用户名: 密码: 验证码:
锂离子电池纳米材料及其薄膜电极的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微电子器件以及超大规模集成电路的迅猛发展对微型和薄膜电源提出了更高的要求,全固态薄膜锂离子电池由于其高的比容量、优越的循环性能,被认为是最可能满足需求的微型电源之一。但是,目前文献上用的磁控溅射或激光溅射等制作技术具有设备复杂、成本高、制作慢、不易大规模生产等缺点。全固态锂离子薄膜电池的大规模制备给研究人员带来了极大的挑战。喷墨打印技术具有经济、高效、快速制膜等特点,对于薄膜电极和锂离子薄膜电池制备具有很大的吸引力。
     尖晶石Li_4Ti_5O_(12)放电时电位平稳、不生成SEI膜、“零”体积变化以及高的安全性,被认为是最有希望替代石墨碳成为大倍率锂离子电池的负极材料。但是,其实际应用受制于低的电子电导率。因此,如何提高Li_4Ti_5O_(12)的电子电导率实现其在大倍率锂离子电池中应用是一个重要的课题。
     本论文分为两部分,第一部分,制备锂离子电池正负极纳米材料,通过喷墨打印的方法制成薄膜电极,并对纳米材料及超薄电极的电化学性能进行了的表征和深入的研究。第二部分,通过对Li_4Ti_5O_(12)材料的结构调整,以及与碳纳米管复合两种方法,提高它的大电流充放电性能。
     本论文的主要研究结果如下:
     1.在本组前期研究的基础上,对喷墨打印工艺进行了新的重要改进。其一是改进了电极的打印“墨水”制备工艺,找到了一种新的高效分散剂Lomar D,使得仅通过超声分散就能得到稳定分散的打印“墨水”,省去了以前湿法球磨辅助分散的步骤。其二是省去了薄膜电极后续的热处理步骤,仅通过简单的热滚压过程就能获得结构稳定,性能良好的薄膜电极。
     2.通过溶胶凝胶法制备了LiCoO_2前驱体。750℃下合成的LiCoO_2(平均粒径为93 nm)适合作为制备薄膜电极的活性材料。用新的Lomar D分散剂制备了打印“墨水”,喷墨打印制得了厚度约为1.1μm的LiCoO_2超薄电极,LiCoO_2的担载量为0.30 mg/cm~2。XRD和Raman光谱证明,经过超声分散和打印过程,薄膜电极中LiCoO_2的晶体结构保持完好,省去了后续热处理步骤。采用热滚压工艺克服了充放电循环过程中的薄膜开裂。超薄LiCoO_2电极在384μA/cm~2(约为10.8 C)下充放电,放电容量为105 mAh/g。在电流密度为192μA/cm~2(约5.4 C)下经过循环充放100次后,电池的放电容量仍保持在118 mAh/g。与首圈相比,容量仅减少5%。这种高倍率充放电稳定性可归因于电极极薄的厚度、低的内阻、纳米尺度的LiCoO_2以及稳定的薄膜电极结构。
     3.通过溶胶凝胶法制备了LiMn_2O_4前驱体,分析了处理温度对材料形貌结构及电化学性能的影响。结合喷墨打印的特点,选择750℃下合成的LiMn_2O_4(粒径为100 nm)作为制备超薄电极的原材料。喷墨打印方法制得的LiMn_2O_4薄膜电极表面致密,厚度在1.8μm左右,LiMn_2O_4的担载量为0.48 mg/cm~2。CV、EIS以及恒电流充放实验表明Li~+在薄膜电极中传输是一种半无限扩散行为,扩散系数为1.15×10~(-11)cm~2/s。薄膜电极在100μA/cm~2(2C)的电流密度下经过54周充放电后,容量仍可保持在104 mAh/g,单圈容量衰减仅为0.1%。这种优异的倍率和循环稳定性可归因于LiMn_2O_4晶体结构的完整、纳米粒径以及超薄的电极厚度。
     4.通过表面活性剂辅助溶胶凝胶法制备了Li_4Ti_5O_(12)的前驱体,研究了在O_2气氛中不同温度下热处理对Li_4Ti_5O_(12)形貌及粒子大小的影响。基于XRD、SEM以及充放电测试结果的分析,选择650℃处理得到的Li_4Ti_5O_(12)作为薄膜电极制备的材料,其平均粒径约为120 nm。通过喷墨打印法制得了Li_4Ti_5O_(12)薄膜电极。SEM显示薄膜电极表面平整致密,厚度约为1μm。用涂敷法获得的PEO(LiN(CF_3SO_3)_2)固体电解质膜,其厚度约为20-40μm。研究了Li/PEO(LiN(CF_3SO_3)_2)/Li_4Ti_5O_(12)(1μm)全固态电池的电化学性能,电池的平台电位在1.5 V左右,在20μA/cm~2 35℃下放电容量可达到22μAh/cm~2。
     5.首次制备了全固态聚合物电解质超薄锂离子电池。正负电极均为喷墨打印制得,电池为(Li_4Ti_5O_(12)(1μm)/PEO(LiN(CF_3SO_3)_2)/LiMn_2O_4(1.8μm))。电池的工作电压为2.5 V,整个电池的厚度不超过30μm,在电流密度为20μA/cm~2时,35℃下的放电容量为18μAh/cm~2,并且具有良好的循环性能。
     6.采用以P123为高分子乳化剂,制备了正庚烷/乙醇的两相微乳体系。调整原材料Ti(OC_4H_9)_4和LiAC的量,制得了由纳米Li_4Ti_5O_(12)组成的不同形貌的材料。包括不同壁厚的Li_4Ti_5O_(12)空心球以及多孔Li_4Ti_5O_(12)。纳米颗粒组成的单层Li_4Ti_5O_(12)空心球(壁厚约100 nm)具有优异的电化学性能。在0.5 C下充放电,其放电容量为162 mAh/g,此材料甚至可用20 C进行充放电,容量仍可达95mAh/g。2 C下500圈充放电后,其放电容量仍有142 mAh/g,单圈容量损失仅为0.01%。这种高倍率充放电稳定性可归因于:纳米粒子有助于缩短充放电过程中锂离子的扩散距离;空心结构有益于增加电极材料和电解液接触的有效反应面积。
     7.在Li_4Ti_5O_(12)的制备过程中加入纳米碳管,N_2气氛下热处理获得了CNT-Li_4Ti_5O_(12)复合材料。XRD数据表明纳米碳管的存在并没有影响尖晶石Li_4Ti_5O_(12)的形成。TEM图表明CNTs在Li_4Ti_5O_(12)中分布很均匀,Li_4Ti_5O_(12)纳米粒子几乎都粘附在纳米碳管的周围。热重实验测得纳米碳管在复合材料中的重量百分比为8.2%。
     与相似过程制得的Li_4Ti_5O_(12)相比,CNT-Li_4Ti_5O_(12)复合材料中的Li_4Ti_5O_(12)具有更小的纳米粒径。复合材料在0.5 C下的放电容量为150 mAh/g。如果考虑到其中Li_4Ti_5O_(12)的实际含量(91.8%),那么Li_4Ti_5O_(12)的放电容量可以高达163mAh/g,接近Li_4Ti_5O_(12)的理论放电容量(175 mAh/g)。复合材料在20 C下的放电容量仍可达106 mAh/g,相当于0.5 C时的70.1%。复合材料还具有很好的循环稳定性,5 C下充放电500圈其放电容量几乎不变。CNT-Li_4Ti_5O_(12)复合材料的这种优异的电化学性能可归因于Li_4Ti_5O_(12)小的纳米粒径,纳米碳管的复合极大地改进了材料的电子导电性;以及纳米碳管带来的复合材料电极的多孔性。
With the fast development of microelectronic system and very large-scale integrations,there is an increasing requirement of micro driving power with excellent electrochemical performance.In the fields of micro power source, all-solid-state thin film lithium ion batteries has been viewed as one of the most promising micro powers due to its high specific capacity and excellent cycling performance.But the large scale fabrication of thin film electrode brings a big challenge in its application.In the thin film preparation field,ink-jet printing technique has its special advantages of economy,fast and high efficiency,which will be a promising way to large scale fabrication of thin film electrode in all solid state lithium ion batteries.
     Recently,the spinel Li_4Ti_5O_(12) has been viewed as a promising alternative of graphite to be an anode material in lithium ion batteries.But,its' application in high rate lithium ion batteries was hindered by its low electronic conductivity.Therefore, how to increase the electronic conductivity of Li_4Ti_5O_(12) is a key solution for its high-rate application.
     This paper consists of two parts.In the first part,the sol-gel method was used to synthesize nano cathode/anode materials for lithium ion batteries.With these materials the thin film electrodes were prepared by ink-jet printing technique.Also, their electrochemical properties were investigated in detail.In the second part,the rate performance of Li_4Ti_5O_(12) was improved by its structure modification or composing with carbon nano fibers.The main results were listed as following:
     1.With the aim to improve the quality of thin film electrode and to simply the processes,a new high efficient dispersant(Lomar D) was used to suspense the particles for preparing electrode printing 'ink'.Compare with our previous method it can save the wet ball milling process,and the consequent heat treatment process.
     2.Through a sol-gel process and the calcination at 750℃in O_2 atmaspher, nano-LiCoO_2 particles with the diameter of 93nm could be synthesized.Using ink-jet printing technique LiCoO_2 thin film with the thickness of 1.16μm was prepared after 30 iterative printings and hot rolling process.The loading amount of LiCoO_2 on the substrate of aluminum sheet was 0.30mg/cm~2.The influence of thermal rolling process on the electrochemical performance of thin film electrode was investigated.The thin film without thermal rolling has a rough surface and loose structure,and bad cycle capability.XRD and Raman spectra showed that the LiCoO_2 crystal structure maintained very well in thin film even after the ultrasonic and printing processes.After 100 cycles at 5 C it still kept stable.This thin film electrode presented a good rate capability and capacity retention.At current of 64μA/cm~2 (about 1.8 C),the discharge capacity was 132mAh/g.It even could be charged-discharge at 384μA/cm~2(about 10C) with a stable discharge capacity of 105 mAh/g. At the current rate of 192μA/cm~2(5.4 C),after 100 cycles the discharge capacity kept at 118 mAh/g,which was only 5%loss compare with the value in initial cycle. The good electrochemical performance of thin film LiCoO_2 electrode could be attributed to its extremely thin thickness,low inner resistance by carbon doping, nano particle size of LiCoO_2 and the stable film structure.
     3.Spinel LiMn_2O_4 was synthesized by a sol-gel method,the influence of calcination temperature on LiMn_2O_4 properties was investigated.The LiMn_2O_4 treated at 750℃with a particle size of about 100 nm was chosen for preparing printing 'ink'.The jet printed thin film electrode with thickness of about 1.8μm has a smooth surface.The loading amount of LiMn_2O_4 was 0.48mg/cm~2.Its electrochemical performance was investigated by CV,EIS and chronoampermetry methods.The Li~+ diffusion behavior was performed as a semi-infinite diffusion process with the diffusion efficiency of 1.15×10~(-11)cm~2/s.LiMn_2O_4 thin film electrode showed a good rate capability.At discharge current density of 100μA/cm~2(2C),the electrode presented a discharge capacity of 104mAh/g.After 54 cycles,the capacity loss was only 0.1%for per cycle.This good electrochemical performance could be attributed to its extremely thin thickness,good crystal structure,and the nano particle size of LiMn_2O_4.
     4.Spinel Li_4Ti_5O_(12) was synthesized through a sol-gel method.Under O_2 atmosphere the influence of calcination temperature on the morphologies,size and the electrochemical properties of Li_4Ti_5O_(12) was investigated.According to the results of XRD,SEM and charge/discharge tests,Li_4Ti_5O_(12) prepared at 650℃with the diameter of about 120nm was selected as the raw material for preparing printing ink. The jet printed Li_4Ti_5O_(12) thin film electrode with the thickness of about 1μm showed a smooth surface and a porous structure.The performance of all solid battery of Li/PEO(LiN(CF_3SO_3)_2)/Li_4Ti_5O_(12)(about 1μm ) was tested.The charge/discharge plateau was about 1.5 V.At the current density of 20μA/cm~2,its discharge capacity was 22μAh/cm~2 at 35℃.
     5.An all solid thin film polymer electrolyte battery was prepared in first time. The battery consisted of jet printed thin film electrodes and a PEO(LiN(CF_3SO_3)_2 separator:Li4_Ti_5O_(12)(about 1μm ) / PEO(LiN(CF_3SO_3)_2(27μm)/LiMn_2O_4(1.8μm). This thin film battery with the thickness of less than 30μm presented a work voltage about 2.5 V.At 35℃,it can be charge-discharged at current density of 20μA/cm~2 with a capacity of 18μAh/cm~2.
     6.Hollow spherical Li_4Ti_5O_(12) was prepared by a macro emulsion method using P123 as emulsifier.Its frameworks built from many nano Li_4Ti_5O_(12) particles with the size of 100nm.Different morphologies from hollow sphere to marco porous structure of material could be synthesized by adjusted the amount of Ti(OC_4H_9)_4 and LiAC in the two phases n-heptane/ethanol solvent system.Among them the mono layer hollow spherical material showed the best electrochemical performance.It can be charge-discharged at 20 C(3.4A/g) with the specific capacity of 95mAh/g. Besides its excellent rate capability,this material also presented good capacity retention:over 500 cycles at the charge and discharge rate of 2 C the specific capacity kept very stable as 140mAh/g,and only loss 0.01%for per cycle.The excellent electrochemical performance of hollow spherical Li_4Ti_5O_(12) is mainly due to its stable hollow structure and the nano scale particles.
     7.CNTs(carbon nano tubes)/Li_4Ti_5O_(12) composite was prepared by sol-gel method using Ti(OC_4H_9)_4,LiCH_3CO0·2H_2O and the n-heptane containing CNTs. The CNTs amount in the composite was about 8.2%.The characters of CNTs/Li_4Ti_5O_(12) composite were determined by XRD,SEM,and TG methods.Its electrochemical properties were measured by charge-discharge cycling and impedance tests.TEM image shows that CNTs dispersed homogenously in CNTs/Li_4Ti_5O_(12) samples and the nano Li_4Ti_5O_(12) particles stickled on the surface of CNTs.Compared with spinel Li_4Ti_5O_(12) prepared by similar way,the size of Li_4Ti_5O_(12) particles in CNT-Li_4Ti_5O_(12) composite was smaller.Experimental results showed that the CNTs/Li_4Ti_5O_(12) composite presented an excellent rate capability and capacity retention.At 0.5 C it demonstrated a discharge capacity of 150mAh/g,if considered the weight content of Li_4Ti_5O_(12) in composite,the nominal capacity of Li_4Ti_5O_(12) should be 163mAh/g,which is close to the theoretical capacity of 175 mAh/g.At the charge-discharge rate of 5 C and 10 C,the discharge capacities of Li_4Ti_5O_(12)/CNTs were 145 and 135 mAh/g respectively.After 500 cycles at 5 C,the discharge capacity retained as 142mAh/g.Even it can be discharged at 20 C,the discharge capacity was 106mAh/g,which was equal to 70.1%of that at 0.5 C.The excellent electrochemical performance of CNTs/Li_4Ti_5O_(12) electrode could be attributed to the improvement of electronic conductivity and the porous electrode structure caused by adding of CNT fibers and the nano size of Li_4Ti_5O_(12) particles in the CNTs/Li_4Ti_5O_(12) composite.
引文
[1] Akridge J R, Vourlis H. Performance of Li/TiS_2 solid state batteries using phosphorous chalcogenide network former glasses as solid electrolyte [J]. Solid State Ionics, 1988, 28-30(Part 1): 841-846.
    
    [2] Akridge J R, Vourlis H. Solid state batteries using vitreous solid electrolytes [J]. Solid State Ionics, 1986, 18-19(Part2): 1082-1087.
    [3] Wang B, Bates J B, Hart F X, Sales B C, Zuhr R A, Robertson J D. Characterization of Thin-Film Rechargeable Lithium Batteries with Lithium Cobalt Oxide Cathodes [J]. Journal of The Electrochemical Society, 1996, 143(10): 3203-3213.
    [4] Ohtsuka H, Okada S, Yamaki J. Solid state battery with Li_2O-V_2O_5-SiO_2 solid electrolyte thin film [J]. Solid State Ionics, 1990, 40-41 (Part 2): 964-966.
    [5] Neudecker B J, Dudney N J, Bates J B. "Lithium-Free" Thin-Film Battery with In Situ Plated Li Anode [J]. Journal of the Electrochemical Society, 2000, 147(2): 517-523.
    [6] Baba M, Kumagai N, Kobayashi H, Nakano O, Nishidate K. Fabrication and Electrochemical Characteristics of All-Solid-State Lithium-Ion Batteries Using V_2O_5 Thin Films for Both Electrodes [J]. Electrochemical and Solid-State Letters, 1999, 2(7): 320-322.
    [7] Baba M, Kumagai N, Fujita N, Ohta K, Nishidate K, Komaba S, Groult H, Devilliers D, Kaplan B. Fabrication and electrochemical characteristics of all-solid-state lithium-ion rechargeable batteries composed of LiMn_2O_4 positive and V_2O_5 negative electrodes [J]. Journal of Power Sources, 2001, 97-98: 798-800.
    [8] Kanehori K, Matsumoto K, Miyauchi K, Kudo T. Thin film solid electrolyte and its application to secondary lithium cell [J]. Solid State Ionics, 1983, 9-10(Part 2): 1445-1448.
    
    [9] Kanehori K, Ito Y, Kirino F, Miyauchi K, Kudo T. Titanium disulfide films fabricated by plasma CVD [J]. Solid State Ionics, 1986, 18-19(Part 2): 818-822.
    
    [10] Meunier G, Dormoy R, Levasseur A. New positive-electrode materials for lithium thin film secondary batteries [J]. Materials Science and Engineering B, 1989,3(1-2): 19-23.
    
    [11] Creus R, Sarradin J, Astier R, Pradel A, Ribes M. The use of ionic and mixed conductive glasses in microbatteries [J]. Materials Science and Engineering B, 1989,3(1-2): 109-112.
    [12] Jones S D, Akridge J R. A thin film solid state microbattery [J]. Solid State Ionics, 1992, 53-56(Part 1): 628-634.
    [13] Zhang S S. The effect of the charging protocol on the cycle life of a Li-ion battery [J]. Journal of Power Sources, 2006, 161(2): 1385-1391.
    [14] Ohtsuka H, Sakurai Y. Characteristics of Li/MoO_(3-x) thin film batteries [J]. Solid State Ionics, 2001, 144(1-2): 59-64.
    [15] Dudney N J, Bates J B, Zuhr R A, Young S, Robertson J D, Jun H P, Hackney S A. Nanocrystalline Li_xMn_(2-y)O_4 Cathodes for Solid-State Thin-Film Rechargeable Lithium Batteries [J]. Journal of the Electrochemical Society, 1999, 146(7): 2455-2464.
    [16] Neudecker B J, Zuhr R A, Kwak B S, Bates J B, Robertson J D. Lithium Manganese Nickel Oxides Li_x(Mn_yNi_(1-y))_(2-x)O_2 [J]. Journal of the Electrochemical Society, 1998, 145(12): 4148-4159.
    [17] Bates J B, Lubben D, Dudney N J, Hart F X. 5 Volt Plateau in LiMn2O4 Thin Films [J]. Journal of the Electrochemical Society, 1995, 142(9): 149-151.
    [18] Bates J B, Dudney N J, Lubben D C, Gruzalski G R, Kwak B S, Yu X, Zuhr R A. Thin-film rechargeable lithium batteries [J]. Journal of Power Sources, 1995, 54(1): 58-62.
    [19] Neudecker B J, Zuhr R A, Bates J B. Lithium silicon tin oxynitride (LiySiTON): high-performance anode in thin-film lithium-ion batteries for microelectronics [J]. Journal of Power Sources, 1999, 81-82: 27-32.
    [20] Park Y S, Lee S H, Lee B I, Joo S K. All-Solid-State Lithium Thin-Film Rechargeable Battery with Lithium Manganese Oxide [J]. Electrochemical and Solid-State Letters, 1999, 2(2): 58-59.
    [21] Michalak F, Von R K, Richardson T, Slack J, Rubin M. Electrochromic lithium nickel oxide thin films by RF-sputtering from a LiNiO_2 target [J]. Electrochimica Acta, 1999, 44(18): 3085-3092.
    [22] Xie J, Imanishi N, Hirano A, Matsumura M, Takeda Y, Yamamoto O. Kinetics investigation of a preferential (104) plane oriented LiCoO_2 thin film prepared by RF magnetron sputtering [J]. Solid State Ionics, 2007, 178(19-20): 1218-1224.
    [23] Jeon S W, Lim J K, Lim S H, Lee S M. As-deposited LiCoO_2 thin film cathodes prepared by rf magnetron sputtering [J]. Electrochimica Acta, 2005, 51(2): 268-273.
    [24] Liao C L, Fung K Z. Lithium cobalt oxide cathode film prepared by rf sputtering [J]. Journal of Power Sources, 2004, 128(2): 263-269.
    [25] Michalak F, Von R K, Richardson T, Slack J, Rubin M. Electrochromic lithium nickel oxide thin films by RF-sputtering from a LiNiO_2 target [J]. Electrochimica Acta, 1999,44(18): 3085-3092.
    [26] Chiu K -. In Situ Modification of RF Sputter-Deposited Lithium Nickel Oxide Thin Films by Plasma Irradiation [J]. Journal of the Electrochemical Society, 2004, 151(11): 1865-1869.
    [27] Xia H, Lu L. Texture effect on the electrochemical properties of LiCoO_2 thin films prepared by PLD [J]. Electrochimica Acta, 2007, 52(24): 7014-7021.
    [28] Xia H, Lu L, Ceder G. Substrate effect on the microstructure and electrochemical properties of LiCoO_2 thin films grown by PLD [J]. Journal of Alloys and Compounds, 2006, 417(1-2): 304-310.
    [29] Chuying Ouyang, Haidong Deng, Zhiqing Ye, Minsheng Lei L C. Pulsed laser deposition prepared LiMn_2O_4 thin film [J]. Thin Solid Films, 2006, 503: 268 (?)C 271.
    [30] Tang S B, Lai M O, Lu L. Properties of nano-crystalline LiMn_2O_4 thin films deposited by pulsed laser deposition [J]. Electrochimica Acta, 2006, 52(3): 1161-1168.
    [31] Julien C, Haro-poniatowski E, Camacho-lopez M A, Escobar-alarcon L, Jimenez-jarquin J. Growth of LiMn_2O_4 thin films by pulsed-laser deposition and their electrochemical properties in lithium microbatteries [J]. Materials Science and Engineering B, 2000, 72(1): 36-46.
    [32] Song S W, Reade R P, Cairns E J, Vaughey J T, Thackeray M M, Striebel K A. Cu_2Sb Thin-Film Electrodes Prepared by Pulsed Laser Deposition for Lithium Batteries [J]. Journal of the Electrochemical Society, 2004, 151(7): 1012-1019.
    [33] Kuwata N, Kawamura J, Toribami K, Hattori T, Sata N. Thin-film lithium-ion battery with amorphous solid electrolyte fabricated by pulsed laser deposition [J]. Electrochemistry Communications, 2004, 6(4): 417-421.
    [34] Li C L, Zhang B, Fu Z W. Physical and electrochemical characterization of amorphous lithium lanthanum titanate solid electrolyte thin-film fabricated by e-beam evaporation [J]. Thin Solid Films, 2006, 515(4): 1886-1892.
    [35] Kim J B, Lee H Y, Lee K S, Lim S H, Lee S M. Fe/Si multi-layer thin film anodes for lithium rechargeable thin film batteries [J]. Electrochemistry Communications, 2003, 5(7): 544-548.
    [36] Kim Y L, Lee H Y, Jang S W, Lee S J, Baik H K, Yoon Y S, Park Y S, Lee S M. Nanostructured Ni_3Sn_2 thin film as anodes for thin film rechargeable lithium batteries [J]. Solid State Ionics, 2003, 160(3-4): 235-240.
    [37] Li C L, Zhang B, Fu Z W. Physical and electrochemical characterization of amorphous lithium lanthanum titanate solid electrolyte thin-film fabricated by e-beam evaporation [J]. Thin Solid Films, 2006, 515(4): 1886-1892.
    [38] Liquan C, Schoonman J. Polycrystalline, glassy and thin films of LiMn_2O_4[J]. Solid State Ionics, 1993, 67(1-2): 17-23.
    [39] Tao Y, Chen Z, Zhu B, Huang W. Preparation of preferred oriented LiCoO_2 thin films by soft solution processing [J]. Solid State Ionics, 2003, 161(1-2): 187-192.
    [40] Rho Y H, Kanamura K, Fujisaki M, Hamagami J, Suda S, Umegaki T. Preparation of Li5Ti5O12 and LiCoO_2 thin film electrodes from precursors obtained by sol-gel method [J]. Solid State Ionics, 2002, 151(1-4): 151-157.
    [41] Park Y J, Kim J G, Kim M K, Chung H T, Kim H G. Preparation of LiMn_2O_4 thin films by a sol-gel method [J]. Solid State Ionics, 2000, 130(3-4): 203-214.
    [42] Svegl F, Orel B, Kaucic V. Electrochromic properties of lithiated Co-oxide (Li_xCoO_2) and Ni-oxide (LixNiO2) thin films prepared by the sol-gel route [J]. Solar Energy, 2000, 68(6): 523-540.
    [43] Rho Y H, Kanamura K. Li~+ ion diffusion in Li_4Ti_5O_(12) thin film electrode prepared by PVP sol-gel method [J]. Journal of Solid State Chemistry, 2004, 177(6): 2094-2100.
    [44] Rho Y H, Kanamura K. Li~+-Ion Diffusion in LiCoO_2 Thin Film Prepared by the Poly(vinylpyrrolidone) Sol-Gel Method [J]. Journal of the Electrochemical Society, 2004, 151(9): 1406-1411.
    [45] D.shu, K.y.chung, W.i. Cho K B K. Electrochemical investigations on electrostatic spray deposited LiMn_2O_4 films [J]. Journal of power sources, 2003, 114:253-263.
    [46] Yamada K, Sato N, Fujino T, Lee C G, Uchida I, Selman J R. Preparation of LiNiO_2 and LiMyNi1-yO2 (M=Co,Al) films by electrostatic spray deposition [J]. Journal of Solid State Electrochemistry, 1999, 3(3): 148-153.
    [47] Yoon W S, Chung K Y, Nam K W, Kim K B. Characterization of LiMn_2O_4-coated LiCoO_2 film electrode prepared by electrostatic spray deposition [J]. Journal of Power Sources, 2006, 163(1): 207-210.
    [48] Yoon W S, Ban S H, Lee K K, Kim K B, Kim M G, Lee J M. Electrochemical characterization of layered LiCoO_2 films prepared by electrostatic spray deposition [J]. Journal of Power Sources, 2001, 97-98: 282-286.
    [49] Yu Y, Shui J L, Chen C H. Electrostatic spray deposition of spinel Li_4Ti_5O_(12) thin films for rechargeable lithium batteries [J]. Solid State Communications, 2005, 135(8): 485-489.
    [50] Chen C H, Buysman A A, Kelder E M, Schoonman J. Fabrication of LiCoO2 thin film cathodes for rechargeable lithium battery by electrostatic spray pyrolysis [J]. Solid State Ionics, 1995, 80(1-2): 1-4.
    [51] Shokoohi F K, Tarascon J M, Wilkens B J, Guyomard D, Chang C C. Low Temperature LiMn_2O_4 Spinel Films for Secondary Lithium Batteries [J]. Journal of the Electrochemical Society, 1992, 139(7): 1845-1849.
    [52] Lee S J, Lee J K, Kim D W, Baik H K, Lee S M. Fabrication of Thin Film LiCo_(0.5)Ni_(0.5)O_2 Cathode for Li Rechargeable Microbattery [J]. Journal of the Electrochemical Society, 1996, 143(11): 268-270.
    [53] Park Y J, Kim J G, Kim M K, Chung H T, Um W S, Kim M H, Kim H G. Fabrication of LiMn_2O_4 thin films by sol-gel method for cathode materials of microbattery [J]. Journal of Power Sources, 1998, 76(1): 41-47.
    [54] Liu P, Zhang J G, Turner J A, Tracy C E, Benson D K. Lithium-Manganese-Oxide Thin-Film Cathodes Prepared by Plasma-Enhanced Chemical Vapor Deposition [J]. Journal of the Electrochemical Society, 1999, 146(6): 2001-2005.
    [55] Fragnaud P, Schleich D M. Thin film components for solid state lithium batteries [J]. Sensors and Actuators A: Physical, 1995, 51(1): 21-23.
    [56] Kim Y S, Ahn H J, Shim H S, Seong T Y. Electrochemical and structural properties of MoO_3-V_2O_5 nanocomposite thin film electrodes for lithium rechargeable batteries [J]. Solid State Ionics, 2006, 177(15-16): 1323-1326.
    [57] Halalay I C, Nazri G -, Cheng Y -, Eesley G L, Meyer M S. Optical measurement of lithium diffusivity in cathode materials: amorphous MoO_3 films [J]. Journal of Power Sources, 1995, 54(2): 218-220.
    [58] Julien C, Nazri G A, Guesdon J P, Gorenstein A, Khelfa A, Hussain O M. Influence of the growth conditions on electrochemical features of MoO_3 film-cathodes in lithium microbatteries [J]. Solid State Ionics, 1994, 73(3-4): reflux method [J]. Electrochimica Acta, 2004, 50(2-3): 467-471.
    [70] Kim W S. Characteristics of LiCoO_2 thin film cathodes according to the annealing ambient for the post-annealing process [J]. Journal of Power Sources, 2004,134(1): 103-109.
    [71] Choi W G, Yoon S G. Structural and electrical properties of LiCoO_2 thin-film cathodes deposited on planar and trench structures by liquid-delivery metalorganic chemical vapour deposition [J]. Journal of Power Sources, 2004,125(2): 236-241.
    [72] Fujiwara T, Yoshimura M. Direct patterning of LiCoO_2 films by electrochemically activated interfacial reactions as a recent development in soft solution processing [J]. Journal of Electroanalytical Chemistry, 2003, 559: 63-68.
    [73] Kim M K, Chung H T, Park Y J, Kim J G, Son J T, Park K S, Kim H G. Fabrication of LiCoO_2 thin films by sol-gel method and characterisation as positive electrodes for Li/LiCoO_2 cells [J]. Journal of Power Sources, 2001, 99(1-2): 34-40.
    [74] Tang S B, Xia H, Lai M O, Lu L. Characterization of LiMn_2O_4 thin films grown on Si substrates by pulsed laser deposition [J]. Journal of Alloys and Compounds, 2008, 449(1-2): 322-325.
    [75] Wu X M, He Z Q, Chen S, Ma M Y, Xiao Z B, Liu J B. The effect of thickness on the properties of solution-deposited LiMn_2O_4 thin films [J]. Materials Chemistry and Physics, 2007, 105(1): 58-61.
    [76] Tang S B, Lai M O, Lu L. Properties of nano-crystalline LiMn_2O_4 thin films deposited by pulsed laser deposition [J]. Electrochimica Acta, 2006, 52(3): 1161-1168.
    [77] Shih F Y, Fung K Z. Effect of chitosan addition on the electrochemical behavior and crystallization of LiMn_2O_4 film derived from acetates-containing solution [J]. Electrochimica Acta, 2006, 51(28): 6533-6541.
    [78] Rho Y H, Dokko K, Kanamura K. Li+ ion diffusion in LiMn_2O_4 thin film prepared by PVP sol-gel method [J]. Journal of Power Sources, 2006, 157(1): 471-476.
    [79] Ma M, Xiao Z, Li X, Wu X, He Z, Chen S. Characterization of rapid thermally processed LiMn_2O_4 thin films derived from solution deposition [J]. Transactions of Nonferrous Metals Society of China, 2006, 16(3): 545-550.
    [80] Wu X M, Li X H, Wang Z, Xiao Z B, Liu J, Yan W B. Characterization of solution-derived LiMn_2O_4 thin films heat-treated by rapid thermal annealing [J]. Materials Chemistry and Physics, 2004, 83(1): 78-81.
    [81] Yamada I, Abe T, Iriyama Y, Ogumi Z. Lithium-ion transfer at LiMn_2O_4 thin film electrode prepared by pulsed laser deposition [J]. Electrochemistry Communications, 2003, 5(6): 502-505.
    [82] Moon H S, Park J W. Improvement of cyclability of LiMn_2O_4 thin films by transition-metal substitution [J]. Journal of Power Sources, 2003, 119-121: 717-720.
    [83] Wu X M, Li X H, Xu M F, Zhang Y H, He Z Q, Wang Z. Preparation of LiMn_2O_4 thin films by aqueous solution deposition [J]. Materials Research Bulletin, 2002, 37(14): 2345-2353.
    [84] Park Y J, Kim J G, Kim M K, Chung H T, Kim H G. Preparation of LiMn_2O_4 thin films by a sol-gel method [J]. Solid State Ionics, 2000, 130(3-4): 203-214.
    [85] Julien C, Haro-poniatowski E, Camacho-lopez M A, Escobar-alarcon L, Jimenez-jarquin J. Growth of LiMn_2O_4 thin films by pulsed-laser deposition and their electrochemical properties in lithium microbatteries [J]. Materials Science and Engineering B, 2000, 72(1): 36-46.
    [86] Kim C J, Ann I S, Cho K K, Lee S G, Chung J K. Characteristics of LiNiO_2 thin films synthesized by Li diffusion on the surface oxidized epitaxial layer of Ni-alloy [J]. Journal of Alloys and Compounds, 2008, 449(1-2): 335-338.
    [87] Endo E, Yasuda T, Yamaura K, Kita A, Sekai K. LiNiO_2 electrode modified by plasma chemical vapor deposition for higher voltage performance [J]. Journal of Power Sources, 2001, 93(1-2): 87-92.
    [88] Yoshimura M, Han K S, Tsurimoto S. Direct fabrication of thin-film LiNiO_2 electrodes in LiOH solution by electrochemical-hydrothermal method [J]. Solid State Ionics, 1998, 106(1-2): 39-44.
    [89] Navone C, Baddour-hadjean R, Pereira-ramos J P, Salot R. A kinetic study of electrochemical lithium insertion into oriented V_2O_5 thin films prepared by rf sputtering [J]. Electrochimica Acta, 2008, 53(8): 3329-3336.
    [90] Swiatowska-mrowiecka J, Martin F, Maurice V, Zanna S, Klein L, Castle J, Marcus P. The distribution of lithium intercalated in V_2O_5 thin films studied by XPS and ToF-SIMS [J]. Electrochimica Acta, In Press, Accepted Manuscript: 3336.
    [91] Sahana M B, Sudakar C, Thapa C, Lawes G, Naik V M, Baird R J, Auner G W, Naik R, Padmanabhan K R. Electrochemical properties of V_2O_5 thin films deposited by spin coating [J]. Materials Science and Engineering: B, 2007, 143(1-3): 42-50.
    [92] Swiatowska-mrowiecka J, Maurice V, Klein L, Marcus P. Nanostructural modifications of V_2O_5 thin films during Li intercalation studied in situ by AFM [J]. Electrochemistry Communications, 2007, 9(9): 2448-2455.
    [93] Swiatowska-mrowiecka J, Maurice V, Zanna S, Klein L, Briand E, Vickridge I, Marcus P. Ageing of V_2O_5 thin films induced by Li intercalation multi-cycling [J]. Journal of Power Sources, 2007,170(1): 160-172.
    [94] Levi M D, Lu Z, Aurbach D. Li-insertion into thin monolithic V_2O_5 films electrodes characterized by a variety of electroanalytical techniques [J]. Journal of Power Sources, 2001, 97-98: 482-485.
    [95] Shouji E, A B D. EQCM measurements of solvent transport during Li+ intercalation in V_2O_5 xerogel films [J]. Electrochimica Acta, 2000, 45(22-23): 3757-3764.
    [96] Levi M D, Lu Z, Gofer Y, Cohen Y, Cohen Y, Aurbach D, Vieil E, Serose J. Simultaneous in-situ conductivity and cyclic voltammetry characterization of Li-ion intercalation into thin V_2O_5 films [J]. Journal of Electroanalytical Chemistry, 1999,479(1): 12-20.
    [97] Coustier F, Passerini S, Smyrl W H. Dip-coated silver-doped V_2O_5 xerogels as host materials for lithium intercalation [J]. Solid State Ionics, 1997, 100(3-4): 247-258.
    [98] Julien C, Ivanov I, Gorenstein A. Vibrational modifications on lithium intercalation in V_2O_5 films [J]. Materials Science and Engineering B, 1995, 33(2-3): 168-172.
    [99] Scarminio J, Talledo A, Andersson A A, Passerini S, Decker F. Stress and electrochromism induced by Li insertion in crystalline and amorphous V_2O_5 thin film electrodes [J]. Electrochimica Acta, 1993, 38(12): 1637-1642.
    [100] Park H Y, Nam S C, Lim Y C, Choi K G, Lee K C, Park G B, Kim J B, Kim H P, Cho S B. LiCoO_2 thin film cathode fabrication by rapid thermal annealing for micro power sources [J]. Electrochimica Acta, 2007, 52(5): 2062-2067.
    [101] Singh D, Houriet R, Giovannini R, Hofmann H, Craciun V, Singh R K. Challenges in making of thin films for Li_xMn_yO_4 rechargeable lithium batteries for MEMS [J]. Journal of Power Sources, 2001, 97-98: 826-831.
    [102] Singh D, Kim W -, Craciun V, Hofmann H, Singh R K. Microstructural and electrochemical properties of lithium manganese oxide thin films grown by pulsed laser deposition [J]. Applied Surface Science, 2002, 197-198: 516-521.
    [103] Chen G S, Chen G S, Hsiao H H, Louh R F, Humphreys C J. Improving Thermal Stability of LiMn_2O_4 Thin Films by In Situ Coating of alpha-MnO_2 Using High-Pressure and High-Temperature Sputtering [J]. Electrochemical and Solid-State Letters, 2004, 7(8): 235-238.
    [104] Kim H K, Seong T Y, Yoon Y S. Fabrication of a Thin Film Battery Using a Rapid-Thermal-Annealed LiNiO2 Cathode [J]. Electrochemical and Solid-State Letters, 2002, 5(11): 252-255.
    [105] Park Y J, Ryu K S, Kim K M, Park N G, Kang M G, Chang S H. Electrochemical properties of vanadium oxide thin film deposited by R.F. sputtering [J]. Solid State Ionics, 2002, 154-155: 229-235.
    [106] Huang F, Fu Z W, Qin Q Z, A novel Li_2Ag_(0.5)V_2O_5 composite film cathode for all-solid state lithium batteries [J]. Electrochemistry Communications, 2003, 5:262-266.
    [107] Wakihara M. Recent developments in lithium ion batteries [J]. Materials Science and Engineering: R: Reports, 2001, 33(4): 109-134.
    [108] Ramesh S, Yuen T F, Shen C J. Conductivity and FTIR studies on PEO-LiX [X: CF3SO3-, SO42-] polymer electrolytes [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2008, 69(2): 670-675.
    [109] Johnson P L, Kennedy M W, Smith C M, Truong N, Teeters D. Investigation of the inherent electrical potential of PEO electrolyte films [J]. Electrochimica Acta, 2007, 53(4): 1490-1496.
    [110] Marzantowicz M, Dygas J R, Krok F, Florjanczyk Z, Zygadlo-monikowska E. Influence of crystalline complexes on electrical properties of PEO:LiTFSI electrolyte [J]. Electrochimica Acta, 2007, 53(4): 1518-1526.
    [111] Burba C M, Frech R, Grady B. Stretched PEO-LiCF3SO3 films: Polarized IR spectroscopy and X-ray diffraction [J]. Electrochimica Acta, 2007, 53(4): 1548-1555.
    [112] Jeong S S, Lim Y T, Choi Y J, Cho G B, Kim K W, Ahn H J, Cho K K. Electrochemical properties of lithium sulfur cells using PEO polymer electrolytes prepared under three different mixing conditions [J]. Journal of Power Sources, 2007, 174(2): 745-750.
    [113] Marzantowicz M, Dygas J R, Krok F, Florjanczyk Z, Zygadlo-monikowska E. Conductivity and dielectric properties of polymer electrolytes PEO:LiN(CF_3SO_2)_2 near glass transition [J]. Journal of Non-Crystalline Solids, 2007, 353(47-51): 4467-4473.
    [114] Zygadlo-monikowska E, Florjanczyk Z, Rogalska-jonska E, Werbanowska A, Tomaszewska A, Langwald N, Golodnitsky D, Peled E, Kovarsky R, Chung S H, Greenbaum S G. Lithium ion transport of solid electrolytes based on PEO/CF3SO3Li and aluminum carboxylate [J]. Journal of Power Sources, 2007, 173(2): 734-742.
    [115] Subba R C, Wu G P, Zhao C X, Jin W, Zhu Q Y, Chen W, Mho S. Mesoporous silica (MCM-41) effect on (PEO+LiAsF6) solid polymer electrolyte [J]. Current Applied Physics, 2007, 7(6): 655-661.
    [116] Tang Z, Wang J, Chen Q, He W, Shen C, Mao X X, Zhang J. A novel PEO-based composite polymer electrolyte with absorptive glass mat for Li-ion batteries [J]. Electrochimica Acta, 2007, 52(24): 6638-6643.
    [117] Pitawala H M, Dissanayake M A, Seneviratne V A. Combined effect of Al_2O_3 nano-fillers and EC plasticizer on ionic conductivity enhancement in the solid polymer electrolyte (PEO0_9LiTf [J]. Solid State Ionics, 2007, 178(13-14): 885-888.
    [118] Hu L, Tang Z, Zhang Z. New composite polymer electrolyte comprising mesoporous lithium aluminate nanosheets and PEO/LiClO4 [J]. Journal of Power Sources, 2007, 166(1): 226-232.
    [119] Reddy M J, Chu P P, Kumar J S, Rao U V. Inhibited crystallization and its effect on conductivity in a nano-sized Fe oxide composite PEO solid electrolyte [J]. Journal of Power Sources, 2006,161(1): 535-540.
    [120] Park J W, Jeong E D, Won M S, Shim Y B. Effect of organic acids and nano-sized ceramic doping on PEO-based solid polymer electrolytes [J]. Journal of Power Sources, 2006, 160(1): 674-680.
    [121] Wang Y J, Pan Y, Kim D. Conductivity studies on ceramic Li_(1.3)Al_(0.3)Ti_(1.7)(PO_4)_3-filled PEO-based solid composite polymer electrolytes [J]. Journal of Power Sources, 2006, 159(1): 690-701.
    [122] Appetecchi G B, Shin J H, Alessandrini F, Passerini S. 0.6 Ah Li/V_2O_5 battery prototypes based on solvent-free PEO-LiN(SO_2CF_2CF_3)_2 polymer electrolytes [J]. Journal of Power Sources, 2005, 143(1-2): 236-242.
    [123] Yuan F, Chen H Z, Yang H Y, Li H Y, Wang M. PAN-PEO solid polymer electrolytes with high ionic conductivity [J]. Materials Chemistry and Physics, 2005, 89(2-3): 390-394.
    [124] Fiory F S, Croce F, D E A, Licoccia S, Scrosati B, Traversa E. PEO based polymer electrolyte lithium-ion battery [J]. Journal of the European Ceramic Society Electroceramics VIII, 2004, 24(6): 1385-1387.
    [125] Appetecchi G B, Hassoun J, Scrosati B, Croce F, Cassel F, Salomon M. Hot-pressed, solvent-free, nanocomposite, PEO-based electrolyte membranes: II. All solid-state Li/LiFePO4 polymer batteries [J]. Journal of Power Sources, 2003, 124(1): 246-253.
    [126] Fenton D E, Parker J M, Wright P V. Complexes of alkali metal ions with poly(ethylene oxide) [J]. Polymer, 1973, 14(11): 589.
    [127] Scrosati B, Croce F, Panero S. Progress in lithium polymer battery R&D [J]. Journal of Power Sources, 2001, 100(1-2): 93-100.
    [128] Itoh T, Hirata N, Wen Z, Kubo M, Yamamoto O. Polymer electrolytes based on hyperbranched polymers [J]. Journal of Power Sources, 2001, 97-98: 637-640.
    [129] Wen Z, Itoh T, Ichikawa Y, Kubo M, Yamamoto O. Blend-based polymer electrolytes of poly(ethylene oxide) and hyperbranched poly[bis(triethylene glycol)benzoate] with terminal acetyl groups [J]. Solid State Ionics, 2000, 134(3-4): 281-289.
    [130] Luque J L, Bergas E M. Characterisation of new polymer electrolytes based on polyethers and polyphosphazene blends [J]. Solid State Ionics, 1996, 91(1-2): 75-80.
    [131] Morales E, Acosta J L. Conductivity and electrochemical stability of composite polymer electrolytes [J]. Solid State Ionics, 1998, 111(1-2): 109-115.
    [132] Aihara Y, Kuratomi J, Bando T, Iguchi T, Yoshida H, Ono T, Kuwana K. Investigation on solvent-free solid polymer electrolytes for advanced lithium batteries and their performance [J]. Journal of Power Sources, 2003, 114(1): 96-104.
    [133] Aihara Y, Hayamizu K, Sugimoto K, Bando T, Iguchi T, Kuratomi J, Ono T, Kuwana K. Ion diffusion mechanisms in the cross-linked poly(ether) doped with LiN(CF_3SO_2)_2 [J]. Journal of Power Sources, 2001, 97-98: 628-631.
    [134] Kuratomi J, Iguchi T, Bando T, Aihara Y, Ono T, Kuwana K. Development of solid polymer lithium secondary batteries [J]. Journal of Power Sources, 2001, 97-98: 801-803.
    [135] Fonseca C P, Neves S. Characterization of polymer electrolytes based on poly(dimethyl siloxane-co-ethylene oxide) [J]. Journal of Power Sources, 2002, 104(1): 85-89.
    [136] Motogami K, Kono M, Mori S, Watanabe M, Ogata N. A new polymer electrolyte based on polyglycidylether [J]. Electrochimica Acta, 1992, 37(9): 1725-1727.
    [137] Borghini M C, Mastragostino M, Zanelli A. Reliability of lithium batteries with crosslinked polymer electrolytes [J]. Electrochimica Acta, 1996, 41(15): 2369-2373.
    [138] Moon S I, Lee C R, Jin B S, Min K E, Kim W S. Ionic conductivities of cross-linked polymer electrolytes prepared from oligo(ethylene glycol) dimethacrylates [J]. Journal of Power Sources, 2000, 87(1-2): 223-225.
    [139] Allcock H R, Napierala M E, Olmeijer D L, Cameron C G, Kuharcik S E, Reed C S, O C S. New macromolecules for solid polymeric electrolytes [J]. Electrochimica Acta, 1998,43(10-11): 1145-1150.
    [140] York S, Kellam I I, Allcock H R, Frech R. A vibrational spectroscopic study of lithium triflate in polyphosphazenes with linear oligoethyleneoxy side-chains of different lengths [J]. Electrochimica Acta, 2001, 46(10-11): 1553-1557.
    [141] Zhang Z, Fang S. Novel network polymer electrolytes based on polysiloxane with internal plasticizer. Electrochimica Acta, 2000, 45(13): 2131-2138.
    [142] Ikeda Y, Wada Y, Matoba Y, Murakami S, Kohjiya S. Characterization of comb-shaped high molecular weight poly(oxyethylene) with tri(oxyethylene) side chains for a polymer solid electrolyte [J]. Electrochimica Acta, 2000, 45(8-9): 1167-1174.
    [143] Chung J -, Sohn H -. Electrochemical properties of amorphous comb-shaped composite PEO polymer electrolyte [J]. Journal of Power Sources, 2002, 112(2): 671-675.
    [144] Egashira M, Utsunomiya Y, Yoshimoto N, Morita M. Effects of the surface treatment of the Al_2O_3 filler on the lithium electrode/solid polymer electrolyte interface properties [J]. Electrochimica Acta, 2006, 52(3): 1082-1086.
    [145] Tominaga Y, Asai S, Sumita M, Panero S, Scrosati B. A novel composite polymer electrolyte: Effect of mesoporous SiO_2 on ionic conduction in poly(ethylene oxide)-LiCF_3SO_3 complex [J]. Journal of Power Sources, 2005, 146(1-2): 402-406.
    [146] Dudney N J, Bates J B, Zuhr R A, Luck C F, Robertson J D. Sputtering of lithium compounds for preparation of electrolyte thin films [J]. Solid State Ionics, 1992, 53-56(Part 1): 655-661.
    [147] Joo K, Sohn H, Vinatier P, Pecquenard B, Levasseur A. Lithium Ion Conducting Lithium Sulfur Oxynitride Thin Film [J]. Electrochemical and Solid-State Letters, 2004, 7(8): 256-258.
    [148] Abe T, Takeda K, Fukutsuka T, Iriyama Y, Ogumi Z. Electrochemical Properties of Graphitized Carbonaceous Thin Films Prepared by PACVD [J]. Journal of the Electrochemical Society, 2004, 151(11): 694-697.
    [149] Li Y, Tu J P, Shi D Q, Huang X H, Wu H M, Yuan Y F, Zhao X B. DC magnetron sputtering prepared AgC thin film anode for thin film lithium ion microbatteries [J]. Journal of Alloys and Compounds, 2007, 436(1-2): 290-293.
    [150] Hess M, Lebraud E, Levasseur A. Graphite multilayer thin films: A new anode material for Li-ion microbatteries synthesis and characterization [J]. Journal of Power Sources, 1997, 68(2): 204-207.
    [151] Lee K L, Jung J Y, Lee S W, Moon H S, Park J W. Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries [J]. Journal of Power Sources, 2004, 129(2): 270-274.
    [152] Choi N S, Yew K H, Kim H, Kim S S, Choi W U. Surface layer formed on silicon thin-film electrode in lithium bis(oxalato) borate-based electrolyte [J]. Journal of Power Sources, 2007,172(1): 404-409.
    [153] Xia H, Tang S, Lu L. Properties of amorphous Si thin film anodes prepared by pulsed laser deposition [J]. Materials Research Bulletin, 2007, 42(7): 1301-1309.
    [154] Deng H X, Chung C Y, Xie Y T, Chu P K, Wong K W, Zhang Y, Tang Z K. Improvement of electrochemical performance of Si thin film anode by rare-earth La PIII technique [J]. Surface and Coatings Technology, 2007, 201(15): 6785-6788.
    [155] Baranchugov V, Markevich E, Pollak E, Salitra G, Aurbach D. Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes [J]. Electrochemistry Communications, 2007, 9(4): 796-800.
    [156] Kulova T L, Skundin A M, Pleskov Y V, Terukov E I, Kon O I. Lithium insertion into amorphous silicon thin-film electrodes [J]. Journal of Electroanalytical Chemistry, 2007, 600(1): 217-225.
    [157] Park M S, Wang G X, Liu H K, Dou S X. Electrochemical properties of Si thin film prepared by pulsed laser deposition for lithium ion micro-batteries [J]. Electrochimica Acta, 2006, 51(25): 5246-5249.
    [158] Moon T, Kim C, Park B. Electrochemical performance of amorphous-silicon thin films for lithium rechargeable batteries [J]. Journal of Power Sources, 2006, 155(2): 391-394.
    [159] Lee K S, Kim Y L, Lee S M. Silver alloying effect on the electrochemical behavior of Si-Zr thin film anodes [J]. Journal of Power Sources, 2005, 146(1-2): 464-468.
    [160] Kim J B, Jun B S, Lee S M. Improvement of capacity and cyclability of Fe/Si multilayer thin film anodes for lithium rechargeable batteries [J]. Electrochimica Acta, 2005, 50(16-17): 3390-3394.
    [161] Zhang Y, Fu Z W, Qin Q Z. Microstructure and Li alloy formation of nano-structured amorphous Si and Si/TiN composite thin film electrodes [J]. Electrochemistry Communications, 2004, 6(5): 484-491.
    [162] Kim Y L, Lee H Y, Jang S W, Lim S H, Lee S J, Baik H K, Yoon Y S, Lee S M. Electrochemical characteristics of Co-Si alloy and multilayer films as anodes for lithium ion microbatteries [J]. Electrochimica Acta, 2003, 48(18): 2593-2597.
    [163] Kim J B, Lee H Y, Lee K S, Lim S H, Lee S M. Fe/Si multi-layer thin film anodes for lithium rechargeable thin film batteries [J]. Electrochemistry Communications, 2003, 5(7): 544-548.
    [164] Song S W, Striebel K A, Song X, Cairns E J. Amorphous and nanocrystalline Mg2Si thin-film electrodes [J]. Journal of Power Sources, 2003, 119-121: 110-112.
    [165] Lee S J, Lee H Y, Baik H K, Lee S M. Si-Zr alloy thin-film anodes for microbatteries [J]. Journal of Power Sources, 2003, 119-121: 113-116.
    [166] Lee S J, Lee H Y, Park Y, Baik H K, Lee S M. Si (-Zr)/Ag multilayer thin-film anodes for microbatteries [J]. Journal of Power Sources, 2003, 119-121: 117-120.
    [167] Jung H, Park M, Han S H, Lim H, Joo S K. Amorphous silicon thin-film negative electrode prepared by low pressure chemical vapor deposition for lithium-ion batteries [J]. Solid State Communications, 2003, 125(7-8): 387-390.
    [168] Maranchi J P, Hepp A F, Kumta P N. LiCoO_2 and SnO_2 thin film electrodes for lithium-ion battery applications [J]. Materials Science and Engineering B, 2005, 116(3): 327-340.
    [169] Choi S H, Kim J S, Yoon Y S. Fabrication and characterization of SnO_2-RuO_2
    [180] Wei T, Ruan J, Fan Z, Luo G, Wei F. Preparation of a carbon nanotube film by ink-jet printing [J]. Carbon, 2007,45(13): 2712-2716.
    [181] Yeoh C K, Srimala S, Sabar D H, Zainal A A. Fabrication of BaTiO_3 thin films through ink-jet printing of TiO2 sol and soluble Ba salts. Materials Letters, 2007, 61(23-24): 4536-4539.
    [182] Kim D, Jeong S, Lee S, Park B K, Moon J. Organic thin film transistor using silver electrodes by the ink-jet printing technology [J]. Thin Solid Films, 2007, 515(19): 7692-7696.
    [183] Park B K, Kim D, Jeong S, Moon J, Kim J S. Direct writing of copper conductive patterns by ink-jet printing [J]. Thin Solid Films, 2007, 515(19): 7706-7711.
    [184] Boland T, Tao X, Damon B J, Manley B, Kesari P, Jalota S, Bhaduri S. Drop-on-demand printing of cells and materials for designer tissue constructs [J]. Materials Science and Engineering: C, 2007, 27(3): 372-376.
    [185] Park J, Moon J, Shin H, Wang D, Park M. Direct-write fabrication of colloidal photonic crystal microarrays by ink-jet printing [J]. Journal of Colloid and Interface Science, 2006, 298(2): 713-719.
    [186] Zhao Y, Zhou Q, Liu L, Xu J, Yan M, Jiang Z. A novel and facile route of ink-jet printing to thin film SnO2 anode for rechargeable lithium ion batteries [J]. Electrochimica Acta, 2006, 51(13): 2639-2645.
    [187] Natori A Y, Canestraro C D, Roman L S, Ceschin A M. Modification of the sheet resistance of ink jet printed polymer conducting films by changing the plastic substrate [J]. Materials Science and Engineering: B, 2005, 122(3): 231-235.
    [188] Shen W, Zhao Y, Zhang C. The preparation of ZnO based gas-sensing thin films by ink-jet printing method [J]. Thin Solid Films, 2005, 483(1-2): 382-387.
    [189] Sanjana N E, Fuller S B. A fast flexible ink-jet printing method for patterning dissociated neurons in culture [J]. Journal of Neuroscience Methods, 2004, 136(2): 151-163.
    [190] Ai Y, Liu Y, Cui T, Varahramyan K. Thin film deposition of an n-type organic semiconductor by ink-jet printing technique [J]. Thin Solid Films, 2004, 450(2): 312-315.
    [191] Ding X, Li Y, Wang D, Yin Q. Fabrication of BaTiO_3 dielectric films by direct ink-jet printing [J]. Ceramics International, 2004, 30(7): 1885-1887.
    [192] Lee D H, Derby B. Preparation of PZT suspensions for direct ink jet printing [J]. Journal of the European Ceramic Society, 2004, 24(6): 1069-1072.
    [193] Xu F, Wang T, Li W, Jiang Z. Preparing ultra-thin nano-MnO_2 electrodes using computer jet-printing method [J]. Chemical Physics Letters, 2003, 375(1-2): 247-251.
    [194] Cooley P, Wallace D, Antohe B. Applicatons of Ink-Jet Printing Technology to BioMEMS and Microfluidic Systems [J]. Journal of the Association for Laboratory Automation, 2002, 7(5): 33-39.
    [195] Lewis J A. Direct-write assembly of ceramics from colloidal inks [J]. Current Opinion in Solid State and Materials Science, 2002, 6(3): 245-250.
    [196] Mott M, Evans J R. Zirconia/alumina functionally graded material made by ceramic ink jet printing [J]. Materials Science and Engineering A, 1999, 271(1-2): 344-352.
    [197] Hart A L, Turner A P, Hopcroft D. On the use of screen- and ink-jet printing to produce amperometric enzyme electrodes for lactate [J]. Biosensors and Bioelectronics, 1996, 11(3): 263-270.
    [198] Magdassi S, Bassa A, Vinetsky Y, Kamyshny A. Silver Nanoparticles as Pigments for Water-Based Ink-Jet Inks [J]. Chem. Mater., 2003, 15(11): 2208-2217.
    [199] Ko H -, Park J, Shin H, Moon J. Rapid Self-Assembly of Monodisperse Colloidal Spheres in an Ink-Jet Printed Droplet [J]. Chem. Mater., 2004, 16(22): 4212-4215.
    [200] Lange S A, Benes V, Kern D P, Horber J K, Bernard A. Microcontact Printing of DNA Molecules [J]. Anal. Chem., 2004, 76(6): 1641-1647.
    [201] Lee P H, Sawan S P, Modrusan Z, Arnold L J, Reynolds M A. An Efficient Binding Chemistry for Glass Polynucleotide Microarrays [J]. Bioconjugate Chem., 2002, 13(1): 97-103.
    [202] Turcu F, Tratsk-nitz K, Thanos S, Schuhmann W, Heiduschka P. Ink-jet printing for micropattern generation of laminin for neuronal adhesion [J]. Journal ofNeuroscience Methods, 2003, 131(1-2): 141-148.
    [203] Singh B K, Hillier A C. Multicolor Surface Plasmon Resonance Imaging of Ink Jet-Printed Protein Microarrays [J]. Anal. Chem., 2007, 79(14): 5124-5132.
    [204] Aldon L, Kubiak P, Womes M, Jumas J C, Olivier-fourcade J, Tirado J L, Corredor J I, Perezvicente C. Chemical and Electrochemical Li-Insertion into the Li_4Ti_5O_(12) Spinel [J]. Chemistry of Materials, 2004, 16(26): 5721-5725.
    [205] Lippens P E, Worries M, Kubiak P, Jumas J C, Olivier-fourcade J. Electronic structure of the spinel Li_4Ti_5O_(12) studied by ab initio calculations and X-ray absorption spectroscopy [J]. Solid State Sciences, 2004, 6(2): 161-166.
    [206] Sun Y -, Jung D -, Lee Y S, Nahm K S. Synthesis and electrochemical characterization of spinel Li[Li_((1-x)/3)Cr_xTi_((5-2x)/3)]O_4 anode materials [J]. Journal of Power Sources, 2004, 125(2): 242-245.
    [207] Kubiak P, Garcia A, Womes M, Aldon L, Olivier-fourcade J, Lippens P E, Jumas J C. Phase transition in the spinel Li_4Ti_5O_(12) induced by lithium insertion: Influence of the substitutions Ti/V, Ti/Mn, Ti/Fe [J]. Journal of Power Sources, 2003,119-121:626-630.
    [208] Pyun S I, Kim S W, Shin H C. Lithium transport through Li_(1+[delta])[Ti_(2-y)Li_y]O_4 (y=0; 1/3) electrodes by analysing current transients upon large potential steps [J]. Journal of Power Sources, 1999, 81-82: 248-254.
    [209] Jung K N, Pyun S I, Kim S W. Thermodynamic and kinetic approaches to lithium intercalation into Li[Ti_(5/3)Li_(1/3)]O_4 film electrode [J]. Journal of Power Sources, 2003, 119-121: 637-643.
    [210] Jiang C, Ichihara M, Honma I, Zhou H. Effect of particle dispersion on high rate performance of nano-sized Li_4Ti_5O_(12) anode [J]. Electrochimica Acta, 2007, 52(23): 6470-6475.
    [211] Gao J, Ying J, Jiang C, Wan C. High-density spherical Li_4Ti_5O_(12)/C anode material with good rate capability for lithium ion batteries [J]. Journal of Power Sources, 2007, 166(1): 255-259.
    [212] Wang G J, Gao J, Fu L J, Zhao N H, Wu Y P, Takamura T. Preparation and characteristic of carbon-coated Li_4Ti_5O_(12) anode material [J]. Journal of Power Sources, 2007, 174(2): 1109-1112.
    [213] Julien C M, Zaghib K. Electrochemistry and local structure of nano-sized Li_(4/3)Me_(5/3)O_4 (MeMn, Ti) spinels [J]. Electrochimica Acta, 2004, 50(2-3): 411-416.
    [214] Allen J L, Jow T R, Wolfenstine J. Low temperature performance of nanophase Li_4Ti_5O_(12) [J]. Journal of Power Sources, 2006, 159(2): 1340-1345.
    [215] Guerfi A, Charest P, Kinoshita K, Perrier M, Zaghib K. Nano electronically conductive titanium-spinel as lithium ion storage negative electrode [J]. Journal of Power Sources, 2004, 126(1-2): 163-168.
    [216] Guerfi A, Sevigny S, Lagace M, Hovington P, Kinoshita K, Zaghib K. Nano-particle Li_4Ti_5O_(12) spinel as electrode for electrochemical generators [J]. Journal of Power Sources, 2003,119-121: 88-94.
    [217] Singhal A, Skandan G, Amatucci G, Badway F, Ye N, Manthiram A, Ye H, Xu J J. Nanostructured electrodes for next generation rechargeable electrochemical devices [J]. Journal of Power Sources, 2004, 129(1): 38-44.
    [218] Venkateswarlu M, Chen C H, Do J S, Lin C W, Chou T C, Hwang B J. Electrochemical properties of nano-sized Li_4Ti_5O_(12) powders synthesized by a sol-gel process and characterized by X-ray absorption spectroscopy [J]. Journal of Power Sources, 146(1-2): 204-208.
    [219] Shen C, Zhang X, Zhou Y, Li H. Preparation and characterization of nanocrystalline Li_4Ti_5O_(12) by sol-gel method [J]. Materials Chemistry and Physics, 2003, 78(2): 437-441.
    [220] Guerfi A, Sevigny S, Lagace M, Hovington P, Kinoshita K, Zaghib K. Nano-particle Li_4Ti_5O_(12) spinel as electrode for electrochemical generators [J]. Journal of Power Sources, 2003, 119-121: 88-94.
    [221] Guerfi A, Charest P, Kinoshita K, Perrier M, Zaghib K. Nano electronically conductive titanium-spinel as lithium ion storage negative electrode [J]. Journal of Power Sources, 2004, 126(1-2): 163-168.
    [222] Robertson A D, Trevino L, Tukamoto H, Irvine J T. New inorganic spinel oxides for use as negative electrode materials in future lithium-ion batteries [J]. Journal of Power Sources, 1999, 81-82: 352-357.
    [223] Chen C H, Vaughey J T, Jansen A N, Dees D W, Kahaian A J, Goacher T, Thackeray M M. Studies of Mg-Substituted Li_(4-x)Mg_xTi_5O_(12) Spinel Electrodes (0≤x ≤1) for Lithium Batteries [J]. Journal of the Electrochemical Society, 2001, 148(1): 102-104.
    [224] Huang S, Wen Z, Zhu X, Gu Z. Preparation and electrochemical performance of Ag doped Li_4Ti_5O_(12) [J]. Electrochemistry Communications, 2004, 6(11): 1093-1097.
    [225] Kavan L, Gratzel M. Facile Synthesis of Nanocrystalline Li_4Ti_5O_(12) (Spinel) Exhibiting Fast Li Insertion [J]. Electrochemical and Solid-State Letters, 2002, 5(2): 39-42.
    [226] Sorensen E M, Barry S J, Jung H -, Rondinelli J M, Vaughey J T, Poeppelmeier K R. Three-Dimensionally Ordered Macroporous Li_4Ti_5O_(12): Effect of Wall Structure on Electrochemical Properties[J].Chemistry of Materials,2006,18(2):482-489.
    [227]Ohzuku T,Ueda A,Yamamoto N,Iwakoshi Y.Factor affecting the capacity retention of lithium-ion cells[J].Journal of Power Sources,1995,54(1):99-102.
    [228]Prosini P P,Mancini R,Petrucci L,Contini V,Villano P.Li_4Ti_5O_(12) as anode in all-solid-state,plastic,lithium-ion batteries for low-power applications[J].Solid State Ionics,2001,144(1-2):185-192.
    [229]Lundblad A,Bergman B.Synthesis of LiCoO_2 starting from carbonate precursors I.The reaction mechanisms[J].Solid State Ionics,1997,96(3-4):173-181.
    [230]Kang S G,Kang S Y,Ryu K S,Chang S H.Electrochemical and structural properties of HT-LiCoO_2 and LT-LiCoO_2 prepared by the citrate sol-gel method [J].Solid State Ionics,1999,120(1-4):155-161.
    [231]Bach S,Pereira-ramos J P,Baffler N.Electrochemical properties of sol-gel Li_(4/3)Ti_(5/3)O_4[J].Journal of Power Sources,1999,81-82:273-276.
    [232]Li J,Tang Z,Zhang Z.Controllable formation and electrochemical properties of one-dimensional nanostructured spinel Li_4Ti_5O_(12)[J].Electrochemistry Communications,2005,7(9):894-899.
    [1]查全性.电极过程动力学导论(第三版)[M].北京:科学出版社,2002:1-426
    [2]柳厚田,徐品弟等译,周伟舫校.电化学中的仪器方法[M].上海:复旦大学出版社,1992:1-461
    [3]张祖训,汪尔康.电化学的原理方法[M].北京:科学出版社,2000:1-694
    [4]何金兰,杨克让,李小戈.仪器分析原理[M].北京:科学出版社,2002:1-520
    [5]项一非,李树家.中级物理化学实验[M].北京:高等教育出版社,1988:1-300
    [6]周玉,武高辉.材料分析测试技术[M].哈尔滨:哈尔滨工业大学出版社,1998:102
    [7]邵原华,朱果逸,董献堆,张柏林译,[美]阿伦.J.巴德,拉里.R.福克纳.电化学方法原理和应用[M].北京:化学工业出版社,2005:166
    [8]尚世铉,袁树忠,吕福云.近代物理技术[M].北京:高等教育出版社,1993:43
    [9]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002
    [1] Akimoto J, Gotoh Y, Oosawa Y. Synthesis and Structure Refinement of LiCoO_2 Single Crystals [J]. Journal of Solid State Chemistry, 1998, 141(1): 298-302.
    [2] Tang S B, Lai M O, Lu L. Li-ion diffusion in highly (0 0 3) oriented LiCoO_2 thin film cathode prepared by pulsed laser deposition [J]. Journal of Alloys and Compounds, 2008, 449(1-2): 300-303.
    [3] Yamada I, Iriyama Y, Abe T, Ogumi Z. Lithium-ion transfer on a Li_xCoO_2 thin film electrode prepared by pulsed laser deposition-Effect of orientation [J]. Journal of Power Sources, 2007, 172(2): 933-937.
    [4] Xia H, Lu L. Texture effect on the electrochemical properties of LiCoO_2 thin films prepared by PLD [J]. Electrochimica Acta, 2007, 52(24): 7014-7021.
    [5] Tang S B, Lai M O, Lu L. Effects of oxygen pressure on LiCoO_2 thin film cathodes and their electrochemical properties grown by pulsed laser deposition [J]. Journal of Alloys and Compounds, 2006, 424(1-2): 342-346.
    [6] Xia H, Lu L, Ceder G. Substrate effect on the microstructure and electrochemical properties of LiCoO_2 thin films grown by PLD [J]. Journal of Alloys and Compounds, 2006, 417(1-2): 304-310.
    [7] Yoon W S, Chung K Y, Nam K W, Kim K B. Characterization of LiMn_2O_4-coated LiCoO_2 film electrode prepared by electrostatic spray deposition [J]. Journal of Power Sources, 2006, 163(1): 207-210.
    [8] Yu Y, Shui J L, Jin Y, Chen C H. Electrochemical performance of nano-SiO_2 modified LiCoO_2 thin films fabricated by electrostatic spray deposition (ESD) [J]. Electrochimica Acta, 2006, 51(16): 3292-3296.
    [9] Yoon W S, Ban S H, Lee K K, Kim K B, Kim M G, Lee J M. Electrochemical characterization of layered LiCoO_2 films prepared by electrostatic spray deposition [J]. Journal of Power Sources, 2001, 97-98: 282-286.
    [10] Chen C H, Buysman A A, Kelder E M, Schoonman J. Fabrication of LiCoO_2 thin film cathodes for rechargeable lithium battery by electrostatic spray pyrolysis [J]. Solid State Ionics, 1995, 80(1-2): 1-4.
    [11] Xie J, Imanishi N, Hirano A, Matsumura M, Takeda Y, Yamamoto O. Kinetics investigation of a preferential (104) plane oriented LiCoO_2 thin film prepared by RF magnetron sputtering [J]. Solid State Ionics, 2007, 178(19-20): 1218-1224.
    [12] Liao C L, Lee Y H, Fung K Z. The film growth and electrochemical properties of rf-sputtered LiCoO_2 thin films [J]. Journal of Alloys and Compounds, 2007, 436(1-2): 303-308.
    [13] Jeon S W, Lim J K, Lim S H, Lee S M. As-deposited LiCoO_2 thin film cathodes prepared by rf magnetron sputtering [J]. Electrochimica Acta, 2005, 51(2): 268-273.
    [14] Liao C L, Fung K Z. Lithium cobalt oxide cathode film prepared by rf sputtering [J]. Journal of Power Sources, 2004, 128(2): 263-269.
    [15] Kim M K, Park K S, Son J T, Kim J G, Chung H T, Kim H G. The electrochemical properties of thin-film LiCoO_2 cathode prepared by sol-gel process [J]. Solid State Ionics, 2002,152-153: 267-272.
    [16] Rho Y H, Kanamura K, Fujisaki M, Hamagami J, Suda S, Umegaki T. Preparation of L_i4Ti_5O_(12) and LiCoO_2 thin film electrodes from precursors obtained by sol-gel method [J]. Solid State Ionics, 2002, 151(1-4): 151-157.
    [17] Kim M K, Chung H T, Park Y J, Kim J G, Son J T, Park K S, Kim H G. Fabrication of LiCoO_2 thin films by sol-gel method and characterisation as positive electrodes for Li/LiCoO_2 cells [J]. Journal of Power Sources, 2001, 99(1-2): 34-40.
    [18] Kushida K, Kuriyama K. Optical absorption related to Co-3d bands in sol-gel grown LiCoO_2 films [J]. Solid State Communications, 2001, 118(12): 615-618.
    [19] Song S, Han K, Yoshimura M. Microstructure and Phase Equilibria - Effect of 20-200 ℃ Fabrication Temperature on Microstructure of Hydrothermally Prepared LiCoO_2 Films [J]. Journal of the American Ceramic Society, 2000, 83(11): 2389-2395.
    [20] Liao C L, Lee Y H, Fung K Z. The film growth and electrochemical properties of rf-sputtered LiCoO_2 thin films [J]. Journal of Alloys and Compounds, 2007, 436(1-2): 303-308.
    [21] Minoru Inaba,yasutoshi Iriyama, Zempachi Ogumi, Yasufumi Todzuka A T. Raman study of layered rock-salt LiCoO_2 and its electrochemical lithium deintercalation [J]. Journal of Raman Spectrscopy, 1997, 28: 613-617.
    [22] Minoru I Y. Raman study of layered rock-salt LiCoO_2 and its electrochemical lithium deintercalation [J]. Journal of Raman Spectroscopy, 1997, 28(8): 613-617.
    [23] Kim W S. Characteristics of LiCoO_2 thin film cathodes according to the annealing ambient for the post-annealing process [J]. Journal of Power Sources, 2004,134(1):103-109.
    [24]Kim M K,Chung H T,Park Y J,Kim J G,Son J T,Park K S,Kim H G.Fabrication of LiCoO_2 thin films by sol-gel method and characterisation as positive electrodes for Li/LiCoO_2 cells[J].Journal of Power Sources,2001,99(1-2):34-40.
    [25]Pyun S I,Choi Y M.Electrochemical lithium intercalation into and de-intercalation from porous LiCoO_2 electrode by using potentiostatic current transient technique[J].Journal of Power Sources,1997,68(2):524-529.
    [26]Iriyama Y,Inaba M,Abe T,Ogumi Z.Preparation of c-axis oriented thin films of LiCoO_2 by pulsed laser deposition and their electrochemical properties[J].Journal of Power Sources,2001,94(2):175-182.
    [27]Frangini S,Scaccia S,Carewska M.Suppression of Phase Transitions in Li-rich Lithium Cobaltite Cathodes Observed by Microparticle Cyclic Voltammetry[J].Electrochemical and Solid-State Letters,2002,5(10):209-212.
    [28]Uchida I,Sato H.Preparation of Binder-Free,Thin Film LiCoO_2 and Its Electrochemical Responses in a Propylene Carbonate Solution[J].Journal of the Electrochemical Society,1995,142(9):139-141.
    [29]Dokko K,Mohamedi M,Fujita Y,Itoh T,Nishizawa M,Umeda M,Uchida I.Kinetic Characterization of Single Particles of LiCoO_2 by AC Impedance and Potential Step Methods[J].Journal of the Electrochemical Society,2001,148(5):422-426
    [1]Raveendranath K,Ravi J,Jayalekshmi S,Rasheed T M,Nair K P.Thermal diffusivity measurement on LiMn_2O_4 and its de-lithiated form(λ-MnO_2) using photoacoustic technique[J].Materials Science and Engineering:B,2006,131(1-3):210-215.
    [2]Julien C M,Gendron F,Amdouni A,Massot M.Lattice vibrations of materials for lithium rechargeable batteries.Ⅵ:Ordered spinels[J].Materials Science and Engineering:B,2006,130(1-3):41-48.
    [3]Y.Wang,W.Chen,Q.Luo,S.Xie C H C.Columnar-grown porous films of lithium manganese oxide spinel(LiMn_2O_4) prepared by ultrasonic spray deposition[J].Applied Surface Science,2006,252:8096-8101.
    [4]Fu-yun Shih K F.Effect of chitosan on stabilization of acetates-containing solution A novel precursor for LiMn_2O_4 film deposition[J].Journal of Power Sources,2007,159:1370-1376.
    [5]Ouyang C,Deng H,Ye Z,Lei M,Chen L.Pulsed laser deposition prepared LiMn_2O_4 thin film[J].Thin Solid Films,2006,503(1-2):268-271.
    [6]Inaba M,Doi T,Iriyama Y,Abe T,Ogumi Z.Electrochemical STM observation of LiMn_2O_4 thin films prepared by pulsed laser deposition[J].Journal of Power Sources,1999,81-82:554-557.
    [7]Dumont T,Lippert T,Dobeli M,Grimmer H,Ufheil J,Novak P,Wursig A,Vogt U,Wokaun A.Influence of experimental parameter on the Li-content of LiMn_2O_4 electrodes produced by pulsed laser deposition[J].Applied Surface Science,2006,252(13):4902-4906.
    [8]Julien C,Haro-poniatowski E,Camacho-lopez M A,Escobar-alarcon L,Jimenez-jarquin J.Growth of LiMn_2O_4 thin films by pulsed-laser deposition and their electrochemical properties in lithium microbatteries[J].Materials Science and Engineering B,2000,72(1):36-46.
    [9]Singh D,Kim W -,Craciun V,Hofmann H,Singh R K.Microstructural and electrochemical properties of lithium manganese oxide thin films grown by pulsed laser deposition[J].Applied Surface Science,2002,197-198:516-521.
    [10]Tang S B,Lai M O,Lu L.Properties of nano-crystalline LiMn_2O_4 thin films deposited by pulsed laser deposition[J].Electrochimica Acta,2006,52(3):1161-1168.
    [11]Tang S B,Lai M O,Lu L,Tripathy S.Comparative study of LiMn_2O_4 thin film cathode grown at high,medium and low temperatures by pulsed laser deposition [J].Journal of Solid State Chemistry,2006,179(12):3831-3838.
    [12]Tang S B,Xia H,Lai M O,Lu L.Characterization of LiMn_2O_4 thin films grown on Si substrates by pulsed laser deposition[J].Journal of Alloys and Compounds,2008,449(1-2):322-325.
    [13]Yamada I,Abe T,Iriyama Y,Ogumi Z.Lithium-ion transfer at LiMn_2O_4 thin film electrode prepared by pulsed laser deposition[J].Electrochemistry Communications,2003,5(6):502-505.
    [14]Lee K L,Jung J Y,Lee S W,Moon H S,Park J W.Electrochemical characteristics and cycle performance of LiMn_2O_4/a-Si microbattery[J].Journal of Power Sources,2004,130(1-2):241-246.
    [15]Moon H S,Park J W.Improvement of cyclability of LiMn_2O_4 thin films by transition-metal substitution[J].Journal of Power Sources,2003,119-121:717-720.
    [16]Shu D,Gopu K,Kim K B,Ryu K S,Chang S H.Surface modification of LiMn_2O_4 thin films at elevated temperature[J].Solid State Ionics,2003,160(3-4):227-233.
    [17]Yoon W S,Chung K Y,Nam K W,Kim K B.Characterization of LiMn_2O_4-coated LiCoO_2 film electrode prepared by electrostatic spray deposition[J].Journal of Power Sources,2006,163(1):207-210.
    [18]Rho Y H,Dokko K,Kanamura K.Li~+ ion diffusion in LiMn_2O_4 thin film prepared by PVP sol-gel method[J].Journal of Power Sources,2006,157(1):471-476.
    [19]Park Y J,Kim J G,Kim M K,Chung H T,Kim H G.Preparation of LiMn_2O_4thin films by a sol-gel method[J].Solid State Ionics,2000,130(3-4):203-214.
    [20]Park Y J,Kim J G,Kim M K,Chung H T,Um W S,Kim M H,Kim H G.Fabrication of LiMn_2O_4 thin films by sol-gel method for cathode materials of microbattery[J].Journal of Power Sources,1998,76(1):41-47.
    [21]Kim K W,Lee S W,Han K S,Chung H J,Woo S I.Characterization of Al-doped spinel LiMn_2O_4 thin film cathode electrodes prepared by Liquid Source Misted Chemical Deposition(LSMCD) technique[J].Electrochimica Acta,2003,48(28):4223-4231.
    [22]Moon H S,Lee S W,Lee Y K,Park J W.Characterization of protective-layer-coated LiMn_2O_4 cathode thin films[J].Journal of Power Sources,2003,119-121:713-716.
    [23]Kim M K,Chung H T,Park Y J,Kim J G,Son J T,Park K S,Kim H G.Fabrication of LiCoO_2 thin films by sol-gel method and characterisation as positive electrodes for Li/LiCoO_2 cells[J].Journal of Power Sources,2001,99(1-2):34-40.
    [24]Miura K,Yamada A,Tanaka M.Electric states of spinel Li_xMn_2O_4 as a cathode of the rechargeable battery[J].Electrochimica Acta,1996,41(2):249-256.
    [25]Fu-yun Shih K F.Effect of annealing temperature on electrochemical performance of thin-film LiMn_2O_4 cathode[J].Journal of Power Sources,2006,159:179-185.
    [26]Chen C H,Kelder E M,Schoonman J.Electrode and solid electrolyte thin films for secondary lithium-ion batteries[J].Journal of Power Sources,1997,68(2):377-380.
    [27]Striebel K A,Rougier A,Home C R,Reade R P,Caims E J.Electrochemical Studies of Substituted Spinel Thin Films[J].Journal of the Electrochemical Society,1999,146(12):4339-434
    [1]Lee T,Cho K,Oh J,Shin D.Fabrication of LiCoO_2 cathode powder for thin film battery by aerosol flame deposition[J].Journal of Power Sources,2007,174(2):394-399.
    [2]Lee J H,Han K S,Lee B J,Seo S I,Yoshimura M.Fabrication of LiCoO_2 films for lithium rechargeable microbattery in an aqueous solution by electrochemical reflux method[J].Electrochimica Acta,2004,50(2-3):467-471.
    [3]Wu X M,He Z Q,Chen S,Ma M Y,Xiao Z B,Liu J B.The effect of thickness on the properties of solution-deposited LiMn_2O_4 thin films[J].Materials Chemistry and Physics,2007,105(1):58-61.
    [4]Ouyang C,Deng H,Ye Z,Lei M,Chen L.Pulsed laser deposition prepared LiMn_2O_4 thin film[J].Thin Solid Films,2006,503(1-2):268-271.
    [5]Woo S W,Dokko K,Kanamura K.Preparation and characterization of three dimensionally ordered macroporous Li_4Ti_5O_(12) anode for lithium batteries[J].Electrochimica Acta,2007,53(1):79-82.
    [6]Jiang C,Ichihara M,Honma I,Zhou H.Effect of particle dispersion on high rate performance of nano-sized Li_4Ti_5O_(12) anode[J].Electrochimica Acta,2007,52(23):6470-6475.
    [7]Gao J,Ying J,Jiang C,Wan C.High-density spherical Li_4Ti_5O_(12)/C anode material with good rate capability for lithium ion batteries[J].Journal of Power Sources,2007,166(1):255-259.
    [8]Kubiak P,Garcia A,Womes M,Aldon L,Olivier-fourcade J,Lippens P E,Jumas J C.Phase transition in the spinel Li_4Ti_5O_(12) induced by lithium insertion:Influence of the substitutions Ti/V,Ti/Mn,Ti/Fe[J].Journal of Power Sources,2003,119-121:626-630.
    [9]Rho Y H,Kanamura K.Li~+ ion diffusion in Li_4Ti_5O_(12) thin film electrode prepared by PVP sol-gel method[J].Journal of Solid State Chemistry,2004,177(6):2094-2100.
    [10]Rho Y H,Kanamura K,Fujisaki M,Hamagami J,Suda S,Umegaki T.Preparation of Li_4Ti_5O_(12) and LiCoO_2 thin film electrodes from precursors obtained by sol-gel method[J].Solid State Ionics,2002,151(1-4):151-157.
    [11]Rho Y H,Kanamura K.Li~+-Ion Diffusion in LiCoO_2 Thin Film Prepared by the Poly(vinylpyrrolidone) Sol-Gel Method[J].Journal of the Electrochemical Society,2004,151(9):1406-1411.
    [12]Rho Y H,Kanamura K.Preparation of Li_(4/3)Ti_(5/3)O_4 Thin Film Electrodes by a PVP Sol-Gel Coating Method and Their Electrochemical Properties[J].Journal of the Electrochemical Society,2004,151(1):106-110.
    [13]Yu Y,Shui J L,Chen C H.Electrostatic spray deposition of spinel Li_4Ti_5O_(12) thin films for rechargeable lithium batteries[J].Solid State Communications,2005,135(8):485-489.
    [14]Wang C-,Liao Y C,Hsu F C,Tai N H,Wu M K.Preparation and Characterization of Thin Film Li_4Ti_5O_(12) Electrodes by Magnetron Sputtering[J].Journal of the Electrochemical Society,2005,152(4):653-657.
    [15]Brousse T,Fragnaud P,Marchand R,Schleich D M,Bohnke O,West K.All oxide solid-state lithium-ion cells[J].Journal of Power Sources,1997,68(2):412-415.
    [16]Prosini P P,Mancini R,Petrucci L,Contini V,Villano P.Li_4Ti_5O_(12) as anode in all-solid-state,plastic,lithium-ion batteries for low-power applications[J].Solid State Ionics,2001,144(1-2):185-192.
    [17]Birke P,Salam F,Doring S,Weppner W.A first approach to a monolithic all solid state inorganic lithium battery[J].Solid State Ionics,1999,118(1-2):149-157.
    [18]Fragnaud P,Schleich D M.Thin film components for solid state lithium batteries [J].Sensors and Actuators A:Physical,1995,51(1):21-23.
    [19]Belharouak I,Sun Y-,Lu W,Amine K.On the Safety of the Li_4Ti_5O_(12)/LiMn_2O_4Lithium-Ion Battery System[J].Journal of the Electrochemical Society,2007,154(12):1083-1087.
    [20]Shen C,Zhang X,Zhou Y,Li H.Preparation and characterization of nanocrystalline Li_4Ti_5O_(12) by sol-gel method[J].Materials Chemistry and Physics,2003,78(2):437-441.
    [21]Hao Y J,Lai Q Y,Lu J Z,Wang H L,Chen Y D,Ji X Y.Synthesis and characterization of spinel Li_4Ti_5O_(12) anode material by oxalic acid-assisted sol-gel method[J].Journal of Power Sources,2006,158(2):1358-1364.
    [22]Wang G X,Bradhurst D H,Dou S X,Liu H K.Spinel Li_(1/3)Ti_(5/3)O_4 as an anode material for lithium ion batteries[J].Journal of Power Sources,1999,83(1-2):156-161.
    [23]Miura K,Yamada A,Tanaka M.Electric states of spinel Li_xMn_2O_4 as a cathode of the rechargeable battery[J].Electrochimica Acta,1996,41(2):249-256.
    [24]李雪梨,江志裕.聚合物电解质隔膜及锂负极性能研究[D].上海:复旦大学,2004:
    [1]Wang G J,Gao J,Fu L J,Zhao N H,Wu Y P,Takamura T.Preparation and characteristic of carbon-coated Li_4Ti_5O_(12) anode material[J].Journal of Power Sources,2007,174(2):1109-1112.
    [2]Jiang C,Zhou Y,Honma I,Kudo T,Zhou H.Preparation and rate capability of Li_4Ti_5O_(12) hollow-sphere anode material[J].Journal of Power Sources,2007,166(2):514-518.
    [3]Dominko R,Gaberscek M,Bele M,Mihailovic D,Jamnik J.Carbon nanocoatings on active materials for Li-ion batteries[J].Journal of the European Ceramic Society,2007,27(2-3):909-913.
    [4]Ohzuku T,Ueda A,Yamamoto N.Zero-Strain Insertion Material of Li[Li_(1/3)Ti_(5/3)]O_4 for Rechargeable Lithium Cells[J].Journal of the Electrochemical Society,1995,142(5):1431-1435.
    [5]Takai S,Kamata M,Fujine S,Yoneda K,Kanda K,Esaka T.Diffusion coefficient measurement of lithium ion in sintered Li_(1.33)Ti_(1.67)O_4 by means of neutron radiography[J].Solid State Ionics,1999,123(1-4):165-172.
    [6]Allen J L,Jow T R,Wolfenstine J.Low temperature performance of nanophase Li_4Ti_5O_(12)[J].Journal of Power Sources,2006,159(2):1340-1345.
    [7]Venkateswarlu M,Chen C H,Do J S,Lin C W,Chou T C,Hwang B J.Electrochemical properties of nano-sized Li_4Ti_5O_(12) powders synthesized by a sol-gel process and characterized by X-ray absorption spectroscopy[J].Journal of Power Sources,2005,146(1-2):204-208.
    [8]Guerfi A,Sevigny S,Lagace M,Hovington P,Kinoshita K,Zaghib K.Nano-particle Li_4Ti_5O_(12) spinel as electrode for electrochemical generators[J].Journal of Power Sources,2003,119-121:88-94.
    [9]Kavan L,Gratzel M.Facile Synthesis of Nanocrystalline Li_4Ti_5O_(12)(Spinel)Exhibiting Fast Li Insertion[J].Electrochemical and Solid-State Letters,2002,5(2):39-42.
    [10]Sorensen E M,Barry S J,Jung H-,Rondinelli J M,Vaughey J T,Poeppelmeier K R.Three-Dimensionally Ordered Macroporous Li_4Ti_5O_(12):Effect of Wall Structure on Electrochemical Properties[J].Chemistry of Materials,2006,18(2):482-489.
    [11]Woo S W,Dokko K,Kanamura K.Preparation and characterization of three dimensionally ordered macroporous Li_4Ti_5O_(12) anode for lithium batteries[J]. Electrochimica Acta, 2007, 53(1): 79-82.
    [12] Dunn J S. Hierarchical battery electrodes based on inverted opal structures [J]. J. Mater. Chem, 2002, 24: 2859-2861.
    [13] Huang S, Wen Z, Zhang J, Yang X. Improving the electrochemical performance of Li_4Ti_5O_(12)/Ag composite by an electroless deposition method [J]. Electrochimica Acta, 2007, 52(11): 3704-3708.
    [14] K. T. Lee, J. C. Lytle, N. S. Ergang, S. M. Oh A S. Synthesis and Rate Performance of Monolithic Macroporous Carbon Electrodes for Lithium-Ion Secondary Batteries [J]. Advanced Functional Materials, 2005,15(4): 547-556.
    [15] Justin C. Lytle, Hongwei Yan, Nicholas S. Ergang W H S A A S. Structural and electrochemical properties of three-dimensionally ordered macroporous tin(IV) oxide films [J]. J. Mater. Chem., 2004,24: 1616-1622.
    [16] Wang G X, Bradhurst D H, Dou S X, Liu H K. Spinel Li[Li_(1/3)Ti_(5/3)]O_4 as an anode material for lithium ion batteries [J]. Journal of Power Sources, 1999, 83(1-2): 156-161.
    [17] Jiang C, Zhou Y, Honma I, et al. Preparation and rate capability of Li_4Ti_5O_(12) hollow-sphere anode material. Journal of Power Sources, 2007, 166(2): 514-518.
    
    [18] Scharner S, Weppner W, Schmid-beurmann P. Evidence of Two-Phase Formation upon Lithium Insertion into the Li1.33Ti1.67O4 Spinel [J]. Journal of the Electrochemical Society, 1999, 146(3): 857-861
    [1]Wang G J,Gao J,Fu L J,Zhao N H,Wu Y P,Takamura T.Preparation and characteristic of carbon-coated Li_4Ti_5O_(12) anode material[J].Journal of Power Sources,2007,174(2):1109-1112.
    [2]Jiang C,Zhou Y,Honma I,Kudo T,Zhou H.Preparation and rate capability of Li_4Ti_5O_(12) hollow-sphere anode material[J].Journal of Power Sources,2007,166(2):514-518.
    [3]Dominko R,Gaberscek M,Bele M,Mihailovic D,Jamnik J.Carbon nanocoatings on active materials for Li-ion batteries[J].Journal of the European Ceramic Society,2007,27(2-3):909-913.
    [4]Kubiak P,Garcia A,Womes M,Aldon L,Olivier-fourcade J,Lippens P E,Jumas J C.Phase transition in the spinel Li_4Ti_5O_(12) induced by lithium insertion:Influence of the substitutions Ti/V,Ti/Mn,Ti/Fe[J].Journal of Power Sources,2003,119-121:626-630.
    [5]Chen C H,Vaughey J T,Jansen A N,Dees D W,Kahaian A J,Goacher T,Thackeray M M.Studies of Mg-Substituted Li_(4-x)Mg_xTi_5O_(12) Spinel Electrodes(0<= x <= 1) for Lithium Batteries[J].Journal of the Electrochemical Society,2001,148(1):102-104.
    [6]Robertson A D,Trevino L,Tukamoto H,Irvine J T.New inorganic spinel oxides for use as negative electrode materials in future lithium-ion batteries[J].Journal of Power Sources,1999,81-82:352-357.
    [7]Mukai K,Ariyoshi K,Ohzuku T.Comparative study of Li[CrTi]O_4,Li[Li_(1/3)Ti_(5/3)]O_4 and Li_(1/2)Fe_(1/2)[Li_(1/2)Fe_(1/2)Ti]O_4 in non-aqueous lithium cells[J].Journal of Power Sources,2005,146(1-2):213-216.
    [8]Gao J,Ying J,Jiang C,Wan C.High-density spherical Li_4Ti_5O_(12) /C anode material with good rate capability for lithium ion batteries[J].Journal of Power Sources,2007,166(1):255-259.
    [9]Huang S,Wen Z,Zhang J,Yang X.Improving the electrochemical performance of Li_4Ti_5O_(12)/Ag composite by an electroless deposition method[J].Electrochimica Acta,2007,52(11):3704-3708.
    [11]Huang S,Wen Z,Zhu X,Gu Z.Preparation and electrochemical performance of Ag doped Li_4Ti_5O_(12)[J].Electrochemistry Communications,2004,6(11):1093-1097.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700