.微生物发酵膜分离法制备褐藻胶寡糖及其产物分析. 2005,45:309?311
    [42] Uchida M. Enzyme activities of marine bacteria involved in Laminaria thallus decomposition and the resulting sugar-release. Mar Biol 1995,123: 639–644
    [43] Aoki T, Araki T, Kitamikado M. Purification and characterization of a novelβ-agarase from Vibrio sp. AP-2. Eur J Biochem 1990,187: 461–465
    [44] Araki CH. Acetylation of agar like substance of Gelidium amansii. J Chem Soc Japan 1937,58: 1338–1350
    [45]纪明侯.中国江蓠属红藻所含琼胶的结构特征.海洋与湖沼,1986,17:72?83
    [46] Potin P, Richard C, Rochas C, Kloareg B. Purification and characterization of theα-agarase from Alteromonas agarlyticus (Cataldi) comb. nov., strain GJ1B. Eur J Biochem 1993,214: 599–607
    [47] Kirimura K, Masuda N, Iwasaki Y, Nakagawa H, Kobayashi R, Usami S. Purification and characterization of a novelβ-agarase from an alkalophilic bacterium, Alteromonas sp. E-1. J Biosci Bioeng 1999,87: 436–441
    [48] Van der Meulen HJ, Harder W. Production and characterization of the agarase of Cytophaga flevensis. Antonie Van Leeuwenhoek 1975,41: 431–447
    [49] Groleau D, Yaphe W. Enzymatic hydrolysis of agar: purification and characterization of beta-neoagarotetraose hydrolase from Pseudomonas atlantica. Can J Microbiol 1977,23: 672–679
    [50] Araki T, Hayakawa M, Zhang L, Karita S, Morishita T. Purification and characterization of agarases from a marine bacterium, Vibrio sp. PO-303. J Mar Biotechnol 1998,6: 260–265
    [51]杜宗军,王鹏,李筠,等.两株琼胶酶高产细菌的筛选和鉴定.海洋科学,2002,26:1?4
    [52] Wang J, Mou H, Jiang X, Guan H. Characterization of a novelβ-agarase from marine Alteromonas sp. SY37–12 and its degrading products. Appl Microbiol Biotechnol 2006,71: 833–839
    [53]韩文君,古静燕,李天东,等.一株产琼胶酶土壤细菌Paenibacillus sp. MY03的筛选与分子鉴定.绵阳师范学院学报,2007,26:86?90
    [54] Lakshmikanth M, Manohar S, Souche Y, Lalitha J. Extracellularβ-agarase LSL-1 producing neoagarobiose from a newly isolated agar-liquefying soil bacterium, Acinetobacter sp., AG LSL-1. World J Microbiol Biotechnol 2006,22: 1087–1094
    [55]王广慧,张明.琼脂糖酶的研究进展.海洋通报,2006,25:72?79
    [56]杜宗军,王祥红,李筠,等.琼胶酶研究进展.微生物学通报,2003,30:64?67
    [57] Ba? D, Boyac? ?H. Modeling and optimization I: Usability of response surface methodology. J Food Eng 2007,78: 836–845
    [58] Mao XB, Eksriwong T, Chanvatcharin S, Zhong JJ. Optimization of carbon source and carbon/nitrogen ratio for cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris. Process Biochem 2005,40: 1667–1672
    [59] Badhan AK, Chadha BS, Kaur J, Saini HS, Bhat MK. Production of multiple xylanolytic and cellulolytic enzymes by thermophilic fungus Myceliophthora sp. IMI 387099. Bioresource Technol 2007,98: 504–510
    [60] Lakshmikanth M, Manohar S, Patnakar J, Vaishampayan P, Shouche Y, Lalitha J. Optimization of culture conditions for the production of extracellular agarases from newly isolated Pseudomonas aeruginosa AG LSL-11. World J Microbiol Biotechnol 2006,22: 531–537
    [61]徐丽,刘江涛,蔡俊鹏.一株琼胶酶高产菌株的筛选鉴定及产酶条件的优化.现代食品科技,2006,22:19?22
    [62]王静雪,江晓路,牟海津,等.海洋弧菌QJH-12发酵产琼胶酶条件的优化.海洋科学,2007,31:8?14
    [63] Sugano Y, Terada I, Arita M, Noma M. Purification and characterization of a new agarase from a marine bacterium, Vibrio sp. strain JT0107. Appl Environ Microbiol 1993,59: 1549–1554
    [64] Suzuki H, Sawai Y, Suzuki T, Kawai K. Purification and characterization of an extracellularβ-agarase from Bacillus sp. MK03. J Biosci Bioeng 2003,93: 456–463
    [65] Ohta Y, Hatada Y, Nogi Y, Li Z, Ito S, Horikoshi K. Cloning, expression, and characterization of a glycoside hydrolase family 86β-agarase from a deep-sea Microbulbifer-like isolate. Appl Microbiol Biotechnol 2004,66: 266–275
    [66] Jam M, Flament D, Allouch J, Potin P, Thion L, Kloareg B, Czjzek M, Helbert W, Michel G, Barbeyron T. The endo-β-agarases AgaA and AgaB from the marine bacterium Zobellia galactanivorans: two paralogue enzymes with different molecular organizations and catalytic behaviours. Biochem J 2005,385:703–713
    [67] Dong J, Tamaru Y, Araki T. A uniqueβ-agarase, AgaA, from a marine bacterium, Vibrio sp. strain PO-303. Appl Microbiol Biotechnol 2007,74:1248–1255
    [68] Dong J, Tamaru Y, Araki T. Molecular cloning, expression, and characterization of aβ-agarase gene, agaD, from a marine bacterium, Vibrio sp. strain PO-303. Biosci Biotechnol Biochem 2007,71:38–46
    [69] Wang J, Jiang X, Mou H, Guan H. Anti-oxidation of agar oligosaccharides produced by agarase from a marine bacterium. J Appl Phycol 2004,16:333–340
    [70] Wu SC, Wen TN, Pan CL. Algal-oligosaccharide-lysates prepared by two bacterial agarases stepwise hydrolyzed and their anti-oxidative properties. Fish Sci 2005,71:1149–1159
    [71] Kobayashi R, Takimasa M, Suzuki T, Kirimura K, Usami S. Neoagarobiose as a novel moisturizer with whitening effect. Biosci Biotechnol Biochem 1997,61:162–163
    [72]何培民.海藻生物技术及其应用.北京:化学工业出版社,2007
    [73] Carlson PS. The use of protoplasts for genetic research. Proc Natl Acad Sci USA 1973,70:598–602
    [74] Araki T, Lu Z, Morishita T. Optimization of parameters for isolation of protoplasts from Gracilaria verrucosa (Rhodophyta). J Mar Biotechnol 1998,6:193–197
    [75] Yi KW, Shin IS. Isolation of marine bacterium decomposing sea tangle (Laminaria japonica) to single cell detritus. Korean J Food Sci Technol 2006,38:237–240
    [76] Wilson K. Preparation of genomic DNA from bacteria. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K, eds. Current Protocols in Molecular Biology. New York, USA: John Wiley & Sons, Inc., 1997. 2.4.1–2.4.5
    [77] Martin F, Collen M. Biasin template to product ratios in multi-temp late PCR. Appl Microbiol Biotechnol 1998, 64:372? 3720
    [78] Nelson N. A photometric adaptation of the somogyi method for the determination of glucose. J Biol Chem 1944,153:375–380
    [79] Embley TM, Stackebrandt E. The molecular phylogeny and systematics of the actinomycetes. Annu Rev Microbiol 1994,48:257–289
    [80] Horn SJ, ?stgaard K. Alginate lyase activity and acidogenesis during fermentation of Laminaria hyperborea. J Appl Phycol 2001,13:143–152
    [81] Sugano Y, Nagae H, Inagaki K, Yamamoto T, Terada I. Production and characteristics of some newβ-agarases from a marine bacterium, Vibrio sp. strain JT0107. J Ferment Bioeng 1995,79:549–554
    [82] Alexeeva YV, Ivanova EP, Bakunina IY, Zvaygintseva TN, Mikhailov VV. Optimization of glycosidases production by Pseudoalteromonas issachenkonii KMM 3549T. Lett Appl Microbiol 2002,35:343–346
    [83] Mehta VJ, Thumar JT, Singh SP. Production of alkaline protease from an alkaliphilic actinomycete. Bioresource Technol 2006,97:1650–1654
    [84] Wang, JJ, Shih JCH. Fermentation Production of Keratinase from Bacillus licheniformis PWD-1 and Recombinant B. J Industrial Microbiol Biotechnol 1999,22:608–616
    [85] Hornb?k T, Nielsen AK, Dynesen J, Jakobsen M. The effect of inoculum age and solid versus liquid propagation on inoculum quality of an industrial Bacillus licheniformis strain. FEMS Microbiol Lett 2004,236:145–151
    [86] Lowry OH, Rosbrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951,193:265–275
    [87] Gegenheimer P. Preparation of extracts from plants. In: Method in Enzymology, vol. 182. San Diego, USA: Academic press, 1990. 192–193
    [88] Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970,227:680–685
    [89] Lineweaver H, Burke D. Determination of enzyme dissociation constants. J Am Chem Soc 1934,56:658–666
    [90] Romeo T, Preston JF. Purification and structural properties of an extracellular (1–4)-β-D-mannuronan-specific alginate lyase from a marine bacterium. Biochem 1986,25:8385–8391
    [91] Matsubara Y, Kawada R, Iwasaki K, Oda T, Muramatsu T. Extracellular poly(alpha-L-guluronate)lyase from Corynebacterium sp.: purification, characteristics, and conformational properties. J Protein Chem. 1998,17:29–36
    [92] Davidson IW, Sutherland IW, Lawson CJ. Purification and properties of an alginate lyase from a marine bacterium. Biochem J 1976,159:707–713
    [93] Shimokawa T, Yoshida S, Kusakabe I, Takeuchi T, Murata K, Kobayashi H. Some properties and action mode of (1→4)-α-L-guluronan lyase from Enterobacter cloacae M-1. Carbohydr Res 1997,304:125–132
    [94]冯蕾,唐学玺,王艳玲,等.褐藻酸降解酶特性的初步研究. 2006,30:30?33
    [95] Nakagawa A, T Ozaki, K Chubachi, T Hosoyama, T Okubo, S Iyobe, T Suzuki. An effective method for isolating alginate lyase-producing Bacillus sp. ATB-1015 strain and purification and characterization of the lyase. J Appl Microbiol 1998,84:328–335
    [96] Jacobson B. On the interpretation of dielectric constants of aqueous macromolecular solutions. J Am Chem Soc 1995,77:2919–2926
    [97] Yang X, Qin W, Lehotay M, Toki D, Dennis P, Schutzbach JS, Brockhausen I. Soluble human core 2β6-N-acetylglucosaminyltransferase C2GnT1 requires its conserved cysteine residues for full activity. Biochim Biophys Acta (BBA)– Prot Proteomics 2003,1648:62–74
    [98] Hiramatsu K, Yang JT. Cooperative of hexadecyltrimethylammonium chloride and sodium dodecyl sulfate to cytochrome c and the resultant change in protein conformation. Biochim Biophys Acta 1983,743: 106–114
    [99] Zhong L, Johnson WC. Environment affects amino acid preference for secondary structure. Proc Natl Acad Sci USA 1992,89:4462–4465
    [100] Linker A, Evans LR. Isolation and characterization of an alginase from mucoid strains of Pseudomonas aeruginosa. J Bacteriol 1984,159:958–964
    [101]黄燕. SAS统计分析及应用.北京:机械工业出版社,2006
    [102] Ohta Y, Nogi Y, Miyazaki M, Li Z, Hatada Y, Ito S, Horikoshi K. Enzymatic properties and nucleotide and amino acid sequences of a thermostableβ-agarase from the novel marine isolate JAMB-A94. Biosci Biotechnol Biochem 2004,68:1073–1081
    [103] Sun Y, Han B, Liu W, Zhang J, Gao X. Substrate induction and statistical optimization for the production of chitosanase from Microbacterium sp. OU01. Bioresour Technol 2007,98:1548–1553
    [104] Katapodis P, Christakopoulou V, Kekos D, Christakopoulos P. Optimization of xylanase production by Chaetomium thermophilum in wheat straw using response surface methodology. Biochem Eng J 2007,35:136–141
    [105] Shu CH, Yang ST. Effects of temperature on cell growth and xanthan production in batch cultures of Xanthomonas campestris. Biotechnol Bioeng 1990,35:454–468
    [106]马悦欣,安军,刘双连,等.仿刺参消化道内产琼胶酶菌株的选育及培养条件优化.大连水产学院学报,2007,22:86?91
    [107]汤海青,管斌,王雪鹏,等.琼胶降解菌AT222的筛选和产酶性质.中国水产科学,2005,12:216?219
    [108] Leon O, Quintana L, Peruzzo G, Slebe JC. Purification and properties of an extracellular agarase from Alteromonas sp. strain C-1. Appl Environ Microbiol 1992,58:4060–4063
    [109] Ohta Y, Hatada Y, Miyazaki M, Nogi Y, Ito S, Horikoshi K. Purification and characterization of a novelα-agarase from a Thalassomonas sp. Curr Microbiol 2005,50:212–216
    [110] Armisén R, Galatas F, Hispanagar SA. Agar. In: Phillips GO, Williams PA, eds. Handbook of Hydrocolloids. England: Woodhead Publishing Ltd., 2000. 21–40
    [111]毛文君,林洪,管华诗.琼胶寡糖的制备及其13C-NMR研究.水产学报,2001,25:582?584
    [112]毛文君,林洪,管华诗.琼胶寡糖的ESI - MS分析研究.中国水产科学,2001,8:69?72
    [113]高洪峰,纪明侯,曹文达,等.用β-琼胶酶和NMR光谱法研究多管藻多糖的寡糖结构.海洋与湖沼,1996,27:505?510
    [114]奥斯伯FM,金斯顿RE,赛德曼JG,等著,马学军,舒跃龙译.精编分子生物学实验指南.北京:科学出版社,2005
    [115]陈永青.基因工程.北京:化学工业出版社,2002
    [116] Rosenberg M, Court D. Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet 1979,13:319–353
    [117] Fujimoto Z, Mizuno H, Kuno A, Yoshida S, Kobayashi H, Kusakabe I. Crystallization and preliminary X-ray crystallographic study of Streptomyces olivaceoviridis E-86β-xylanase. J Biochem 1997,121:826–828
    [118] Pascal JM, Day PJ, Monzingo AF, Ernst SR, Robertus JD, Iglesias R, Pérez Y, Férreras JM, Citores L, Girbés T. 2.8-? crystal structure of a nontoxic type-II ribosome-inactivating protein, ebulin l. Proteins 2001,43:319–326
    [119] Shen SH, Chretien P, Bastien L, Slilaty SN. Primary sequence of the glucanase gene from Oerskovia xanthineolytica. Expression and purification of the enzyme from Escherichia coli. J Biol Chem 1991,266:1058–1063
    [120] Talmadge K, Gilbert W. Cellular location affects protein stability in Escherichia coli. Proc Natl Acad Sci USA 1982,79:1830–1833