用户名: 密码: 验证码:
血红素加氧酶对Bel/FU肝癌耐药细胞株多药耐药性的影响机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝癌细胞的多药耐药性(multidrug resistance,MDR)形成是导致肝癌化疗失败的主要原因之一。肝癌细胞一旦获得多药耐药性,则在对同一类型的药物产生抗药性的同时,对结构和作用机制不同的抗肿瘤药物均产生交叉耐药性。多药耐药性形成直接关系到肝癌患者对化疗的反应和预后。经研究现已发现了导致MDR产生的多个表征蛋白及相关靶点,并据此研究出多种相应的化疗增敏药物及治疗方法,但均因各种原因限制了其应用。MDR产生机制复杂,其中化疗诱导MDR产生的上游信号机制仍需进行大量的探索工作。近年研究发现,在血红素代谢过程中,由血红素加氧酶(heme oxygenase-1,HO-1)催化产生的多种物质均具有细胞保护作用。HO-1在多种实体性肿瘤中均有高表达,因其具有保护细胞凋亡的作用,提示HO-1可能是抑制肿瘤生长的新靶标。本课题以Bel/FU肝癌耐药细胞株为研究对象,应用氯化高铁血红素(Hemin)、锌原卟啉(zinc protoporphyrinⅨ, ZnPPⅨ)、小分子RNA干扰及中药黄芪影响HO-1的表达,通过研究血红素加氧酶在肝癌细胞多药耐药中的影响及相关信号分子机制,为逆转肿瘤多药耐药寻找新的作用靶点。
     论文一血红素加氧酶对Bel/FU肝癌耐药细胞株多药耐药性的影响
     目的:评估血红素加氧酶-1(Heme Oxygenase,HO-1)对Bel/FU肝癌耐药细胞株化疗敏感性的影响,探讨血红素加氧酶对肝癌细胞多药耐药性可能的影响机制。
     方法:①:将Bel/FU细胞接种于96孔培养板,分三组,一组设为空白对照组,另外两组分别加入60uM的Hemin,10uM的ZnPPⅨ进行诱导24小时后,分别加入不同浓度梯度的ADM、MMC、5-FU化疗药物作用24小时,MTT法检测细胞对各化疗药物敏感性;②:分别加入不同浓度梯度的Hemin(15umol/L,30umol/L,60umol/L,120umol/L,240umol/L)及ZnPPⅨ(2umol/L,6umol/L,10umol/L,14umol/L,18umol/L)诱导培养24小时后,RT-PCR检测血红素加氧酶HO-1(heme oxygenase-1,HO-1),MDR-1(multidrug resistance,MDR-1),谷胱甘肽-S-转移酶GST-π(Glutathione S-transferase,GST-π)及β-actin核酸水平表达量;Western blot检测P-糖蛋白(P-glycoprotein,P-GP),GST-π及β-actin蛋白质水平表达量;③:设空白对照组后,分别加入Hemin(60umol/L,240umol/L)和ZnPPⅨ(10umol/L,18umol/L)诱导,应用流式细胞仪测定细胞内罗丹明123的潴留以评估P-GP的功能。
     结果:①:Hemin作用于Bel/FU细胞诱导24小时后,各化疗药物(5-FU,ADM及MMC)半数抑制浓度(IC50)与空白对照组比较各P值均<0.01,化疗药物半数抑制浓度均明显增加;ZnPPⅨ干预组表现则相反,细胞活性降低,各化疗药物半数抑制浓度均显著降低;②:Hemin作用于Bel/FU细胞诱导24小时后,与空白组比较,血红素加氧酶HO-l在核酸水平的表达量明显增加(F=71.513,其中2umol/L组P=0.029,余均<0.01),MDR-1mRNA及GST-πmRNA的表达量、P-GP及GST-π的蛋白表达量也显著增加(各P值均<0.01),且均呈剂量依赖趋势;ZnPPⅨ干预组表现则相反,各指标均显著降低,但也表现出剂量依赖趋势;③:罗丹明潴留试验结果显示:与空白组比较,Hemin干预组罗丹明荧光曲线明显左移,且浓度增高曲线左移越明显,提示细胞内罗丹明潴留减少;而ZnPPⅨ干预组则表现为曲线右移,出现相反的结果。
     结论:影响HO-1的表达可改变肝癌耐药细胞株的化疗敏感性,这种变化是通过影响MDR-1、GST-π核酸及蛋白质水平的表达,同时改变了P-糖蛋白药物外排功能实现的;提示HO-1可作为逆转肿瘤多药耐药的潜在作用靶点。
     论文二RNA干扰HO-I基因对Bel/FU肝癌耐药细胞株阿霉素化疗敏感性的影响
     目的:应用siRNA干扰技术特异性地将HO-1基因表达下调后,观察Bel/FU肝癌耐药细胞株阿霉素化疗敏感性的变化及影响机制。
     方法:设计与制备针对HO-1及β-actin的小分子RNA。①:按正常细胞组、空白对照组、干扰组及阳性对照组,将Bel/FU肝癌耐药细胞接种于六孔板,各组分别加入正常培养基、空脂质体转染培养基、含针对HO-1的siRNA脂质体培养基、含针对β-actin的siRNA脂质体培养基,作用48小时后,RT-PCR检测HO-1、β-actin mRNA表达量,Western blot检测P-GP,β-actin蛋白质水平表达量;②:按正常细胞组、空白对照组、干扰组,应用流式细胞仪测定细胞内罗丹明123的潴留并评估P-GP的功能;③:按正常细胞组、空白对照组、干扰组,分别加入不同浓度梯度的阿霉素,MTT法测定体外阿霉素化疗敏感性。
     结果:①:siRNAs作用48小时后,干扰组HO-1 mRNA表达被干扰未见表达,而正常细胞组、空脂质体转染组(空白对照组)、阳性对照组未见明显影响;β-actin mRNA则在阳性对照组无表达,其余各组无影响;Western blot显示:与正常培养组及各对照组相比,P-糖蛋白表达量下降;②:罗丹明潴留试验结果显示:与正常培养组及空白对照组相比,siRNAs干扰组罗丹明荧光曲线明显右移,提示细胞内罗丹明潴留增加;正常培养组及空白对照组曲线基本重叠,未见明显差异;③: Bel/FU细胞培养48小时后,与正常组相比,RNA干扰组细胞活性降低,阿霉素半数抑制浓度(IC50)显著降低,而空白对照组与正常组相比无明显差异。
     结论:应用siRNAs抑制HO-1的表达后,多药耐药细胞株Bel/FU细胞对阿霉素的化疗敏感性增强,这种增敏作用是通过下调P-糖蛋白表达,降低P-糖蛋白罗丹明外排功能而实现的。
     论文三黄芪对Bel/FU肝癌耐药细胞株化疗敏感性的影响
     目的:评估黄芪注射液对肝癌耐药细胞化疗敏感性的影响,结合黄芪对血红素加氧酶的调节作用探索可能的影响机制。
     方法:黄芪注射液作用于Bel/FU肝癌化疗耐药细胞株,从三个方面观察作用前后化疗敏感性的变化:应用MTT法检测细胞株对5-Fu,ADM及MMC作用后的存活率;应用免疫细胞化学检测化疗耐药表征蛋白P-糖蛋白表达量的变化;应用流式细胞术罗丹明外排试验检测黄芪注射液对细胞株P-糖蛋白功能的影响。应用RT-PCR方法检测黄芪注射液作用前后血红素加氧酶(HO-1)核酸水平表达量的变化。
     结果:①:黄芪注射液作用于Bel/FU细胞诱导24小时后,黄芪各浓度组化疗药物半数抑制浓度(IC50)与空白对照组比较各P值均<0.01,化疗药物半数抑制浓度均显著降低;②:应用8ul/mL黄芪注射液作用于Bel/Fu细胞后,免疫细胞化学检测显示黄芪组(vs对照组) P-糖蛋白阳性表达明显减少(Wilcoxon W值为398.500,Z值为-2.363,近似P值为0.018<0.05);流式细胞仪罗丹明潴留试验结果显示,黄芪组罗丹明荧光曲线明显右移,细胞化疗药物外排功能降低; Bel/FU细胞HO-lmRNA的表达水平按HO-1cDNA/β-actin黄芪组为0.316±0.08,对照组为0.624±0.173,HO-1mRNA的表达显著减少(P<0.01)。
     结论:黄芪注射液可增强肝癌耐药细胞株Bel/FU的化疗敏感性,下调化疗耐药表征蛋白P-糖蛋白表达,降低P-糖蛋白药物外排功能,实现这种作用的同时伴随有HO-1mRNA表达的减少。
Multidrug resistance (MDR) is a significant obstacle to providing effective chemotherapy to many Hepatic Carcinoma patients.Once the cells gain MDR,they will describe the phenomenon of simultaneous resistance to a broad of unrelated drugs,which affect the chemotherapeutic effectiveness and prognosis of the patients.Some molecular targets and proteins are gradually found,but the mechanisms of mutidrug resistance are not yet fully understood.Much effort needed has been extended to advance the mechanism in cancer cells,especially in the upstream signal pathways.In recent years,there reported some products in the degradation of heme catalyzed by heme oxygenase-1(HO-1),which can protect the cells from apoptosis. Elevated HO-1 expression and activity was found in various tumor tissues. The studies suggest that HO-1 exerts a role in controlling cell growth in a cell-specific manner which could be a new molecular target and upstream mechanism of MDR.In our studies,some methods are adopted to affect the HO-1 expression in Drug-resistant Hepatic Carcinoma Bel/FU Cells,then explores the effect and relevant mechanism of Heme Oxygenase-1 on chemosensitivity of the cells.
     Part one Effect of Heme Oxygenase on Multidrug Resistance of Drug-resistant Hepatic Carcinoma Bel/FU Cell Line
     Objective:To study the effect and relevant mechanism of Heme Oxygenase-1 on chemosensitivity of drug-resistant hepatic carcinoma Bel/FU cell line.
     Methods:①:Bel/FU cells were collected and planted in 96 well plates,cells were divided into three groups,two induced separately with 60uM Hemin and 10uM ZnPPⅨ,the other planted in normal condition.After several gradient concentrations of drugs(ADM,MMC,5-FU) are added into the wells,the drug sensitivity test of Bel/FU cells was carried out with MTT assay.②:After induced with different gradient concentrations of Hemin(15umol/L,30umol/L,60umol/L,120umol/L,240umol/L)and ZnPPⅨ(2umol/L, 6umol/L,10umol/L,14umol/L,18umol/L)for 24h,heme oxygenase-1 (HO-1),multidrug resistance-1(MDR-1) and Glutathione S-transferase(GST-π)mRNA level were determined by RT-PCR technique;P-glycoprotein(P-GP),GST-πprotein level were detected by Western blot analysis;Rhodamine123 retention fluorescent intensity measured by flow cytometry was used to detect the function of P-GP.
     Results:After Bel/FU cells being dealt with Hemin for 24h,there were significant differences in 50% inhibiting concentration (IC50) of chemical drugs between control groups and contrast group.IC50 of control groups increased obviously. Meanwhile,the mRNA expression of HO-1 and MDR-1 or GST-πin the cells of control group were observably higher than those in contrast group,of which were both consistent with the dose-effect curve. P-GP and GST-πprotein level expression appeared the analogous results. The curve of Rhodamine123 retention fluorescent intensity in the control cells removed left award from the place of contrast group,which indicated that the efflux pump function of P-GP was strengthened.The control groups by ZnPPⅨ,however,showed a contrary result. Lineal correlation analysis showed that the HO-1mRNA levels were significantly correlated with mRNA and protein expression of MDR-1 and GST-π.
     Conclusions:Inpacting heme oxygenas-1 can influence the chemosensitivity of Bel/FU cell line,which relates with its action in up(or down)-regulation of MDR-1 and GST-πexpression and efflux pump function of P-GP.The enzyme of HO-1 may be a new target of reversing multidrug resistance in Hepatic Carcinoma cells.
     Part two Effect of HO-1 Small Interfering RNA on Chemosensitivity of Adriamycin in Drug-resistant Hepatic Carcinoma Bel/FU Cell Line
     Objective:To investigate the chemosensitivity of Adriamycin and reverse mechanism of drug resistance in hepatic carcinoma Bel/FU cell line after heme oxygenase-1 being blocked with siRNAs.
     Methods:Design and prepare the small interfering RNAs aiming at HO-1 andβ-actin gene.The cells were divided into 4 groups as normal group(only in nutritive medium),blank contrast group(medium contain blank liposome),RNA intefering group(medium contain HO-1 siRNAs liposome)and negative group(medium containβ-actin siRNAs liposome).After intubating for 24 hours, HO-1 andβ-actin mRNA level were determined by RT-PCR technique;P-GP,GST-πprotein level were detected by Western blot analysis;Rhodamine123 retention fluorescent intensity measured by flow cytometry was used to detect the function of P-GP.In additively, different gradient concentrations of Adriamycin were added into plant wells,then MTT assay was carried out to detect the chemosensitivity of Bel/FU cells.
     Results:After Bel/FU cells being dealt with different methods for 24h, HO-1 mRNA level almost disppeared in RNA intefering group while other groups had no change; P-GP protein level by Western blot analysis deceased in RNA intefering group contrasted with those of another three groups; The curve of Rhodamine123 retention fluorescent intensity in the control cells removed right award from the place of contrast group,which indicated that the efflux pump function of P-GP was weakened; MTT assay indicated that the cell activity decreased significantly and 50% inhibiting concentration (IC50) of Adriamycin decreased obviously in the control group. Conclusions:After Bel/FU cells being dealt with HO-1 siRNAs liposome, the Adriamycin chemosensitivity of Drug-resistant Bel/FU cells increased,which achieved by down-regulation of protein level expression and efflux pump function of P-GP.
     Part three Effect of Astragulus Injection on Chemosensitivity of Drug-resistant Hepatic Carcinoma Bel/FU Cell Line
     Objective:To study the effect and relevant mechanism of Astragulus injection on chemosensitivity of drug-resistant hepatic carcinoma Bel/FU cell line.
     Methods:The drug sensitivity test of Bel/FU was carried out with MTT assay.The distribution of P-glucoprotein(P-GP) in the cells were determined by immunohistochemical stainning.Rhodamine123 retention fluorescent intensity measured by flow cytometry was used to detect the function of P-GP. HO-1mRNA level was determined by RT-PCR technique.
     Results:After Bel/FU cells being dealing with Astragulus injection for 24h,there were significant differences in 50% inhibiting concentration (IC50) of chemical drugs between control groups and contrast group(P<0.01).IC50 of control groups decreased obviously.Immunohistochemistry showed that P-GP expression were significantly lower in the cells treated with 8ul/ml Astragulus injection than those of contrast group(Z=-2.363, P=0.018).The curve of Rhodamine123 retention fluorescent intensity in the control cells removed right award from the place of contrast group,which indicated that the efflux pump function of P-GP was weakened.Meanwhile,the mRNA expression of HO-1 in the cells of control group were observably lower than those of in contrast group(0.316±0.08vs0.624±0.173, P<0.01).
     Conclusions:Astragulus injection can enhance the chemosensitivity of Bel/Fu cell line,which may relate with its action in decreasing protein expression and efflux pump function of P-GP concomitant with the decrease of HO-1mRNA level.
引文
1. McClean S,Hill BT. An overview of membrane, cytosolic and nuclear proteins associated with the expression of resistence to multiple drug in vitro[J]. Biochim Biophys Acta,1992,1114(2):147-162.
    2. Kuroda H, Sugimoto T, Ueda K ,et al. Different drug sensitivity in two neuroblastoma cell lines established from the same patient before and after chemotherapy[J]. Int J Cancer,1991,47(4):732-737
    3. Almquist KC,Lee DW,Hipfner DR,et al. Characterization of the M(r) 190000 multidrug resistance protein(MRP)in drug-selected and transfected human tumor cell[J].Cancer Res,1995,55(1):102-110
    4. Izquierdo MA, Scheffer GL, Flens MJ, et al. Relationship of LRP-human major vault protein to in vitro and clinical resistance to anticancer drugs[J]. Cytotechnology, 1996,19(3):191-197.
    5. Perry RR, Kang Y, Greaves B. Biochemical characterization of mitomycin C resistant colon cancers cell line variant [J]. Biochem Pharmacol, 1993 , 46(11):1999 -2005.
    6. Laredo J, Huynh A, Muller C ,et al. Effect of protein kinase C inhibitor saturosporine on chemsensitivity to daunorubicin of normal and leukemic fresh myeloid cells[J]. Blood,1994,84(1):229-237
    7. Sophie Brouard,Leo E. Otterbein,Josef Anrather,et al. Carbon monoxide generated by heme oxygenase-1 suppresses endothelial cell apoptosis[J]. J.Exp.Med ,2000,192(7):1015-1026
    8. Brian S. Zuckerbraun,Timothy R. Billiar,Sherrie L. Otterbein,et al. Carbon monoxide protects against liver failure through nitric oxide induced heme oxygenase-1[J]. J.Exp,Med,2003,198(11):1707-1716
    9. Tiffamy A.Reiter,Bruce Dempke. Carbon monoxide mediates protection against nictric oxide toxicity in Hela cells[J]. Free Radical Biology and Medicine, 2005,39(8):1075-1088
    10. Zuckerbraun BS,Billiar TR,Otterbein SL,et al. Carbon monoxide protects against liver failure through nitric oxide induced heme oxygenase-1. J Exp Med,2003, 198(11):1707-1716
    11. K. Doi, T.Akaike.Induction of hame oxygenaSe-1 by nitric oxide and ischaemia in experimental solid tumors and implications for tumor growth[J]. Cancer,1999,80(12):1945-1954
    12. Koichi Doi,Takaaki Akaike,Norisato Ikebea,et al. Heme oxygenase and nitric oxide synthase on tumor growth[J]. International congress series,2003(10), 1255:265-268
    13. Tang ZY,Zhou XD,Ma,et al. Multimodality treatment hepatocelluar carcinoma[J]. J Gastroenteral,1998,13(Suppl):315-321.
    14. Beck WT. Mechanisms of multidrug resistance in human tumor cells. The roles of P-glycoprotein DNA topoisomeraseⅡ,and other factors[J]. Cancer Treat Rev,1990, 17(Suppl A):11-20
    15. Cordon-Cardo C, O'Brien JP, Boccia J, et al. Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues[J]. J Histochem Cytochem. 1990,38(9):1277-1287
    16. McClean S,Hill BT. An overview of membrane, cytosolic and nuclear proteins associated with the expression of resistance to multiple drug in vitro[J]. Biochim Biophys Acta.1992,1114(2):107-127.
    17. Takatori T, Ogura M, Tsuruo T. Purification and characterization of NF-R2 that regulates the expression of the human multidrug resistance (MDR-1) gene.Jpn J Cancer Res.,1993,84(3):298-303.
    18. Stein U Walther W, Wunderlich V. Point mutation in the mdr-1 promoter of human osteosarcoma are associated with in vitro responsiveness to multidrug resistance relevant drugs.Eur J Chem,1994,30A(10):1541-1545
    19. Dirven HAAM, Dictus ELJT, Broeders NLHL, et al. The role of human glutathione S-transferase isoenzymes in the formation of glutathione conjugates of the alkylating cytostatic drug thiotepa[J]. Cancer Res, 1995,55(8):1701-1710
    20. Kuroda H, Sugimoto T, Ueda K ,et al. Different drug sensitivity in two neuroblastoma cell lines established from the same patient before and after chemotherapy[J]. Int J Cancer,1991;47(4);732-737
    21. Schipper DI, Wagenmans MJ, Peters WH, et al. Glutathione S-transferases in gastric carcinomas and adjacent normal gastric epithelium:immunohistochemical and biochemical analyses [J].Anticancer Res,1996,16(6):3721-3724
    22. Sato K,Satoh K,Tsuchida S,Hatayama I,et al. Specific expression of glutathione S-transferase Pi forms in (pre)neoplastic tissues: their properties and functions. Tohoku J Exp Med.,1992,168(2):97-103.
    23. Wagener F A,da Silva J L,Farley T,et al. Differential effects of heme oxygenaseisoforms on heme mediation of endothelial intracellular adhesion molecule 1 expression[J]. J Pharmacol Exp Ther,1999,291(1): 416-423.
    24. Sadrzadeh SM, Eaton JW. Hemoglobin-mediated oxidant damage to the central nervous system requires endogenous ascorbate[J]. J Clin Invest, 1988 82(5): 1510-1515.
    25. Suttner DM,Sridhar K,Lee CS,et al. Protective effects of transient HO-1 overexpression on susceptibility to oxygen toxicity in lung cells[J]. Am J Physiol, 1999,276(3 Pt 1):443-451.
    26. Liming Yang,Shuo Quan,Nader G,et al. Retrovirus-mediated HO gene transfer into endothelial cells protects against oxidant-induced injury[J]. Am J Physiol, 1999,277(1):127-133.
    27.谭泽明,伍莹,张华莉,等. CoCl2缺氧诱导SW480细胞化疗耐药及其机制.中南大学学报(医学版),2006,31(3):345-347.
    28. Hamamura RS, Ohyashiki JH, Kurashina R,et al. Induction of heme oxygenase-1 by cobalt protoporphyrin enhances the antitumour effect of bortezomib in adult T-cell leukaemia cells. Br J Cancer,2007,97(8):1099-105.
    29. Elbirt KK,Bonkovsky HL. Heme oxygenase-1:Recent advances in understanding its regulation and role[J]. Proc Assoc Am Physicians,1999,111(5):438-447.
    30. Panahian N,Maines MD. Site of injury-directed induction of heme oxygenase-1 and-2 in experimental spinal cord injury:differential functions inneuronal defense mechanisms[J]. J Neurochem,2001 Jan,76(2):539-554.
    1. Geanacopoulos M. An introduction to RNA-mediated gene silencing[J]. Sci Prog, 2005,88(Pt 1):49-69.
    2. Montgomery MK. RNA interference: historical overview and significance[J]. Methods Mol Biol, 2004,265:3-21.
    3. Lenz G. The RNA interference revolution[J]. Braz J Med Biol Res. 2005, 38 (12):1749-1757.
    4. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic inteference by dsRNA in caenorhabditis elegans[J]. Nature,1998,391(6669):806- 811
    5. Sledz CA, Williams BR. RNA interference and double-stranded-RNA-activated pathways[J]. Biochem Soc Trans. 2004,32(Pt 6):952-956.
    6. Davey RA, MacLean HE. Current and future approaches using genetically modified mice in endocrine research[J]. Am J Physiol Endocrinol Metab , 2006,291(3):E429-438
    7. Rana TM. Illuminating the silence: understanding the structure and function of small RNAs[J]. Nat Rev Mol Cell Biol. 2007,8(1):23-36.
    8. Wang R, Wang Z, Wu L. Carbon monoxide-induced vasorelaxation and the underlying mechanisms[J]. British Journal of Pharmacology, 1997,121:927-934
    9. Zayasu K, Sekizawa K, Okinaga S, et al. Increased carbon monoxide in exhaled air of asthmatic patients. Am J Respir Crit Care Med, 1997,156:1140-1143
    10. Sophie Brouard,Leo E. Otterbein,Josef Anrather,et al. Carbon monoxide generated by heme oxygenase-1 suppresses endothelial cell apoptosis[J]. J.Exp . Med,2000,192:1015-1026
    11. Brian S. Zuckerbraun, Timothy R. Billiar, Sherrie L. Otterbein, et al. Carbon monoxide protects against liver failure through nitric oxide induced heme oxygenase-1[J]. J.Exp,Med,2003,198:1707-1716
    12. Tiffamy A.Reiter,Bruce Dempke. Carbon monoxide mediates protection against nictric oxide toxicity in Hela cells[J]. Free Radical Biology and Medicine , 2005,10:1075-1088
    13. Koichi Doi,Takaaki Akaike,Norisato Ikebea,et al. Heme oxygenase and nitric oxide synthase on tumor growth[J]. International congress series, 2003, 1255:265-268
    14. Stein U Walther W, Wunderlich V. Point mutation in the mdr-1 promoter of humanosteosarcoma are associated with in vitro responsiveness to multidrug resistance relevant drugs.Eur J Chem,1994,30A(10):1541-1545
    15. HU Qun, KONG Xiang.The Expression of NF-Kappa B Family Protein and its relationship with drug resistance in breast cancer cell lines[J]. The Chinese- German Journal of Clinical Oncology, 2003,4:216-218
    16.沈松杰,郭俊超,廖泉,等。MAPK信号转导通路在肿瘤化疗耐药中的作用(综述)[J].国外医学:肿瘤学分册,2005,32(8):579-582
    17. Lee HJ,Lee J, Min SK,Guo HY, et al. Differential induction of heme oxygenase-1 against nicotine-induced cytotoxicity via the PI3K, MAPK, and NF-kappa B pathways in immortalized and malignant human oral keratinocytes[J]. J Oral Pathol Med. 2008,[Epub ahead of print]
    18. Qin S, McLaughlin AP, De Vries GW. Protection of RPE cells from oxidative injury by 15-deoxy-delta12,14-prostaglandin J2 by augmenting GSH and activating MAPK. Invest Ophthalmol Vis Sci,2006 ,47(11):5098-5105.
    19. Jun CD, Kim Y, Choi EY, et al. Gliotoxin reduces the severity of trinitrobenzene sulfonic acid-induced colitis in mice: evidence of the connection between heme oxygenase-1 and the nuclear factor-kappaB pathway in vitro and in vivo. Inflamm Bowel Dis. 2006,12(7):619-629.
    20.谭泽明,伍莹,张华莉,等. CoCl2缺氧诱导SW480细胞化疗耐药及其机制.中南大学学报(医学版),2006,31(3):345-347.
    21. Hamamura RS, Ohyashiki JH, Kurashina R,et al. Induction of heme oxygenase-1 by cobalt protoporphyrin enhances the antitumour effect of bortezomib in adult T-cell leukaemia cells. Br J Cancer,2007,97(8):1099-105.
    1.栾凤君,杨纯正,马建国,等.一株红白血病多药耐药细胞系(K562/A02)的建立及其耐药特性的研究[J].中华肿瘤杂志,1993,15(2):101—103.
    2. Davidson A,Dick G,Pritchard-Jones K,et al. EVE/cyclosporin (etoposide, vincristine, epirubicin with high-dose cyclosporin) chemotherapy selected for multidrug resistance modulation. Eur J Cancer,2002,38(18):2422—2427.
    3.王秀丽,孔力,赵瑾瑶,等.三氧化二砷逆转人乳腺癌MCF-7/ADM细胞耐药的机制研究[J].中华肿瘤杂志,2002,24(4):339—343.
    4.董琳,唐小卿,曹建国,等.甲基莲心碱对耐阿霉素人乳腺癌细胞内阿霉素积累的影响[J].中国药理学通报,2002,18(1):43—45.
    5.董竞成,董晓辉.黄芪注射液与白介素-2增强树突细胞抗肿瘤转移作用的比较研究[J].中国中西医结合杂志,2005,25(3):236-239
    6.董竞成,董晓辉,赵福东.黄芪注射液对肺癌治疗作用的实验研究[J].中华肿瘤杂志,2006,4(28):272-275
    7. Mavel S,Dikic B,Palakas S,et al.Synthesis and biological evaluation of a series of flavone derivatives as potential radioligands for imaging the multidrug resistance-associated protein 1 (ABCC1/MRP1)[J]. Bioorg Med Chem,2006, 14(5):1599-1564.
    8. Wong IL,Chan KF,Burkett BA,et al.Flavonoid dimers as bivalent modulators for pentamidine and sodium stiboglucanate resistance in leishmania[J].Antimicrob Agents Chemother,2007,51(3):930-934
    9. Shabbits JA,Mayer LD.P-glycoprotein modulates ceramide mediated sensitivity of human breast cancer cells to tubulin-binding anticancer drugs[J].Mol Cancer Ther,2002,1(3):205-211.
    10. Callaghan A,Denny N. Evidence for an interaction between p-glycoprotein and cadmium toxicity in cadmium-resistant and susceptible strains of drosophila melanogaster[J]. Ecotoxicol Environ Saf,2002, 52(3):211-215.
    11.巫云立,郑显明,黄杰.黄芪注射液对恶性肿瘤患者免疫功能的影响[J].中药药理与临床2001,17(5):44-46
    12.张大鹏,孔棣.中药对体外人结肠癌THC8908细胞的生长抑制作用[J].中国中西医结合外科2007,13(3):270-273
    13. Jiang Lin, Hui-Fang Dong, JJ Oppenheim, et al. Effects of astragali radix on the growth of different cancer cell lines[J].World Journal of Gastroenterology,2003,9(4):670-673
    14.谭泽明,伍莹,张华莉,等. CoCl2缺氧诱导SW480细胞化疗耐药及其机制[J].中南大学学报(医学版),2006,31(3):345-349
    15. Berberat PO,Dambrauskas Z,GulbinasA,et al. Inhibition of heme oxygenase-1 increases responsiveness of pancreatic cancer cells to anticancer treatment[J] . Clin Cancer Res,2005,11(10):3790-3794
    1. Giovannetti E, Mey V, Nannizzi S, et al. Pharmacogenetics of anticancer drug sensitivity in pancreatic cancer[J]. Mol Cancer Ther,2006,5(6):1387-1395.
    2. Fraser M, Leung B, Jahani-Asl A, et al. Chemoresistance in human ovarian cancer: the role of apoptotic regulators[J]. Reprod Biol Endocrinol,2003(10),1:66-70.
    3. Fine RL, Chambers TC, Sachs CW. P-glycoprotein, multidrug resistance and protein kinase C[J].Stem Cells,1996,14(1):47-55.
    4. Chabner BA. Biological basis for cancer treatment[J]. Ann Intern Med, 1993, 118(8):633-637.
    5. Beck WT. Mechanisms of multidrug resistance in human tumor cells. The roles of P-glycoprotein, DNA topoisomerase II, and other factors[J].Cancer Treat Rev,1990,17 (Suppl A):11-20.
    6. Beck WT. Multidrug resistance and its circumvention[J]. Eur J Cancer, 1990, 26(4):513-515.
    7. McClean S,Hill BT. An overview of membrane, cytosolic and nuclear proteins associated with the expression of resistance to multiple drug in vitro[J].Biochim Biophys Acta,1992,1114(2-3):107-127.
    8. Monzo M, Rosell R, Taron M. Drug resistance in non-small cell lung cancer[J]. Lung Cancer,2001,34(Suppl 2): 91-94.
    9. Clarke R, Leonessa F, Trock B. Multidrug resistance/P-glycoprotein and breast cancer: review and meta-analysis[J]. Semin Oncol, 2005,32(Suppl 7):9-15.
    10. Kawai H, Kiura K, Tabata M, Yoshino T, et al. Characterization of non-small-cell lung cancer cell lines established before and after chemotherapy[J]. Lung Cancer,2002,35(3):305-314.
    11. Takatori T, Ogura M, Tsuruo T. Purification and characterization of NF-R2 that regulates the expression of human multidreug resistance gene[J]. Jpn J Cancer Res ,1993,84(3):298-303
    12. Stein U,Walther W,Wunderlich V. Point mutation in the mdr-1 promoter of human osteosarcoma are associated with in vitro responsiveness to multidrug resistance relevant drugs[J].Eur J Chem,1994,30A(10):1541-1545.
    13. Jedlitschky G, Leier I, Buchholz U, et al. ATP-dependent transport of bilirubin glucuronides by the multidrug resistance protein MRP1 and its hepatocyte canalicular isoform MRP2[J]. Biochem J,1997(Pt1),327:305–310.
    14. Lautier D, Canitor Y, Deeley RG, et al. Multidrug resistance mediated by the multidrug resistance protein(MRP) gene[J].Biochem Pharm, 1996,52(7):967-977.
    15. Kong CZ, Zhu YY, Ma ZY, et al. Expression of lung resistance-related protein gene in transitional cell carcinoma of the bladder[J]. Zhonghua Wai Ke Za Zhi, 2005, 43(2):118-121.
    16. Paredes Lario A, Blanco García C, Echenique Elizondo M, et al. Expression of proteins associated with multidrug resistance and resistance to chemotherapy in lung cancer[J]. Arch Bronconeumol, 2007,43(9):479-484.
    17. Huh HJ, Park CJ, Jang S, et al. Prognostic significance of multidrug resistance gene 1 (MDR1), multidrug resistance-related protein (MRP) and lung resistance protein (LRP) mRNA expression in acute leukemia[J]. J Korean Med Sc,2006 ,21(2):253-258.
    18. Doyle LA,Yang W,Abruzzo LV,et al.A multidrug resistance transporter from human MCF-7 breast cancer cells[J]. Proc Natl Acad Sci USA, 1998 , 95(26):15665-15670.
    19. Ross DD, Gao Y, Yang W,et al . The 95-kilodalton membrane glycoprotein overexpressed in novel multidrug-resistant breast cancer cells is NCA, the nonspecific cross-reacting antigen of carcinoembryonic antigen[J]. Cancer Res,1997,57(24):5460-5464.
    20. Sargent JM,Williamson, CJ,Maliepaard, M,et al. Breast cancer resistance protein expression and resistance to daunorubicin in blast cells from patients with acute myeloid leukaemia[J]. British Journal of Haematology,2001,115(2):257-262.
    21. Britten RA,Green JA,Warenius HM. Cellular glutathione (GSH) and glutathione S-transferase (GST) activity in human ovarian tumor biopsies following exposure to alkylating agents[J]. Int J Radiat Oncol Biol Phys,1992,24(3):527-531.
    22. Komiya S, Gebhardt MC, Mangham DC, et al. Role of glutathione in cisplatin resistance in osteosatoma cell lines[J]. J Orthop Res,1998,16(1):15-22.
    23. Kuroda H, Sugimoto T, Ueda K ,et al. Different drug sensitivity in two neuroblastoma cell lines established from the same patient before and after chemotherapy[J]. Int J Cancer,1991,47(4):732-737.
    24. Perry RR,Kang Y,Greaves B. Biochemical characterization of mitomycin C resistant colon cancers cell line variant[J]. Biochem Pharmacol 1993 , 46(11):1999-2005.
    25. Laredo J,Huynh A,Muller C,et al. Effect of protein kinase Cinhibitorsaturosporine on chemsensitivity to daunorubicin of normal and leukemic fresh myeloid cells. Blood,1994,84(1);229-237.
    26. Walther W, Stein U. Influence of cytokines on mdr1 expression in human colon carcinoma cell lines: increased cytotoxicity of MDR relevant drugs. J Cancer Res Clin Oncol. 1994,120(8):471-478.
    27. Takeuchi A,Kaneko S,Matsushita E, et al. Interferon-alpha modulat esresistance to cisplatin in three human hepatoma cell lines[J]. J Gastroenterol,1999, 34: 351- 358.
    28.平宝红,刘启发.干扰素逆转白血病细胞多药耐药性的研究及机制的初步探讨.中华血液学杂志[J],1996,17(1):1-2.
    29. Hosono J,Narita T,Kimura N,et al. Involvement of adhesion molecules in metastasis of SW1990, human pancreatic cancer cells[J]. J Sur Onco1,1998, 67(2):77-84.
    30. Sedlák J, SedlákováO, Hlavcák P, et al. Cell surface phenotype and increased penetration of human multidrug-resistant ovarian carcinoma cells into in vitro collagen-fibroblasts matrix[J]. Neoplasma 1996,43(6):389-395
    31. Fisher,D.E. Apoptosis in cancer therapy:crossing the threshold[J]. Cell,1994, 78(4):539-542.
    32. Stavrovskaya AA. Cellular mechanisms of multidrug resistance of tumor cells[J]. Biochemistry Mosc, 2000,65(1):95-106.
    33. Motomure S, Motoji T, Takanashi M, et al. Inhibition of P-glycoprotein and recovery of drug sensitivity of human acute leukemic blast cells by multidrug resistance gene (mdr1) antisense oligonucleotides[J]. Blood,1998,91(9): 3163-3171.
    34. He Y. Zhang J. Zhang J. Yuan Y. The role of c-myc in regulating mdr1 gene expression in tumor cell line KB.[J] Chinese Medical Journal,2000,113(9): 848-851.
    35. Miao ZH, Ding J. Research advances on circumventing tumor multidrug resistance[J]. Ai Zheng, 2003,22(8):886-892
    36. Jazirehi AR,Vega MI,Chatterjee D, et al. Inhibition of the Raf-MEK1/2-ERK1/2 signaling pathway, Bcl-xL down-regulation,and chemosensitization of non-Hodgkin's lymphoma B cells by Rituximab[J]. Cancer Res,2004, 64(19): 7117-7126.
    37. Guan J, Chen XP, Zhu H, et al. Involvement of extracellular signal-regulated kinase/mitogen-activated protein kinase pathway in multidrug resistance induced by HBx in hepatoma cell line[J]. World J Gastroenterol. 2004,10(23):3522-3527.
    38. KisuckáJ, Barancík M, BohácováV, et al. Reversal effect of specific inhibitors of extracellular-signal regulated protein kinase pathway on P-glycoprotein mediated vincristine resistance of L1210 cells[J].Gen Physiol Biophys, 2001, 20(4):439-444.
    39. Weldon CB,McKee A,Collins-Burow BM,et al. PKC-mediated survival signaling in breast carcinoma cells:a role for MEK1-AP1 signaling[J]. Int J Oncol, 2005, 26(3):763-768.
    40. Lin JC,Chang SY,Hsieh DS,et al. Modulation of mitogen-activated protein kinase cascades by differentiation-1 protein: acquired drug resistance of hormone independent prostate cancer cells[J]. J Urol,2005,174(5):2022-2026.
    41. Weldon CB, Burow ME, Rolfe KW, et al. NF-kappa B-mediated chemoresistance in breast cancer cells[J].Surgery,2001,130(2):143-150.
    42. Weaver KD, Yeyeodu S, Cusack JC Jr,et al. Potentiation of chemotherapeutic agents following antagonism of nuclear factor kappa B in human gliomas[J].J Neurooncol,2003,61(3):187-196.
    43. Chuang SE,Yeh PY,Lu YS,et al. Basal levels and patterns of anticancer drug-induced activation of nuclear factor-kappaB (NF-kappaB),and its attenuation by tamoxifen, dexamethasone, and curcumin in carcinoma cells.Biochem Pharmacol[J]. 2002,63(9):1709-1716.
    44. Cherbonnier C,Déas O,Vassal G,et al. Human growth hormone gene transfer into tumor cells may improve cancer chemotherapy[J]. Cancer Gene Ther,2002,9 (6): 497-504
    45. Lee S,Cboi EJ,Jin C,et a1.Activation of PI3K/Akt pathway by PTEN reduction and PIK3CA mRNA amplification contributes to cisplatin resistance in an ovarian cancer cell line[J]. Gynecol Oncol,2005,97(1):26-34.
    46. Tsurutani J,West KA,Sayyah J,et a1.Inhibition of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin pathway but not the MEK/ERK pathway attenuates laminin-mediated small cell lung cancer cellular survival and resistance to imatinib mesylate or chemotherapy[J].Cancer Res,2005,65(18): 8423-8432.
    47. Clark AS,West K,Streicher S,et a1.Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells[J].Mol Cancer Ther. 2002,1(9):707-717.
    48. Arlt A, Gehrz A, Müerk?ster S, et al. Role of NF-kappaB and Akt/PI3K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death[J].Oncogene, 2003,22(21):3243-3251.
    49. Norimasa S, Tetsuro M, Tatsuto K, et al. Two dyridine analogues with more effective ability to reverse multidrug resistance and with lower calcium channel blocking activity than their dihydropyridine counterparts[J]. Cancer Res, 1990,50(10):3055-3059
    50. Muller C,Goubin F,Ferrandis E,et al. Evidence for transcriptional control of human mdr-1 gene expression by verapamil in multidrug-resistant leukemia cell[J]. Molecular Pharmacol,1995,47(1):51-57.
    51. Froidevaux S, Loor F. Myeloid and lymphoid cell alterations in normal mice exposed to chemotherapy with doxorubicin and/or the multidrug-resistance reversing agent SDZ PSC 833 [J].Int J Cancer,1994,59(1):133-138.
    52. Kirk J, Syed SK, Harris AL, et al. Reversal of P-glycoprotein-mediated multidrug resistance by pure antioestrogens and novel tamoxifen derivatives [J].Biochem Pharmacol, 1994,48(2):277-282.
    53. Komuro Y,Udagawa Y,Susumu N,et al. Paclitaxel and SN-38 overcome cisplatin resistance of cell lines by down-regulating the influx and efflux system of cisplatin[J]. Cancer Res,2001,92(11):1242-1250.
    54. Poirson Biochat F, Concalves RA, Miceoli L, et al .The expression of drug resistance gene products during the progression of human prostate cancer[J].Clin Cancer Res,2000,6(2):643-653.
    55. Lee WP, Lee CL, Lin HC. Glutathione S-transferase and Glutathione Peroxidase are Esential in the Early Stage of Adriamycin Resistance before P-glycoprotein Overexpression in HOB1 Lymphoma Cells.Cancer Chemother Pharmacol, 1996,38(1):45-51.
    56. Kotoh S,Naito S,Yokomizo A,et al. Enhanced Expression of gamma/ Glutamylcysteine Synthetase and Glutathione S-transferase Genes in Cisplatin-Resistant Bladder Cancer Cells withMultidrug Resistance Phenotype[J]. The Journal of Urology,1997,157(3):1054-1058.
    57. Utz I, Spitaler M, Rybczynska M, et al. Reversal of multidrug resistance by thestaurosporine derivatives CGP 41251 and CGP 42700[J]. Int J Cancer,1998,77(1): 64-69.
    58. Michieli M, Damiani D, Ermacora A, et al. Liposome-encapsulated daunorubicin for PGP-related multidrug resistance[J]. Br J Haematol,1999,106(1):92-99.
    59. de Verdière AC, Dubernet C, Némati F, et al. Reversion of multidrug resistance with polyalkylcyanoacrylate nanoparticles: towards a mechanism of action[J]. Br J Cancer,1997,76(2):198-205
    60. Riva CM. Restoration of wild-type p53 activity enhances the sensitivity of pleural metastasis to cisplatin through an apoptotic mechanism[J].Anticancer Res, 2000,20(6):4463-4471.
    61. Malorni W, Rainaldi G, Tritarelli E,et al. Tumor necrosis factor alpha is a powerful apoptotic inducer in lymphoid leukemic cells expressing the P-170 glycoprotein[J]. Int J Cancer,1996,67(2):238-247.
    62. Bhalla K,Holladay C,Arlin Z,et al. Treatment with interleukin-3 plus granulocyte-macrophage colony-stimulating factors improves the selectivity of Ara-C in vitro against acute myeloid leukemia blasts[J]. Blood,1991,78(10): 2674-2679.
    63. Lee JT Jr, Steelman LS, McCubrey JA.Phosphatidylinositol 3'-kinase activation leads to multidrug resistance protein-1 expression and subsequent chemoresistance in advanced prostate cancer cells[J] . Cancer Res , 2004 , 64(22) : 8397-404.
    64. Song XR, Hou SX. Research progress in the reversion of traditional Chinese medicine on multidrug resistance of tumor. Zhongguo Zhong Yao Za Zhi. 2005,30 (16):1300-1304.
    65.曹江,胡汛,潘锵荣,等.MDRl反义RNA表达质粒的构建及其在多药耐药细胞抗药机理研究中的应用[J].中华医学杂志,1995,75(9):557-560.
    66. Chen L,Liu Y.Reversion of multidrug resistance in vitro of lung adenocarcinoma by mdr1 ribozyme [J].Zhonghua Zhong Liu Za Zhi,2000,22(3):189-191.
    67. Takayama K,Nakanishi Y,Hara N.Gene therapy for lung cancer treatment[J]. Nippon Rinsho, 2000,58(5):1048-1052.
    68. Galski H,Sullivan M,Willingham M,et al. Expression of a human multidrug resistance cDNA (MDR1) in the bone marrow of transgenic mice: resistance to daunomycin-induced leukopenia. Mol Cell Biol,1989,9(10):4357-4361.
    69. Sugimura K,Harimoto K,Kishimoto T. In vivo gene transfer methods into bladderwithout viral vectors. Hinyokika Kiyo,1997,43(11):823-827.
    70.范培红,娄红祥.逆转肿瘤多药耐药策略进展.天然产物研究与开发,2002,14(2):74-78.
    1. Yachie A,Niida Y,Wada T,et al. Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency[J]. J Clin Invest,1999, 103(1): 129-135.
    2. Nath KA. Heme oxygenase-1: a redoubtable response that limits reperfusion injury in the transplanted adipose liver[J].J Clin Invest,1999,104(11):1485-1486.
    3. Baranano D E,Wolosker H,Bae B I,et al.A mammalian iron ATPase induced by iron[J]. J Biol Chem,2000,275(20):15166-15173.
    4. Clark J E,Foresti R,Sarathchandra P,et al.Heme oxygenase-1 derived bilirubin ameliorates postischemic myocardial dysfunction[J].Am J Physiol Heart Circ Physiol,2000,278(2):643-651.
    5. Okinaga S,Takahashi K,Takeda M,et al. Regulation of human heme oxygenase-1 gene expression under thermal stress[J].Blood,1996,87(12):5074-5084.
    6. Mann GE,Niehueser-Saran J,Watson A,et al. Nrf2/ARE regulated antioxidant gene expression in endothelial and smooth muscle cells in oxidative stress: implications for atherosclerosis and preeclampsia[J]. Sheng Li Xue Bao,2007, 59(2):117-127.
    7. Lee PJ,Jiang BH,Chin BY,et al. Hypoxia inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia[J]. J Biol Chem,1997,272(9):5375-5381.
    8. Berberat PO,Dambrauskas Z,Gulbinas A,et al. Inhibition of heme oxygenase-1 increases responsiveness of pancreatic cancer cells to anticancer treatment[J]. Clin Cancer Res, 2005,11(10):3790–3798.
    9. Doi K, Akaike T, Fujii S, et al.Induction of haem oxygenase-1, nitric oxide and ischaemia in experimental solid tumours and implications for tumour growth[J]. Br J Cancer,1999,80(12):1945–1954
    10. Maines MD, Abrahamsson PA. Expression of heme oxygenase-1 (HSP32) in human prostate: normal, hyperplastic, and tumor tissue distribution[J]. Urology, 1996,47(5):727–733.
    11. Ghattas MH,Chuang LT,Kappas A,et al. Protective effect of HO-1 against oxidative stress in human hepatoma cell line (HepG2) is independent of telomerase enzyme activity[J]. Int J Biochem Cell Biol,2002,34(12):1619–1628.
    12. Sacca P,Caballero F,Batlle A,et al.Cell cycle arrest and modulation of HO-1 expression induced by acetyl salicylic acid in hepatocarcinogenesis[J]. Int J Biochem Cell Biol,2004,36(10):1945–1953.
    13. Was H, Cichon T, Smolarczyk R,et al. Overexpression of heme oxygenase-1 in murine melanoma: increased proliferation and viability of tumor cells, decreased survival of mice[J]. Am J Pathol, 2006,169(6):2181–2198.
    14. Hill M,Pereira V,Chauveau C,et al. Heme oxygenase-1 inhibits rat and human breast cancer cell proliferation: mutual cross inhibition with indoleamine 2,3-dioxygenase[J]. FASEB J. 2005,19(14):1957–1968.
    15. Hirai K,Sasahira T,Ohmori H,et al. Inhibition of heme oxygenase-1 by zinc protoporphyrin IX reduces tumor growth of LL/2 lung cancer in C57BL mice[J]. Int J Cancer. 2007,120(3):500–505
    16. Marinissen MJ,Tanos T,Bolos M,et al. Inhibition of heme oxygenase-1 interferes with the transforming activity of the Kaposi sarcoma herpesvirus encoded G protein-coupled receptor[J]. J Biol Chem, 2006;281(6):11332–11346.
    17. Was H,Cichon T,Smolarczyk R,et al. Overexpression of heme oxygenase-1 in murine melanoma: increased proliferation and viability of tumor cells, decreased survival of mice[J]. Am J Pathol,2006,169(6):2181–2198.
    18. Iwasa H,Han J,Ishikawa F. Mitogen-activated protein kinase p38 defines the common senescence-signalling pathway[J]. Genes Cells,2003,8(2):131–144.
    19. Ollinger R,Bilban M,Erat A,et al.Bilirubin: a natural inhibitor of vascular smooth muscle cell proliferation[J]. Circulation,2005,112(7):1030–1039.
    20. Tanaka S,Akaike T,Fang J,et al.Antiapoptotic effect of haem oxygenase-1 induced by nitric oxide in experimental solid tumour[J]. Br J Cancer, 2003, 88(6):902–909.
    21. Yokoyama S,Mita S,Okabe A,et al. Prediction of radiosensitivity in human esophageal squamous cell carcinomas with heme oxygenase-1 : a clinicopathological and immunohistochemical study[J] . Oncol Rep , 2001 , 8(2) : 355–358.
    22. Maines MD. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications[J]. FASEB J,1988,2(10):2557–2568.
    23. Usserolles J,Megias J,Terencio MC,et al. Heme oxygenase-1 inhibits apoptosis in Caco-2 cells via activation of Akt pathway[J]. Int J Biochem Cell Biol,2006, 38(9):1510–1517.
    24. Engelman JA,Berg AH,Lewis RY,et al.Constitutively active mitogen-activated protein kinase kinase 6 (MKK6) or salicylate induces spontaneous 3T3-L1 adipogenesis[J]. J Biol Chem,1999,274(50):35630–35638.
    25. Liu ZM,Chen GG,Ng EK,et al. Upregulation of heme oxygenase-1 and p21 confers resistance to apoptosis in human gastric cancer cells[J]. Oncogene,2004, 23(2):503–513.
    26. Fang J,Sawa T,Akaike T, et al. Enhancement of chemotherapeutic response of tumor cells by a heme oxygenase inhibitor, pegylated zinc protoporphyrin[J]. Int J Cancer,2004,109(1):1–8.
    27. Tsui TY,Siu YT, Schlitt HJ,et al.Heme oxygenase-1-derived carbon monoxide stimulates adenosine triphosphate generation in human hepatocyte[J]. Biochem Biophys Res Commun,2005,336:898–902.
    28. Cisowski J,Loboda A,Jozkowicz A,et al.Role of heme oxygenase-1 in hydrogen peroxide-induced VEGF synthesis: effect of HO-1 knockout[J]. Biochem Biophys Res Commun,2005,326(3):670–676.
    29. Sunamura M,Duda DG,Ghattas MH,et al.Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer[J]. Angiogenesis,2003,6(1):15–24.
    30. Jozkowicz A,Was H,Dulak J. Heme oxygenase-1 in tumors: is it a false friend? [J] Antioxid Redox Signal, 2007,9(12):2099-2117.
    31. Franzmann EJ,Schroeder GL,Goodwin WJ,et al.Expression of tumor markers hyaluronic acid and hyaluronidase (HYAL1) in head and neck tumors[J]. Int J Cancer, 2003, 106(3): 438–445.
    32. Lokeshwar VB,Rubinowicz D,Schroeder GL, et al. Stromal and epithelial expression of tumor markers hyaluronic acid and HYAL1 hyaluronidase in prostate cancer[J]. J Biol Chem,2001,276(15):11922–11932.
    33. Khelifi AF,Prise VE,Tozer GM. Effects of tin-protoporphyrin IX on blood flow in a rat tumor model[J]. Exp Biol Med,2003,228(5):481–485.
    34. Blumenthal SB,Kiemer AK,Tiegs G,et al. Metalloporphyrins inactivate caspase-3 and -8. FASEB J. 2005;19(10):1272–1279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700