用户名: 密码: 验证码:
黄体酮对多发性硬化的治疗作用及相关机制的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多发性硬化是一种典型的中枢神经系统脱髓鞘疾病。其典型病程表现为缓解-复发,进行性加重,其发病机理迄今尚不清楚。因而,目前还没有有效的治疗方法。病理学研究业已证实,神经症状进行性加重的根本原因在于中枢神经系统发生脱髓鞘病变后,神经系统本身的自发性髓鞘再生不完全,以至于本来完整的轴突由于长期裸露,从而发生继发性损伤。因此,促进多发性硬化患者中枢神经系统的髓鞘再生是治疗多发性硬化的有效方法。黄体酮是目前临床上应用广泛的孕激素药物,价廉易得。近年来已经发现黄体酮对中枢神经系统少突胶质细胞分化、髓鞘形成以及髓鞘再生均有明确的促进作用。
     MBP蛋白是髓鞘的重要组成部分,对维持髓鞘的膜状板层结构有重要作用。当髓鞘结构被破坏时,MBP从髓鞘上游离。检测脑脊液、血液中MBP蛋白的含量,可以间接了解中枢神经系统髓鞘的情况。而PDGF-αR是少突胶质前体细胞发育过程早期表达的蛋白之一,是少突胶质前体细胞的重要标记。随着少突胶质前体细胞逐渐分化成熟,PDGF-αR消失。另外,Olig1作为碱性螺旋-环-螺旋结构的重要成员,在少突胶质细胞系细胞表达。它是MBP、PLP1、MAG等髓鞘特异蛋白基因的上游基因,可以促进髓鞘特异蛋白基因的表达,同时抑制星形胶质细胞特异蛋白基因GFAP的表达。Olig1因子在神经系统的发育过程中可能不发挥作用,而对髓鞘修复有重要作用。既往通过免疫组化的研究证实,在老年大鼠脑组织中,由于Olig1蛋白低水平表达,髓鞘再生不完全。新近研究发现,Olig1蛋白在髓鞘生成和髓鞘再生过程中发生细胞核与细胞浆之间的移位。Olig1蛋白只有定位于细胞核时才能发挥调控作用。多发性硬化患者脑组织病理研究也证实,Olig1蛋白位于细胞浆的Olig1+细胞的分化停留在幼稚阶段,不能分化成成熟的少突胶质细胞,重新形成髓鞘,完成髓鞘再生的过程。Olig1蛋白在髓鞘再生过程中发生核-浆移位,可能是髓鞘再生是否完全的关键因素。
     实验性变态反应性脑脊髓炎是研究多发性硬化的成熟的动物模型。因此,本研究采用黄体酮治疗实验性变态反应性脑脊髓炎,运用神经功能评分、髓鞘染色、电镜等多种方法观察黄体酮的治疗效果。同时运用免疫组化、Western Blot、实时RT-PCR等技术,就其作用机制进行初步探讨。研究结果如下:
     1.黄体酮治疗组和对照组大鼠的神经功能评分没有明显区别。实验中采用的神经功能评分方法是相似研究中常用的评分方法,但是比较粗糙,不能精确表现出大鼠的神经功能状况。因此,根据评分结果,还不能定论黄体酮可以减轻实验性变态反应性脑脊髓炎大鼠的神经症状。但是电镜检查见黄体酮治疗组的髓鞘密度高于对照组,LFB染色后黄体酮治疗组的正常髓鞘的光密度值也高于对照组,而且Marchi’s染色后黄体酮治疗组退变髓鞘的光密度值低于对照组,提示黄体酮可以明显促进EAE大鼠脑组织的髓鞘再生。
     2.PDGF-αR在少突胶质前体细胞的发育早期表达。壮年大鼠脑组织中PDGF-αR+细胞根据细胞的突起数量和突起的分支数量不同,可以分为I、II、III型。突起的数量越少,突起分支的数量越少,细胞越幼稚。在嗅球和海马,幼稚的I型细胞密度最高,提示其可能是髓鞘再生时少突胶质前体细胞的生发中心。在小脑和脑干未见明确的PDGF-αR+细胞。提示在髓鞘再生时,少突胶质前体细胞需要移行更远的距离到达小脑和脑干,或者由于少突胶质前体细胞已经分化到比较成熟的阶段,PDGF-αR消失,其增殖能力受限,以至于这些部位的髓鞘再生困难,因此对慢性损伤也更加敏感。
     3.黄体酮1)治疗组脑组织中髓鞘碎片的光密度值低于对照组。2)治疗组MBP蛋白含量也低于对照组。3)治疗组和对照组的PDGF-αR蛋白在病程早期没有明显变化,在病程中一过性降低,后又逐渐恢复至正常大鼠水平。治疗组和对照组之间没有明显区别。4)治疗组和对照组大鼠脑组织中Olig1mRNA的表达在整个病程中较正常大鼠而言,均没有明显变化。5)治疗组大鼠脑组织中Olig1蛋白位于细胞核的Olig1+细胞的数量明显高于对照组。研究结果提示:黄体酮促进脑组织髓鞘再生的作用机制可能主要在于:1)减少中枢神经系统由于脱髓鞘病变产生的髓鞘碎片,减少髓鞘碎片对髓鞘再生的抑制作用;2)稳定髓鞘膜结构;3)促进少突胶质前体细胞分化,重新形成致密的髓鞘结构;4)黄体酮不能上调实验性变态反应性脑脊髓炎大鼠脑组织中Olig1mRNA的表达。5)促进Olig1蛋白从细胞浆向细胞核移位,发挥对髓鞘再生的调控作用。
     因此,黄体酮有望成为治疗中枢神经系统的脱髓鞘疾病的有效药物,影响Olig1蛋白核-浆移位,可能成为治疗脱髓鞘疾病新药物的作用靶点。
Multiple sclerosis is one kind of central nervous system(CNS) demyelinating disearses, which typical example course is release- relapse and aggravation in progress. The pathogenesy is not clear and there is not active treatment. After demyelination of CNS, the spontaneous remyelination is not sufficient. So that there are no myelin to encapselate naked axon. Finaly, the axon are damaged secondary. Above all, it is active treatment to promote the remyelination of MS. Progesterone is one of progestins which are clinically used widely. It is cheap and gained easily. It has been confirmed that progesterone can promote the differentiation of oligodendrocyte, the myelination and the remyelination in CNS.
     Myelin basic protein(MBP) protein is a main composition of myelin which is importment for maintaining the membrane layer of myelin. MBP liberates from myelin when myelin has been destoried. The impairment of myelin in CNS can be conclude by detect the MBP protein in blood and cerebrospinal fluid. The PDGF-αR is an early and importment marker of oligodendrocyte precursor cells. With the differentiation, the PDGF-αR disapears. The Olig1 which expresses in oligodendrocyte cells is one of basic helix-loop-helix(bHLH). It can increase the expression of MBP、myelin proteolipid protein(PLP1)、myelin associated glucoprotein (MAG).at same time, it can suppress the expression of GFAP. Perhaps, the Olig1 regulates the remyelination only. Because of the low Olig1 protein, the remyelination of older rats were sufficient by immunohistochemistry(IHC). Resently, the translocation of Olig1 protein in myelination and remyelination was reported. Only in nucleus, the Olig1 protein can be active. In some Olig1+ cell of MS brain, the Olig1 protein located in cytoplasmic. Those cells can’t differentiate to mature oligodendrocyte to remyelinate axon. The translocation of Olig1 protein may be a key factor of remyelination.
     The experimental allergic encephalomyelitis(EAE) is a good animal modle. In this study, the EAE rats were treated with progesterone. The therapeutic efficacy was judgement by nerve function score, staining of myelin and electron microscope et al. Meanshile, the machanism was researched initially by IHC,Western Blot, real time RT-PCR, et al. There are some revelations.
     Firstly, there was no obvious differention in the nerve function score between treating and control group. The nerve function score was used usually in similar researchs. But it is too rough. So according to the score, it is not concluded that the progesterone can lessen the symptom of EAE rats. But the density of normal myelin in treating group was higher than that in control group by electron microscope. The gray scale of normal myelin in treating group was higher and cataplasis myelin in treating myelin was lower than that in control by LFB and marchi’s staining. So it can be concluded that the progesterone can promote the remyelination of EAE rats.
     Secondly, PDGF-αR expressing cells were found in the forebrain and midbrain, but not in the cerebellum and brainstem. Based on the number of cell processes and branches, the main distinction among PDGF-αR expressing cells in different regions, the cells were classified into 3 categories, ie., type I to type III. From type I to type III, number of processes increased gradually. The OB and hippocampus which were I type cells mainly may be the germinal areas of PDGF-αR expressing cells in the adult rat brain. It may be relatively difficult for myelination and remyelination to occur in the cerebellum and brainstem resulting in a high susceptibility of the cerebellum and brainstem to chronic damages.
     Thirdly, it is about the mechanism. 1)The gray scale of myelin debris in treating group was lower than that in control. 2)The MBP protein in treating group was lower than that in control also. 3)In early stage, the PDGF-αR protein didn’t change in treating and control groups. After this, it decreased . But in 25th, the PDGF-αR protein came back to the level of normal rats. There was no difference among treating and control groups. 4)The Olig1mRNA of EAE rat was not different than that of normal all course. 5)The quantity of Olig1+ cells in which the olig1 protein located in nucleus in treating group was higher than that in control. Those results suggest that 1)the progesterone can decrease the myelin debris which come from the demyelination. So it can decrease the inhibitory of myelin debris to remyelination. 2)The progesterone can stabilize the structure of myelin’s membrane layer. 3)The progesterone can promote the OPCs differentiating to mature oligodendrocyte to remyelination. 4)The progesterone can not in creasethe Olig1mRNA in EAE rats. 5)But it can promote the Olig1 protein translocating from cytoplasm to nucleus.
     Above all, the progesterone may be an active drug. The translocation of Olig1 protein from cytoplasm to nucleus may be a action point of new drugs for demyelination diseases.
引文
1史玉泉.实用神经病学. 2版.上海:上海科学技术出版社,1994. 857-858.
    2 Pozzilli, C, Falaschi, P, Mainero, C, et al. MRI in multiple sclerosis during the menstrual cycle: Relationship with sex hormone patterns. Neurology, 1999,53(3):622-624.
    3 Wolswijk G. Chronic stage multiple sclerosis lesions contain a relativelyquiescent population of Oligdendrocyte precursor cells. J Neurosci,1998,18(2):601-609.
    4 B. McEwen. Estrogen actions throughout the brain. Recent Prog Horm Res, 2002,57:357-384.
    5 N.A. Compagnone,S.H. Mellon. Neurosteroids: biosynthesis and function of these novel neuromodulators. Front. Neuroendocrinol, 2000,21:1-56.
    6 B. McEwen . Steroid hormones are multifunctional messengers in the brain. Trends Endocrinol Metab, 1991,2:62-67.
    7 K. Shibuya, N. Takata, Y. Hojo, A. Furukawa,et al. Hippocampal cytochrome P450s synthesize brain neurosteroids which are paracrine neuromodulators of synaptic signal transduction. Biochim Biophys Acta, 2003,1619:301-316.
    8 E. Plassart-Schiess ,E.E. Baulieu. Neurosteroids: recent findings. Brain Res Rev, 2001,37:133-140.
    9 T. Simoncini ,A.R. Genazzani. Non-genomic actions of sex steroid hormones. Eur J Endocrino. 2003,148: 281-292.
    10 R. Rupprecht. Neuroactive steroids: mechanisms of action and neuropsychopharmacological properties. Psychoneuroendocrino, 2003,28:139-168.
    11 Klaus Lieb, Stefanie Engels, Bernd L. Fiebich. Inhibition of LPS-induced iNOS and NO synthesis in primary rat microglial cells. Neurochem Int, 2003,42:131-137.
    12 Heikinheimo O ,Mahony MC , Gordon K,et al . Estrogen and progesterone receptor mRNA are expressed in distinct pattern in male primate reproductive organs. J Assist Reprod Genet, 1995,12(3):198-204.
    13 Witt DM, Young LJ ,Crews D. Progesterone and sexual behavior in males. Psychoneuroendocrino, 1994,19(57):553-562.
    14 I.H. Zwain,S.S. Yen. Neurosteroidogenesis in astrocytes, oligodendrocytes, and neurons of cerebral cortex of rat brain. Endocrin, 1999,140:3843-3852.
    15 R.S. Peterson, C.J. Saldanha , B.A. Schlinger. Rapid upregulation of aromatase mRNA and protein following neural injury in the zebra finch (Taeniopygia guttata). J. Neuroendocrino, 2001,13:317-323.
    16 L.M. Garcia-Segura, A. Wozniak, I. Azcoitia,et al. Aromatase expression by astrocytes after brain injury: implications for local estrogen formation in brain repair. Neurosci, 1999,89:567-578.
    17 Christian Confavreux, Michel Hutchinson, Martine Marie Hours,et al. Rate of Pregnancy-Related Relapse in Multiple Sclerosis. N- Engl-J-Med, 1998,339(5):285-291.
    18贺玉君,秦新民,黄明,等.髓鞘碱性蛋白的研究及进展.广西中医学院学报.2004,7(2): 75-79.
    19 Franklin, R.J.M, Gilson, J.M, Blakemore, W.F. Local recruitment of remyelinating cells in the repair of demyelination in the central nervous system. J Neurosci Res, 1997,50:337-344.
    20 Gensert, J.M, Goldman, J.E. Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron, 1997,19:197-203.
    21 Reynolds, R, Cenci di Bello, I, Dawson, M, Levine, J. The response of adult oligodendrocyte progenitors to demyelination in EAE. Prog. Brain Res, 2001,132:165-174.
    22 Sim, F.J, Zhao, C, Penderis, J, Franklin, R.J.M, The age-related decrease in CNS remyelination efficiency is attributable to an impairment of both oligodendrocyte progenitor recruitment and differentiation. J Neurosci, 2002,22:2451-2459.
    23 Roumen Balabanov ,Brian Popko. Myelin repair: developmental myelination redux?. Nat Neurosci,2005,8(3):262-264.
    24 Petry KG,Boullerne AI, Pousset F, et al. Experimental allergic encephalomyelitis animal models for analyzing features of multiple sclerosis . Pathol Biol,2000,48(1):47.
    1 Wolswijk G. Chronic stage multiple sclerosis lesions contain a relativelyquiescent population of Oligdendrocyte precursor cells. J Neurosci,1998,18(2):601-609.
    2 Christian Confavreux, Michel Hutchinson, Martine Marie Hours,et al. Rate of Pregnancy-Related Relapse in Multiple Sclerosis. N Engl J Med, 1998,339(5):285-291.
    3 Pozzilli, C, Falaschi, P, Mainero, C. et al. MRI in multiple sclerosis during the menstrual cycle: Relationship with sex hormone patterns. Neurology, 1999,53(3):622-624.
    4 Martine El-Etra, Sandra Vukusicb, Le Kremlin-Bicetre, et al. Steroid hormones in multiple sclerosis. J Neurolog Sci,2005,233:49-54.
    5董梅,刘瑞春,郭力,等. Wistar大鼠实验性变态反应性脑脊髓炎病理探讨.中国实验动物学报, 2006,14(3):225-227.
    6董梅,刘瑞春,郭力等. Wister大鼠实验性变态反应性脑脊髓炎的模型建立.脑与神经疾病杂志,2004,12(6):425-428.
    7 Legge KL, Min B, Bell JJ, et al. Coupling of peripheral tolerance to endogenous interleukin 10 promotes effective modulation of myelin-activated T cells and ameliorates experimental allergic encephalomyelitis. J Exp Med, 2000,191(12):2039.
    8 Thomas A, Nockels R, Pan H,et al. Progesterone is neuroprotective after acute experimental spinal cord trauma in rats. Spine, 1999,24:2134-2138.
    9王伯沄等.病理学技术.北京:人民卫生出版社,2000. 189-190.
    1 Franklin R. J. M. Why does remyelination fail in multiple sclerosis? Neurosci.2002,3:705-716.
    2 Raff M.C. Glial cell diversification in the rat optic nerve. Science, 1989,243:1450-1455.
    3 Raff M.C, Miller R.H, Noble M. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on the culture medium. Nature,1983,303:390-396.
    4 Franklin, R.J.M, Gilson, J.M, Blakemore, W.F. Local recruitment of remyelinating cells in the repair of demyelination in the central nervous system. J Neurosci Res, 1997,50:337-344.
    5 Gensert, J.M, Goldman, J.E. Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron, 1997,19:197-203.
    6 Reynolds, R, Cenci di Bello, Dawson, M,et al. The response of adult oligodendrocyte progenitors to demyelination in EAE. Prog Brain Res, 2001,132:165-174.
    7 Sim, F.J, Zhao, C, Penderis, J, et al.The age-related decrease in CNS remyelination efficiency is attributable to an impairment of both oligodendrocyte progenitor recruitment and differentiation.J Neurosci, 2002,22:2451-2459.
    8 Sim, F.J, Hinks, G.L, Franklin, R.J.M. The re-expression of the homeodomain transcription factor Gtx during remyelination of experimentally-induced demyelinating lesions in young and old rat brain. Neurosci, 2000,100:131-139.
    9 Woodruff, R.H, Franklin, R.J.M. The expression of myelin protein mRNAs during remyelination of lysolecithin-induced demyelination.Neuropathol Appl Neurobiol, 1996b,25:226-235.
    10 Woodruff, R.H, Franklin, R.J.M. The expression of myelin basic protein exon 1 and exon 2 during myelination of the neonatal rat spinal cord-an in situ hybridisation study. J Neurocytol, 1998,27:683-693.
    11 Hardy R. Proliferation and differentiation potential of rat forebrain oligodendroglial progenitors both in vitro and in vivo. Development, 1991,111:1061-1080.
    12 Levine JM. The oligodendrocyte precursor cell in health and disease. Trends Neurosci, 2001,24:39-47.
    13 Gago N. Control of cell survival and proliferation of postnatal PSA-NCAM(+) progenitors. Mol Cell Neurosci, 2003,22:162-178.
    14 Grinspan. Platelet-derived growth factor is a survival factor for PSA-NCAM_ oligodendrocyte pre-progenitor cells. J Neurosci Res, 1995,41:540-551.
    15 Pringle NP. A singularity of PDGF alphareceptor expression in the dorsoventral axis of the neural tube may define the origin of the oligodendrocyte lineage. Development, 1993,117:525-533.
    16 Dawson MR, Levine JM, Reynolds R. NG2-expressing cells in the central nervous system: are they oligodendroglial progenitors? J Neurosci Res, 2000,61:471-479.
    17 Gallo V, Armstrong RC . Developmental and growth factorinduced regulation of nestin in oligodendrocyte lineage cells. J Neurosci.1995,15:394-406.
    18 Nishiyama A, Lin XH, Giese N, et al. Interaction between NG2 proteoglycan and PDGF alpha-receptor on O2A progenitor cells is required for optimal response to PDGF. J Neurosci Res, 1996b,43:315-330.
    19 Mary R.L. Dawson, Annabella Polito,et al. NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Molecular and Cellular Neuroscience.2003,24:476-488.
    20 Pringle and Richardson. A singularity of PDGF alpha-receptor expression in the dorsoventral axis of the neural tube may define the origin of the oligodendrocyte lineage. Development. 1993,117: 525-533.
    21 Sturrock, R.R. Myelination of the mouse corpus callosum. Neuropathol.Appl. Neurobiol, 1980,6:405-412.
    22 Norton, W.T, Poduslo, S.E. Myelination in rat brain: changes in myelin composition during brain maturation. J. Neurochem, 1973,21:759-773.
    23 Nunez, J.L, Nelson, J, Pych, J.C, Kim, J.H, Juraska, J.M. Myelination in the splenium of the corpus callosum in adult male and female rats. Brain Res, 2000,120:87-90.
    24 Stephen P.J. Fancy,Chao Zhao,et al. Increased expression of Nkx2.2 and Olig2 identifies reactive oligodendrocyte progenitor cells responding to demyelination in the adult CNS. Mol Cell Neurosci, 2004,27:247-254.
    25 Barres, B.A, Hart, I.K, Coles, H.S.R,et al.Cell death and control of cell survival in the oligodendrocyte lineage. Cell, 1992,70:31-46.
    26 Calver, A.R, Hall, A.C, Yu, W.P,et al. Oligodendrocyte population dynamics and the role of PDGF in vivo. Neuron, 1998,20:869-882.
    1 Rupprecht R, Hauser CAE, Trapp T,et al. Neurosteroids: molecular mechanisms of action and psychopharmacological significance. J Steroid Biochem Mol Biol, 1996,56:163-168.
    2 Rupprecht R, Reul JMHM, Trapp T,et al. Progesterone receptor-mediated effects of neuroactive steroids. Neuron, 1993,11:523-530.
    3 Melcangi RC, Magnaghi V, Galbiati M,et al. Formation and effects of neuroactive steroids in the central and peripheral nervous system. Int Rev Neurobiol, 2001,46:145-176.
    4 Melcangi RC, Magnaghi V, Martini L. Steroid metabolism and effects in central and peripheral glial cells. J Neurobiol, 1999,40:471-483.
    5 Stephen P.J. Fancy, Chao Zhao, Robin J.M. Franklin. Increased expression of Nkx2.2 and Olig2 identifies reactive oligodendrocyte progenitor cells responding to demyelination in the adult CNS. Mol Cell Neurosci, 2004(27):247-254.
    6 C. Ibanez, S. A. Shields, M. El-Etr,et al. Systemic progesterone administration results in a partial reversal of the age-associated decline in CNS remyelination following toxin-induced 1 demyelination in male rats. Neuropathology and Applied Neurobiology,2004,(30):80-89.
    7王伯沄等.病理学技术.北京:人民卫生出版社,2000. 189-190.
    8贺玉君,秦新,民,黄明,等.髓鞘碱性蛋白的研究及进展.广西中医学院学报,2004,7(2):75-79.
    9 Omana Zapata I , Khabbaz MA , Hunter JC , et al . QX- 314 inhibits ectopic nerve activity associated with neuropathic pain. Brain Res, 1997,771(2):28-32.
    10刘晖,尹庆水,夏虹,等.甲强龙对兔急性脊髓损伤后血、组织髓鞘碱性蛋白表达的影响.中国骨与关节损伤杂志, 2006,21(3):191-193.
    11 Wolswijk G. Chronic stage multiple sclerosis lesions contain a relativelyquiescent population of Oligdendrocyte precursor cells. J Neurosci, 1998,18:601-609.
    12 Dawson MR, Levine JM, Reynolds R. NG2-expressing cells in the central nervous system: are they oligodendroglial progenitors? J Neurosci Res, 2000,61:471-479.
    13 Gallo V, Armstrong RC. Developmental and growth factorinduced regulation of nestin in oligodendrocyte lineage cells. J Neurosci,1995,15:394-406. 2 .
    14 Nishiyama A, Lin XH, Giese N, Heldin CH, Stallcup WB. Co-localization of NG2 proteoglycan and PDGF alpha-receptor on O2A progenitor cells in the developing rat brain. J Neurosci Res, 1996a,43:299-314.
    15 Nishiyama A, Lin XH, Giese N, Heldin CH, Stallcup WB . Interaction between NG2 proteoglycan and PDGF alpha-receptor on O2A progenitor cells is required for optimal response to PDGF. J Neurosci Res 43:315-330, 1996b,43:315-330.
    16 Qiao Zhou, Songli Wang,David J. Anderson. Identification of a Novel Family of Oligdendrocyte Lineage-Specific Basic Helix-Loop-Helix Transcription Factors. Neuron, 2000,25:331-343.
    17 Mei Xin, Tao yue,Zhenyi Ma, et al. Myelinogenerosis and Axonal Recognition by Oligodendrocyte in Brain are Uncoupled in Olig1 -Null Mice. J of Neurosci,2005,25(6):1354-1365.
    18 Michael W. Expression of Transcription Factors During Oligodendroglial Development. Mic Res and Tech, 2001,52(2):746-752.
    19 Heather A. Arnett, Stephen P. J. Fancy, John A. Alberta,et al. bHLH Transcription Factor Olig1 Is Required to Repair Demyelinated Lesions in the CNS. Science, 2004,306:2111-2115.
    20 Sim, F.J, Hinks, G.L, Franklin, R.J.M. The re-expression of the homeodomain transcription factor Gtx during remyelination of experimentally-induced demyelinatinglesions in young and old rat brain. Neurosci, 2000,100:131-139.
    21 Melcangi RC, Magnaghi V, Cavarretta I,et al. Ageinduced decrease of glycoprotein Po and myelin basic protein gene expression in the rat sciatic nerve. Repair by steroid derivatives. Neurosci, 1998,85:569-578.
    22 Keithl L, Stephen P.J, Robin J.M. Olig Gene Function in CNS Development and Disease. Glia,2005,54:1-10.
    23 Mary R.L. Dawson, Annabella Polito,et al. NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Molecular and Cellular Neurosci,2003,24:476-488.
    1 B. McEwen. Estrogen actions throughout the brain. Recent Prog Horm Res, 2002,57:357-384.
    2 N.A. Compagnone,S.H. Mellon. Neurosteroids: biosynthesis and function of these novel neuromodulators. Front Neuroendocrino, 2000,21:1-56.
    3 B. McEwen . Steroid hormones are multifunctional messengers in the brain. Trends Endocrino. Metab, 1991,2:62-67.
    4 K. Shibuya, N. Takata, Y. Hojo,et al. Hippocampal cytochrome P450s synthesize brain neurosteroids which are paracrine neuromodulators of synaptic signal transduction. Biochim. Biophys. Acta, 2003,1619:301-316.
    5 E. Plassart-Schiess , E.E. Baulieu. Neurosteroids: recent findings. Brain Res Rev, 2001,37:133-140.
    6 T. Simoncini ,A.R. Genazzani. Non-genomic actions of sex steroid hormones. Eur J Endocrinol. 2003,148: 281-292.
    7 R. Rupprecht. Neuroactive steroids: mechanisms of action and neuropsychopharmacological properties. Psychoneuroendocrinology, 2003,28:139-168.
    8 Klaus Lieb, Stefanie Engels, Bernd L. Fiebich. Inhibition of LPS-induced iNOS and NO synthesis in primary rat microglial cells. Neurochemistry International, 2003,42:131-137.
    9 Heikinheimo O ,Mahony MC , Gordon K, et al. Estrogen and progesterone receptor mRNA are expressed in distinct pattern in male primate reproductive organs. J Assist Reprod Genet ,1995,12(3):198-204.
    10 Witt DM, Young LJ ,Crews D. Progesterone and sexual behavior in males. Psychoneuroendocrino, 1994,19(57):553-562.
    11 Koenig HL, Schumacher M, Ferzaz B,et al.Progesterone synthesis and myelin formation by Schwann cells. Science. 1995,268:1500-1503.
    12 I.H. Zwain,S.S. Yen. Neurosteroidogenesis in astrocytes, oligodendrocytes, and neurons of cerebral cortex of rat brain. Endocrino,1999,140:3843-3852.
    13 R.S. Peterson,C.J. Saldanha,B.A. Schlinger.Rapid upregulation of aromatase mRNA and protein following neural injury in the zebra finch (Taeniopygia guttata). JNeuroendocrinol,2001:13:317-323.
    14 L.M. Garcia-Segura, A. Wozniak, I. Azcoitia, J.R.et al.Aromatase expression by astrocytes after brain injury: implications for local estrogen formation in brain repair. Neurosci, 1999,89:567-578.
    15 R.C. Melcangi, V. Magnaghi, M. Galbiati ,et al. Formation and effects of neuroactive steroids in the central and peripheral nervous system. Int Rev Neurobiol, 2001,46:145-176.
    16 R.C. Melcangi,V. Magnaghi,L. Martini.Steroid metabolism and effects in central and peripheral glial cells. J Neurobiol, 1999,40:471-483.
    17 Melcangi RC, Magnaghi V, Cavarretta I,et al. Ageinduced decrease of glycoprotein Po and myelin basic protein gene expression in the rat sciatic nerve. Repair by steroid derivatives. Neurosci,1998,85:569-578.
    18 McKenna NJ, O'Malley BW. Combinatorial control of gene expression by nuclear receptors and coregulators. Cell,2002,108:465-474.
    19 Graham JD, Clarke CL. Physiological action of progesterone in target tissues.Endocr Rev, 1997,18:502-519.
    20 McDonnell DP, Goldman ME. RU486 exerts antiestrogenic activities through a novel progesterone receptor A form-mediated mechanism. J Biol Chem, 1994,269: 11945-11949.
    21 Mote PA, Balleine RL, McGowan EM, Clarke CL. Heterogeneity of progesterone receptors A and B expression in human endometrial glands and stroma.Hum Reprod, 2000,15:48-56.
    22 Kastner P, Krust A, Turcotte B, Stropp U, Tora L, Gronemeyer H, Chambon P. Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B.EMBO J.1990,9:1603-1604.
    23 Sartorius CA, Melville MY, Hovland AR,et al. A third transactivation function (AF3) of human progesterone receptors located in the unique N-terminal segment of the B isoform. Mol Endocrino,1994,8:1347-1360.
    24 Tsai M-J, O'Malley BW. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Ann Rev Biochem, 1994,63:451-486.
    25 Blaustein JD, Turcotte JC. Estradiol-induced progestin receptor immunoreactivity isfound only in estrogen receptor-immunoreactive cells in guinea pig brain. Neuroendocrino, 1989,49:454-461.
    26 Warembourg M, Logeat M, Milgrom E. Immunocytochemical localization of progesterone receptor in the guinea pig central nervous system. Brain Res,1986,384:121-131.
    27 Labombarda F, Guennoun R, Gonzalez S,et al. Immunocytochemical evidence for a progesterone receptor in neurons and glial cells of the rat spinal cord. Neurosci. Lett,2000,288:29-32.
    28 Shughrue PJ, Lane MV, Merchenthaler I. Regulation of progesterone receptor messenger ribonucleic acid in the rat medial preoptic nucleus by estrogenic and antiestrogenic compounds: An in situ hybridization study. Endocrino,1997,138:5476-5484.
    29 Blaustein JD, King JC, Toft DO,et al. Immunocytochemical localization of estrogen-induced progestin receptors in guinea pig brain. Brain Res,1998,474:1-15.
    30 Romano G. J, Krust A,Pfaff D. W. Expression and estrogen regulation of progesterone receptor mRNA in neurons of the mediobasal hypothalamus: an in situ hybridization study. Mol Endocrino,1989,3:1295-1300.
    31 Savouret J. F, Misrahi M, Loosfelt H, et al. Molecular and cellular biology of mammalian progesterone receptors. Recent Prog Horm. Res, 1989,45:65-67.
    32 Tandra R,Chakraborty,Andrea C. Gore,et al. Aging-Related Changes in Ovarian Hormones, Their Receptors, and Neuroendocrine Function. Exp Bio Med, 2004,229:977-987.
    33 Mote PA, Balleine RL, McGowan EM,et al. Colocalization of progesterone receptors A and B by dual immunofluorescent histochemistry in human endometrium during the menstrual cycle. J Clin Endocrino Metab, 1999,84:2963-2971.
    34 Graham JD, Clarke CL. Physiological action of progesterone in target tissues. Endocr Rev, 1997,18:502-519.
    35 Graham JD, Yeates C, Balleine RL,et al.Characterization of progesterone receptor A and B expression in human breast cancer. Cancer Res,1995,55:5063-5068.
    36 Mote PA, Bartow S, Tran N,et al. Loss of co-ordinate expression of progesterone receptors A and B is an early event in breast carcinogenesis.Breast Cancer Res Tr,2002,72:163-172.
    37 Arnett-Mansfield RL, deFazio A, Wain GV,et al. Relative expression of progesterone receptors A and B in endometrioid cancers of the endometrium. Cancer Res,2001,61:4576-4582.
    38 Shyamala G, Yang X, Silberstein G,et al. Transgenic mice carrying an imbalance in the native ratio of A to B forms of progesterone receptor exhibit developmental abnormalities in mammary glands. Proc Natl Acad Sci USA, 1998,95:696-701.
    39 Fewings PE, Battersby RD, Timperley WR .Long-term follow up of progesterone receptor status in benign meningioma: a prognostic indicator of recurrence?. J Neurosurg,2000,92:401-405.
    40 Hsu DW, Efird JT, Hedley-Whyte ET . Progesterone and estrogen receptors in meningiomas: prognostic considerations. J Neurosurg, 1997,86:113-120.
    41 Khalid H, Shibata S, Kishikawa M, et al. Immunohistochemical analysis of progesterone receptor and Ki-67 labeling index in astrocytic tumors. Cancer, 1997,80:2133-2140.
    42 Falkenstein E, Heck M, Gerdes D,et al. Specific progesterone binding to a membrane protein and related nongenomic effects on Ca2+ - fluxes in sperm. Endocrino, 1999,140:5999-6002.
    43 Gerdes D,Wehling M, Leube et al. Cloning and tissue expression of two putative steroid membrane receptors. J. Biol. Chem,1998,379:907-911.
    44 Selmin O, Lucier G. W, Clark G. C.et al. Isolation and characterization of a nivel gene induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in rat liver. Carcinogenesis, 1996,17:2609-2615.
    45 Krebs C. J, Jarvis E. D, Chan J, et al. A membrane-associated progesterone-binding protein,25-Dx, is regulated by progesterone in brain regions involved in female reproductive behaviors. Proc. Natl Acad. Sci. USA, 2000,97:12816-12821.
    46 Furst S. Transmitters involved in antinociception in the spinal cord. Brain Res. Bull, 1999,48:129-141.
    47 F. Labombarda, S. L. Gonzalez, M. C. Gonzalez Denisell,et al. Effects of injury and progesterone treatment on progesterone receptor and progesterone binding protein 25-Dx expression in the rat spinal cord. brain Res, 2003,87:902-913.
    48 Labombarda F, Gonzalez S, Gonzalez Deniselle M. C, et al. Cellular basis for progesterone neuroprotection in the injured spinal cord. J. Neurotrauma,2002,19:343-355.
    49 Gonzalez Deniselle M. C, Lopez-Costa J. J, Gonzalez S. L, et al. Basis of progesterone protection in spinal cord neurodegeneration. J. Steroid Biochem. Mol. Biol, 2003,83:199-209.
    50 Gonzalez Deniselle M. C, Lopez-Costa J. J, Saavedra J. P, et al. Progesterone neuroprotection in the wobbler mouse, a genetic model of spinal cord motor disease. Neurobiol Dis, 2002,11:457-468.
    51 Raza F. S, Takemori H, Tojo H,et al. Identification of the rat adrenal zona fasciculate/reticularis specific protein, inner zone antigen (IZAg), as the putative membrane progesterone receptor. Eur J Biochem, 2001,268:2141-2147.
    52 Runko E, Wideman C,Kaprielian Z. Cloning and expression of VEMA: a novel ventral midline antigen in the rat CNS. Mol Cell Neurosci, 1999,14:428-443.
    53 Chu,-H-P, Sarkar,-G, Etgen,-A-M. Estradiol and progesterone modulate the nitric oxide/cyclic gmp pathway in the hypothalamus of female rats and in GT1-1 cells. Endocrine, 2004,24(2):177-84.
    54 Mercier,-G, Turque,-N, Schumacher,-M. Early activation of transcription factor expression in Schwann cells by progesterone. Brain-Res-Mol-Brain-Res, 2001,97(2):137-148.
    55 Guennoun,-R, Benmessahel,-Y, Delespierre,-B,et al. Progesterone stimulates Krox-20 gene expression in Schwann cells. Brain-Res-Mol-Brain-Res, 2001,90(1):75-82.
    56 Rodriguez-Waitkus,Lafollette,Ng,et al. Steroid hormone signaling between Schwann cells and neurons regulates the rate of myelin synthesis. Ann-N-Y-Acad-Sci, 2003,1007:340-348.
    57 Lai C, Brow, M.A, Nave, K.-A,et al. Two forms of 1B236/myelin-associated glycoprotein, a cell adhesion molecule for postnatal development, are produced by alternative splicing. Proc. Natl Acad. Sci. USA.1987,84:4227-4341.
    58 Ishaque A, Roomi, M.W, Szymanska, I, et al. The Po glycoprotein of peripheral nerve myelin. Can J Biochem, 1980,58:913-921.
    59 Brockes J.P, Raff, M.C, Nishiguchi.D.J,et al. Studies on cultured rat Schwann cells: assay for peripheral myelin proteins. J Neurocytol, 1980,9:67-77.
    60 Kitamura K, Suzuki, M. and Uyemura, K. Purification and partial characterization of twoglycoproteins in bovine peripheral nerve myelin membrane. Biochim. Biophys, 1976,455:806-816.
    61 Durso D, Brophy, P.J, Staugaitus, et al. Protein zero of peripheral nerve myelin: biosynthesis, membrane insertion, and evidence for homotypic interaction. Neuron, 1990,4:449-460.
    62 Martini R, Zielasek, J, Toyka, et al. Protein zero (Po)-deficient mice show myelin degeneration in peripheral nerves characteristic of inherited human neuropathies. Nature Gen, 1995,11:281-286.
    63 Giese K.P, Martini, R, Lemke, G,et al. Mouse Po gene disruption leads to hypomyelination, abnormal expression of recognition molecules, and degeneration of myelin and axons. Cell, 1992,71:565-576.
    64 Pareek S, Suter, U, Snipes, G.J,et al. Detection and processing of peripheral myelin protein PMP22 in cultured Schwann cells. J Biol. Chem, 1993,268:10372-10379.
    65 KuhnG, Lie A, Wilms S,et al. Coexpression of PMP22 gene with MBP and Po during de novo myelination and nerve repair. GLiA, 1993,8:256-264.
    66 Suter U, Snipes, G.J. Biology and genetics of hereditary motor and sensory neurophaties. Ann. Rev. Neurosci, 1995,18:45-75.
    67 Naef R.Suter, U. Many facets of the peripheral myelin protein PMP22 in myelination and disease. Microsc. Res. Tech, 1998,41:359-371.
    68 Stahl N, Harry, J. Popko, B. Quantitative analysis of myelin protein gene expression during development in the rat sciatic nerve. Mol Brain Res, 1990,8:209-212.
    69 Campagnoni A.T. Macklin, W.B. Cellular and molecular aspect of myelin protein gene expression. Mol Neurobiol, 1988,2:41-89.
    70 Campagnoni A.T. Molecular biology of myelin proteins from the central nervous system. J Neurochem, 1988,51:1-14.
    71 Poltorak M, Sadoul, R, Keilhauer, G,et al. Myelin-associated glycoprotein, a member of the L2/HNK-1 family of neuronal cell adhesion molecules, is involved in euron-oligodendrocyte and oligodendrocyte-oligodendrocyte interaction. J Cell Biol, 1987,105:1893-1899.
    72 Melcangi RC, Magnaghi V, Cavarretta I,et al. Ageinduced decrease of glycoprotein Po and myelin basic protein gene expression in the rat sciatic nerve.Repair by steroid derivatives. Neuroscience, 1998,85:569-578.
    73 Melcangi RC, Magnaghi V, Cavarretta I,et al. Progesterone derivatives are able to influence peripheral myelin protein 22 and Po gene expression: possible mechanisms of action. J Neurosci Res, 1999,56:349-357.
    74 Magnaghi V, Cavarretta I, Galbiati M,et al. Neuroactive steroids and peripheral myelin proteins. Brain Res Rev, 2001,37:360-371.
    75 M.C Raff. Glial cell diversification in the rat optic nerve. Science, 1989,243:1450-1455.
    76 M.C Raff, R.H Miller and M Noble. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on the culture medium. Nature, 1983,303:390-396.
    77 Hardy R. Proliferation and differentiation potential of rat forebrain oligodendroglial progenitors both in vitro and in vivo. Development, 1991,111:1061-1080.
    78 Levine JM. The oligodendrocyte precursor cell in health and disease. Trends Neurosci, 2001,24:39-47.
    79 Gago N. Control of cell survival and proliferation of postnatal PSA-NCAM(+) progenitors. Mol Cell Neurosci, 2003,22:162-178.
    80 Ono, K, Bansal, R, Payne, J,et al. Early development and dispersal of oligodendrocyte precursors in the embryonic chick spinal cord. Development,1995,121:1743-1754.
    81 Pringle, N.P, Richardson, W.D. A singularity of PDGF alpha-receptor expression in the dorsoventral axis of the neural tube may define the origin of the oligodendrocyte lineage. Development,1993,117:525-533.
    82 Skoff, R, Price, D, Stocks, A. Electron microscope autoradiographic studies of gliogenesis in rat optic nerve. 11. Time of origin. J Comp. Neurol, 1976b,169:313-333.
    83 Skoff, R.P, Price, D, Stocks, A. Electron microscope autoradiographic studies of gliogenesis in rat optic nerve. 1. Cell proliferation. J Comp Neurol, 1976a,169:291-312.
    84 Mary R.L. Dawson, Annabella Polito,et al. NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Molecular and Cellular Neuroscience, 2003,24:476-488.
    85 Gago N, Akwa Y, Sananes N,et al. Progesterone and the oligodendroglial lineage: stage-dependent biosynthesis and metabolism. Glia, 2001,36:295-308.
    86 Gow A, Southwood CM, Li JS, et al. CNS myelin and sertoli cell tight junction strandsare absent in Osp/claudin-11 null mice. Cell, 1999,99:649-659.
    87 Campagnoni AT. Molecular biology of myelination. In: Neuroglia. New York: Oxford UP,1995. 555-570.
    88 Braun PE. Molecular organization of myelin. In: Myelin. 2 nd. New York: Plenum,1984,97-116.
    89 Jung-Testas I, Hu ZY, Robel P,et al.New insights into remyelination pregnenolone and progesterone in primary cultures of rat glial cells. Endocrino, 1989,125:2083-2091.
    90 Ibanez C, Shields SA, El Etr M,et al. Systemic progesterone administration results in a partial reversal of the age-associated decline in CNS remyelination following toxin-induced demyelination in male rats. Neuropathol Appl Neurobiol, 2004,30:80-89.
    91 Ibanez C, Shields SA, El Etr M,et al. Steroids and the reversal of age-associated changes in myelination and remyelination. Prog Neurobiol,2003,71:49-56.
    92 Marin-Husstege,Muggironi,Raban,-D, et al. Oligodendrocyte progenitor proliferation and maturation is differentially regulated by male and female sex steroid hormones. Dev-Neurosci,2004,26(2-4): 245-254.
    93 Ghoumari AM, Ibanez C, El E, et al. Progesterone and its metabolites increase myelin basic protein expression in organotypic slice cultures of rat cerebellum. J Neurochem, 2003,86:848-859.
    94 Berger T, Frotscher M. Distribution and morphological characteristics of oligodendrocytes in the rat hippocampus in situ and in vitro: an immunocytochemical study with the monoclonal Rip antibody. J Neurocytol, 1994,23:61-74.
    95 Gawiler BH, Capogna M, Debanne D, et al. Organotypic slice cultures: a technique has come of age. Trends Neurosci, 1997,20:471-477.
    96 A. M. Ghoumari, E.E.Baulieu,M.Schumacher. Progesterone increase olidodendroglial cell proliferation in rat cerebellar slice cultures.Neurosci,2005,135:47-58.
    97 Franklin, R.J.M, Zhao, C, Sim, F.J. Ageing and CNS remyelination. NeuroReport, 2002,13:923-928.
    98 Sim FJ, Zhao C, Penderis J, Franklin RJM. The age-related decrease in CNS remyelination efficiency is attributable to an impairment of both oligodendrocyte progenitor recruitment and differentiation. J Neurosci, 2002,22:2451-2459.
    99 Shields, S.A, Gilson, J.M, Blakemore, W.F,et al. Remyelination occurs as extensivelybut more slowly in old rats compared to young rats following gliotoxin-induced CNS demyelination. Glia, 1999,28:77-83.
    100 Jung-Testas, I, Baulieu, E.E. Steroid hormone receptors and steroid action in rat glial cells of the central and peripheral nervous system. J. Steroid Biochem. Mol Biol, 1998,65:243-251.
    101 Jung-Testas, I, Schumacher, M, Robel, P,et al. The neurosteroid progesterone increases the expression of myelin proteins (MBP and CNPase) in rat oligodendrocytes in primary culture. Cell Mol Neurobiol, 1996,16:439-443.
    102 Sim, F.J, Hinks, G.L, Franklin, R.J.M. The re-expression of the homeodomain transcription factor Gtx during remyelination of experimentally-induced demyelinating lesions in young and old rat brain. Neurosci, 2000,100:131-139.
    105 R.C. Melcangi, V. Magnaghi, M. Galbiati ,L. Martini. Formation and effects of neuroactive steroids in the central and peripheral nervous system. Int Rev. Neurobiol, 2001,46:145-176.
    104 R.C. Melcangi, V. Magnaghi , L. Martini. Steroid metabolism and effects in central and peripheral glial cells. J Neurobiol, 1999,40:471-483.
    105 Thomas A, Nockels R, Pan H,et al. Progesterone is neuroprotective after acute experimental spinal cord trauma in rats. Spine, 1999,24:2134-2138.
    106 Roof, R.L. Progesterone treatment attenuates brain edema following contusion injury in male and female rats. Restor Neurol Neurosci,1992,4:425-427.
    107 Pozzilli, C, Falaschi, P, Mainero, C. et al. MRI in multiple sclerosis during the menstrual cycle: Relationship with sex hormone patterns. Neurology, 1999,53,3:622-624.
    108史玉泉.实用神经病学. 2版.上海:上海科学技术出版社,1994,857-858.
    109 Wolswijk G. Chronic stage multiple sclerosis lesions contain a relativelyquiescent population of Oligdendrocyte precursor cells. J Neurosci,1998,18(2):601-609.
    110 Christian C Onfavreux, M.D, M ICchael H Utchinson,M.D,M Artine M Ariehours,M.D,et al.Rate of pregnancy-related relapse in multiple sclerosis.New Engl J Med,1998,339(5):285-291.
    111 Martine El-Etra, Sandra Vukusicb, Le Kremlin-Bicetre, et al. Steroid hormones in multiple sclerosis. J Neurolog Sci,2005,233:49-54.
    112 Stephen P.J. Fancy, Chao Zhao, Robin J.M. Franklin. Increased expression of Nkx2.2and Olig2 identifies reactive oligodendrocyte progenitor cells responding to demyelination in the adult CNS. Mol. Cell. Neurosci, 2004,27:247-254.
    113 Prayoonwiwat, N. Rodriguez, M. The potential for oligodendrocyte proliferation during demyelinating disease. J Neuropath Exp. Neurol, 1993,52:55-63.
    114 Chang, A, Tourtellotte, W. W, Rudick, R. et al. Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med, 2002,346:165-173.
    115 Adams, C. W. M. A Colour Atlas of Multiple Sclerosis and Other Myelin Disorders. LONDON:Wolfe Medical Publications,1989.
    116 Qiao Zhou, Songli Wang,David J. Anderson. Identification of a Novel Family of Oligdendrocyte Lineage-Specific Basic Helix-Loop-Helix Transcription Factors. Neuron, 2000,25:331-343.
    117 Lu QR, Yuk D, Alberta JA,et al. Sonic hedgehog-regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron, 2000,25:317-329.
    118 Chao Zhao, Stephen PJ, Fancy, et al. Mechanisms of CNS remyelination-the key to therapeutic advances. J Neurolog Sci,2005,233(1-2):87-91.
    119 Mei Xin, Tao yue,Zhenyi Ma, et al. Myelinogenerosis and Axonal Recognition by Oligodendrocyte in Brain are Uncoupled in Olig1 -Null Mice. J Neurosci, 2005,25(6):1354-1365.
    120 Roumen Balabanov , Brian Popko. Myelin repair: developmental myelination redux?. Nat Neurosci,2005,8(3):262-264.
    121 Heather A. Arnett, Stephen P. J. Fancy, John A. Alberta,et al. bHLH Transcription Factor Olig1 Is Required to Repair Demyelinated Lesions in the CNS. Science, 2004,306:2111-2115.
    122 Keithl L, Stephen P.J, Robin J.M. Olig Gene Function in CNS Development and Disease. Glia,2005,54:1-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700