RNA干扰抑制结缔组织生长因子对瘢痕疙瘩成纤维细胞功能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
瘢痕疙瘩是皮肤损伤如创伤、烧伤或手术后引发的过度纤维化。病变常蔓延至正常皮肤,严重损害容貌外观,造成功能障碍,不发生退行变化和单纯手术切除后极易复发。临床上治疗方法虽然很多,但疗效不佳。
     CTGF是一种重要的促纤维化因子,通过SMADs途径参与病理性瘢痕的形成,阻断CTGF的产生及其促纤维化效应可能为今后病理性瘢痕的治疗提供了一个新的靶点。有研究报道,利用CTGF反义寡核苷酸能够抑制HKFs的增殖、CTGF蛋白质和mRNA的表达、胶原合成。
     RNA干扰是利用与目的mRNA具有同源性的siRNA诱发序列特异性的转录后基因沉默的现象,它产生类似于“基因敲除”的生物表型,能够高效、特异地抑制靶基因。有报道能够代替基因打靶技术,应用于临床治疗相关疾病。
     目的运用生物信息学方法,构建CTGFsiRNA干扰质粒,转染细胞后诱发RNAi,观察其对人瘢痕疙瘩成纤维细胞CTGF表达和胶原蛋白分泌的影响,并探讨其机制,为瘢痕疙瘩的基因治疗提供了一条新的思路。
     方法根据RNAi设计原则,运用生物信息学方法,筛选出3条靶序列,分别合成3对64nt寡核苷酸,另以一条同样GC比例的错乱序列作为阴性对照,经与BamHI和HindIII酶切的线性化质粒pGenesil-1定向连接后转化大肠杆菌DH5a,质粒分别命名为pGenesil-CTGF1、pGenesil-CTGF2、pGenesil-CTGF3,pGenesil-CTGF4。质粒扩增后经酶切、测序鉴定。
     为提高转染效率,使用Roche公司的Dosper脂质体进行转染,转染筛选实验分为六组:对照组(单纯DMEM培养基+脂质体);空质粒组(转染pGenesil-1空质粒);pGenesil-CTGF1组;pGenesil-CTGF2组;pGenesil-CTGF3组;pGenesil-CTGF4组。细胞经G-418筛选后,得到细胞克隆,逐步扩大培养。
     使用荧光定量PCR检测各组细胞中CTGF mRNA水平、Western blotting半定量检测CTGF蛋白水平、H3-脯氨酸渗入法检测胶原蛋白含量。
     分别用10ng/ml剂量TGF-β1刺激抑制效率最高的干扰质粒组细胞和未经转染的瘢痕疙瘩成纤维细胞,观察从形态学、CTGF mRNA、CTGF蛋白和胶原蛋白含量方面观察对细胞生物学的影响。
     结果1.成功构建CTGF基因的siRNA表达质粒,测序证实插入序列正确。2.转染pGenesil-CTGF1、pGenesil-CTGF2干扰质粒的瘢痕疙瘩成纤维细胞CTGF mRNA表达水平的抑制效率分别是59.9%、20.4%(P<0.05),pGenesil-CTGF3干扰质粒的抑制效率明显不佳(9.09%),在前两组干扰质粒组中,尤以pGenesil-CTGF1组抑制效果最佳。pGenesil-CTGF1干扰质粒对CTGF蛋白和胶原蛋白的抑制率分别达33.6%和49.7%(P<0.05)。这说明构建siRNA干扰质粒可有效抑制相应基因和蛋白的表达水平,其抑制效果的差异与靶序列有关。
     3.经TGF-β1刺激后,发现瘢痕疙瘩成纤维细胞的CTGF mRNA水平明显升高2倍多,但转染了pGenesil-CTGF1干扰质粒的细胞虽经TGF-β1刺激,CTGFmRNA水平也只有未经刺激细胞的56.6%,与刺激后的正常细胞相比明显降低(P<0.05),CTGF蛋白水平、胶原蛋白含量与刺激后相比也明显降低33.6%、49.7%(P<0.05)。
     结论1.针对CTGF基因的siRNA干扰质粒转染瘢痕疙瘩成纤维细胞后能明显抑制CTGF mRNA表达,降低CTGF蛋白含量,提示该基因可作为基因治疗的靶点; 2.针对CTGF基因不同位点的siRNA干扰质粒转染细胞后,能够不同程度地抑制CTGF基因表达,其抑制效果和靶序列的位置有关; 3.经TGF-β1刺激后,转染pGenesil-CTGF干扰质粒的瘢痕疙瘩成纤维细胞CTGF mRNA、CTGF蛋白和胶原蛋白含量与与未经转染细胞相比明显降低,但与未经刺激的细胞相比,仍未到基线水平,说明TGF-β1是通过CTGF部分调节了细胞胶原代谢。
Background Keloid(KD) is benign scar of dermal origin that is the result of intense and abnormal fibroblastic response to trauma、burn and postoperation, particularly in areas of high skin tension. It grows beyond the margins of the original wound and tends to be susceptible to high rate of recurrence, persists without regression unlike normal scar. And how to treat on it is always a challenge.
     Connective tissue growth factor(CTGF),a important fibrosis factor, can accelerate pathologic scar formation by TGF/SMADs sigal pass.So to block down CTGF may be a pharmacecular target.Some reseaches indicate CTGF AS-ODN can inhibit proliferation of HKFs,expression of CTGFmRNA and the collagen secretion.
     RNA interference(RNAi) is the process of using specific sequences of dsRNA to knock down the expression levels of complementary genes. SiRNAs are loaded into RISC(RNA-induced silencing complex) and cleave the target mRNA. RNAi has been widely applied in the research of gene function and gene therapy as an efficient tool for specific gene silencing.
     Objective Vectors expressing CTGF siRNA were designed, constructed and transfected into HKFs. Their effects on
     CTGFmRNA level and collagen secretion were observed. And at last the mechanisms were researched in order to explore a new way for gene treatment on keloids. Methods Three 64nt oligonucleotides forming double strands after annealing were designed by three 21nt specific sequences of CTGF siRNA respectively. Then the double strands mentioned above were inserted into pGenesil-1 vector to construct recombined expression vectors which can express shRNA, named pGenesil -CTGF1,2,3. And a mixed sequence was named pGenesil-CTGF4 as control. Recombinant plasmids were verified by enzyme cut and sequencing analysis.
     To increase transfection efficiency, lipsome Dosper from Co.Roche was selected. The experiment included six groups: control , plasmids, pGenesil-CTGF1, pGenesil-CTGF2, pGenesil- CTGF3 and pGenesil-CTGF4. After transfection,every group except control was cultured in DMEM medium added with 350μg/ml G-418. About three weeks later, cell clones were obtained. Clones of each group were selected and transfered to fresh dish and then to culture bottles.
     The mRNA levels of CTGF were measured by The real-time quantitative PCR(RQ-PCR). The protein expression was determined by western blotting. The collagen secretion was assessed by 3H-proline incorporation method.
     HKFs and HKFs transfected by pGenesil-CTGF1 were stimulated by TGF-β1 with the dosage of 10ng/ml.
     Results 1.Vectors expressing CTGF siRNA were successfully constructed and proved to be correct by enzyme cut and sequencing.
     2.The CTGFmRNA expression levels of pGenesil-CTGF1, pGenesil-CTGF2 were significantly lower than that of control(59.9%、20.4%,both P<0.01).Both of them, pGenesil- CTGF1’s was lower. And CTGF protein and collagen secretion were 33.6% and 49.7% separately (P<0.05). We can conclude that Vectors expressing CTGF siRNA can suppress target gene and suppressive efficiency correlate with sequence of siRNA. The CTGFmRNA expression level of HKFs was higher as 2 times after instimulated by TGF-β1. But if transfected by pGenesil-CTGF1, the CTGFmRNA expression level decreased significantly(P<0.05).CTGF protein and collagen secretion also markedly reduced(P<0.05).
     Conclusions 1.CTGF protein and collagen secretion were markedly decreased after CTGFmRNA expression level was inhibited by RNAi. This indicated CTGF could be a candidate target for gene therapy.
     2. For CTGF RNAi, inhibiting effect varies for different target site on mRNA. 3. Contrasted to those in HKFs, the CTGFmRNA expression level、CTGF protein and collagen secretion in HKFs transfected by vector expressing siRNA were markedly decreased after stimulated by TGF-β1. This reveals TGF-β1 can partly adjust collagen secretion through CTGF.
引文
1. Alhady S M,Sivanantharajah K. Keloid in various races: a review of 175 cases [J]. Plast ReconstrSurg, 1969, 44(6): 564-566.
    2. Marneros AG, Norris JE, Olsen BR, Reichenberger E. Clinical genetics of familial keloids [J]. Arch Dermatol, 2001, 137 (11):2142-9234.
    3. Marneros AG, Norris JE, Watanabe S,et al. Genomes can provide evidence for keloid susceptibility loci on chromosomes 2q23 and 7p11 [J]. J Invest Dermatol, 2004, 122 (5):1126-32.
    4.陈阳,高建华,刘晓军,等.中国人群瘢痕疙瘩家系与染色体2q23和7p11的连锁分析[J].中国实用整形美容外科杂志,2006,17(3):221-224.
    5.刘旺,蒋游晖,李友民等.瘢痕疙瘩成纤维细胞p53基因突变的研究[J].中华烧伤杂志,2004,20(2):857.
    6. Tanaka A, Hatoko M, Tada H, etal. Expression of p53 family in scars[J].J Dermatol Sci,2004,34(1):17-24.
    7.鲁峰,高建华,黎小间. Fas介导下瘢痕成纤维细胞的死亡信号传导的研究[J].中华医学美容杂志, 2000,6(1):31-33.
    8.鲁峰,高建华,刘永波,等.瘢痕疙瘩Fas基因突变的PCR-SS-CP筛选[J].解放军医学杂志,1999,36(4):358-361.
    9.鲁峰,高建华.重组腺病毒介导Fas基因转染瘢痕疙瘩细胞并诱导其凋亡的实验研究[J].中华整形外科杂志.2004,20(4): 268-270.
    10. Duong HS, Zhang QZ, Le AD, et al. Elevated prolidase activity in keloids: correlation with type I collagen turnover [J]. Br J Dermatol. 2006,154(5):820-828.
    11. Feugate JE, Wong L,Li QJ, et al. The CXC chemokine cCAF stimulates precocious deposition of ECM molecules by wound fibroblasts,accelerating development of granulation tissue [J].BMC Cell Biol,2002,3:13-16.
    12. Bock O, Yu H, Zitron S, et al. Studies of transforming growth factors beta 1-3 and their receptors I and II in fibroblast of keloids and hypertrophic scars [J]. Acta Derm Venereol,2005,85(3):216-20.
    13.沈锐,利天增.组织缺氧与增生性瘢痕的关系[J].国际外科学杂志, 2006, 33(1):70-73.
    14. Tsujita-Kyutoku M, Uehara N, Matsuoka Y,et al.Comparison of transforming growth factor beta/Smad signaling between normal dermal fibroblasts and fibroblasts derived from central and peripheral areas of keloid lesions [J]. In Vivo, 2005, 19(6): 959-963.
    15. Phan TT,Lim IJ, Chan SY,et al.Suppression of transforming Growth factor beta/smad signaling in keloid-derived fibroblasts by quercet in: implications for the treatment of excessives cars[J].J Trauma, 2004,57(5):1032-1037.
    16. Bradham DM, Igarashi A, Potter RL. Connective tissue growth factor:a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10[J]. J Cell Biol, 1991, 114: 1285-1294.
    17. Yamaai T, Nakanishi T, Asano M, et al. Gene expression of connective tissue growth factor (CTGFCCN2) in calcifying tissues of normal and cbfa1-null mutant mice in late stage of embryonic development[J]. J Bone Miner Metab, 2005,23(4): 280-288.
    18. Li JH, Zhu HJ, Huang XR, et al.Smad7 inhibits fibrotic effect of TGF-Beta on renal tubular epithelial cells byblocking Smad2 activation[J]. J Am Soc Nephrol, 2002, 13(6):1464-1472.
    19. Heusinger-Ribeiro J, Eberlein M, Wahab N A,et al. Expression of connective tissue growth factor in human renal fibroblasts: regulatory roles of Rho A and cAMP[J]. J Am Soc Nephrol, 2001,12(9):1853-1861.
    20. Utsugi M, Dobashi K, Ishizuka T, et al. C-Jun-NH2-terminal Kinase mediates expression of connective tissue growth factor induced by transforming growth factor-beta 1 in human lung fibroblasts[J]. Am J Respir Cell Mol Biol,2003,28(6): 54-761.
    21. Xie S, Sukkar M B, Issa R, et al. Regulation of TGF-beta 1 induced connective tissue growth factor expression in airway smooth muscle cells[J]. Am J Physiol Lung Cell Mol Physiol, 2005,288(1):L68-76.
    22. Igarashi A, Nashiro K, Kikuchi K. Connective tissue growth factor gene expression in tissue sections from localized scleroderma, keloid, and other fibrotic skindisorders[J].J Invest Dermatol, 1996, 106:729-733.
    23. Colwell AS,Phan TT, Kong W,et al. Hypertrophic scar fibroblasts have increased connective tissue growth factor expression after transforming growth factor-beta stimulation[J]. Plast Reconstr Surg. 2005,116(5):1387-90.
    24.刘剑毅,李世荣,纪淑兴,等.反义寡核苷酸对人K成纤维细胞CTGF基因表达和胶原合成的作用[J].中华烧伤杂志. 2004, 20(2):72-75.
    25. Napoli C, Lemieux C, Jorgensen R. .Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans[J]. Plant Cell. 1990,2(4):279-289.
    26. Fire A, Xu S, Montgomery MK et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature. 1998,391(6669):806-11.
    27. Liang Z, Yoon Y, Votaw J et al. Silencing of CXCR4 blocks breast cancer metastasis[J]. Cancer Res. 2005,65(3):967-971.
    28. Zamore PD,Tuschl T,Sharp PA ,et al .RNAi:double-stranded RNA directsthe ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals[J]. Cell,2000,101(l):252-33.
    29. Grishok A, Pasquinelli AE, Conte D, et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C elegans developmental timing[J]. Cell,2001,106:23-34.
    30. Elbashir SM,Lendeckel W,Tuschl T. RNA interference is mediated by21-and 22-nucleotide RNAs[J]. Genes Dev. 2001,15: 188.
    31. Holen T, Amarzguioui M,Babaie E et al.Similar behaviour of single-strand and double-strand siRNAs suggests they act through a common RNAi pathway[J].Nucleic Acids Res. 2003, 31(9):2401-2407.
    32. Bernstein E, Denli EM and Hannon GJ. The rest is silence[J]. RNA, 2001, 7(11):1509-1521.
    33. Evaldine B,Longo JA,Hahn PJ.The scid defect results in much slower repair of DNA double-strand breaks but not high levels of residual breaks[J]. Radiat Res.1997, 47:535-540.
    34. Lim DS, Kim ST,Xu B,et al. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway[J]. Nature.2000,404(6778): 613-617.
    35.鲍卫汉主编.实用瘢痕学.北京:北京医科大学出版社,2000.338-339.
    36. A.J.Pierce, P.Hu,M.Han,N.Ellis et al. Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells[J]. Genes Dev.2001, 15:3237-3242.
    37. Holen T, Amarzguioui M,Wiiger MT et al. Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor.Nucleic Acids Res[J]. 2002, 30(8): 1757- 1766.
    38. Yin JL, Shackel NA, Zekry A et al. Real-time reverse transcriptase-polymerase chain reaction(RT-PCR)for measurement of cytokine and growth factor mRNA expression with fluorogenic probes or SYBR Green I[J].Immunol Cell Biol.2001,79(3):213-221.
    39. Heid CA,Stevens J,Livak KJ et al. Real time quantitative PCR[J].Genome Res.1996,6(10):986-994.
    40. Butt DW, Law AS. Evolution of the transforming growth factor-beta superfamily [J]. Prog Growth Factor Res, 1994, 5(1): 99-118.
    41. Massague J. TGF-beta signal transduction. Annu Rev Biochem [J], 1998, 67:753-791.
    42.杨力. Smad蛋白家族与TGF-β信号转导.中国美容医学[J], 2001,10(6):547-549.
    43. Zhu HJ, Burgess AW. Regulation of transforming growth factor-βsignaling [J]. Molecular cell biology research communications, 2001,4(6):321-330.
    44. Bradham DM, Igarashi A, Potter RL.et al. Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. J Cell Biol,1991, 114(6): 1285-1294.
    45. Brigstock DR. The connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed (CCN) family. Endocr Rev,1999,20(2):189-206.
    46. Oemar BS, Luscher TF. Connective tissue growth factor. Friend or foe?[J].Arterioscler Thromb Vase Biol, 1997,17(8):1483-1489.
    47. Kim HS, Nagalla SR, Oh Y.et al. Identification of a family of low-affinity insulin-likegrowth factor binding proteins (IGFBPs): characterization of connective tissue growth factor as a member of the IGFBP superfamily[J]. Proc Natl Acad Sci U S A, 1997,94(24):12981-12986.
    48. Kiefer MC, Masiarz FR, Bauer DM.et al. Identification and molecular cloning of two new 30-kDa insulin-like growth factor binding proteins isolated from adult human serum[J]. J Biol Chem, 1991,266(14):9043-9049.
    49. Kireeva ML, Latinkic BV, Kolesnikova TV.et al. Cyr61 and Fispl2 are both ECM-associated signaling molecules: activities, metabolism, and localization during development[J]. Exp Cell Res, 1997,233(1):63-77.
    50.聂铭博、陈振兵.TGF-β1及其下游因子CTGF与骨骼肌纤维化[J].国际骨科学杂志,2006,27(5):306-308.
    1. Fire A, Xu S, Montgomery MK et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998 ,391(6669):806-11.
    2. Napoli C, Lemieux C, Jorgensen R. .Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell. 1990,2 (4):279-289.
    3. Romano N, Macino G. Quelling:transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mot Microbiol.1992,6 (22):3343-53.
    4. Pal-Bhadra M, Bhadra U, Birchler JA. Cosuppression in Drosophila:gene silencing of Alcohol dehydrogenase by white-Adh transgenes is Polycomb dependent. Cell.1997 ,90 (3):479-90.
    5. Guo S, Kemphues KJ. Par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell.1995,81(4):611-20.
    6. Wianny F, Zernicka-Goetz M. Specific interference with gene function by double-stranded RNA in early mouse development. Nat Cell Biol, 2000, 2:70-75.
    7. Elbashir SM, Harborth J, Lendeckel W. et al.Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001 ,411(6836):494-8.
    8. Wianny F, Zernicka-Goetz M. Specific interference with gene function by double-stranded RNA in early mouse development. Nat Cell Biol. 2000; 2(2):70-75.
    9. Lieberman J, Song E, Lee SK, et al. Prelata Shanker. Interfering with disease: opportunities and roadblocks to harnessing RNA interference. Trends Mol Med. 2003; 9(9):397-403.
    10. Tomoko Kuwabara, Jenny Hsieh, Kinichi Nakashima, et al. A Small Modulatory dsRNA Specifies the Fate of Adult Neural Stem Cells. Cell .2004; 116:779-793.
    11. Ui-Tei K, Zenno S, Miyata Y et al Sensitive assay of RNA interference in Drosophilaand Chinese hamster cultured cells using firefly luciferase gene as target. FEBS Lett. 2000,479 (3):79-82.
    12. Yang D, Lu H, Erickson JW. Evidence that processed small dsRNAs may mediate sequence-specific mRNA degradation during RNAi in Drosophila embryos. Curr Biol. 2000,10 (19):1191-200.
    13. Lipardi C, Wei Q, Paterson BM. RNAi as random degradative PCR:siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell. 2001,107 (3):297-307.
    14. Dzitoyeva S, Dimitrijevic N, Manev H. Intra-abdominal injection of double-stranded RNA into anesthetized adult Drosophila triggers RNA interference in the central nervous system. Mol Psychiatry. 2001,6 (6):665-70.
    15. Pal-Bhadra M, Bhadra U, Birchler JA. RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing in Drosophila. Mol Cell. 2002,9 (2):315-27.
    16. Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science. 2002 ,296(5567):550-3. Epub 2002 Mar 21.
    17. Caplen NJ, Parrish S, Imani F et al.Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci U S A. 2001, 98(17):9742-7.
    18. arrish S, Fleenor J, Xu S, et al. Functional anatomy of a dsRNA trigger: differential requirement for the two trigger strands in RNA interference. Mol Cell 2000; 6:1077-1087.
    19. Mourrain P, Beclin C, Elmayan T et al.Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell. 2000, 101(5):533-42.
    20. Caplen NJ, Fleenor J, Fire A et al. dsRNA-mediated gene silencing in culturedDrosophila cells:a tissue culture model for the analysis of RNA interference. Gene. 2000,252(1-2):95-105.
    21. Zamore PD, Bartel DP, Lehmann R et al. The PUMILIO-RNA interaction: a single RNA-binding domain monomer recognizes a bipartite target sequence. Biochemistry. 1999,38 (2):596-604.
    22. Ketting RF, Haverkamp TH, Van Luenen HG, et al. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RnaseD. Cell, 1999; 99: 133-141.
    23. Tabara H, Sarkissian M, Kelly WG, et al. The rde-1 gene, RNA interference and transposon silencing in C. elegans. Cell, 1999; 99: 123-132.
    24. Sijen T, Plasterk RH Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature. 2003; 426(6964):310-314.
    25. Ketting RF, Plasterk RH. What's new about RNAi? Meeting on siRNAs and miRNAs. EMBO Rep. 2004,5(8):762-765.
    26. Jones L, Ratcliff F, Baulcombe DC. RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Metl for maintenance. Curr Biol. 2001; 11(10):747-757.
    27. Li H, Li WH, Ding SW. Induction and suppression of RNA silencing by an animal virus. Science, 2002; 296: 1319-1321.
    28. Marx J. Interfering with gene expression. Science, 2002; 288: 1370-1372.
    29. Park WS, Miyano-Kurosaki N, Hayafune M, et al. Prevention of HIV–1 infection in human peripheral blood mononuclear cells by specific RNA interference. Nucleic Acids Research, 2002; 30 (22): 4830- 48.
    30. Baulcombe D. RNA silencing, Diced defence. Nature, 2001;409: 295-296.
    31. Smardon A, Spoerke JM, Stacey SC, et al. EGO一1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C. elegans. Curr Biol,2000 10(4):169-178.
    32. Schramke V, Allshire R.Those interfering little RNAs! Silencing and eliminating chromatin. Curr Opin Genet Dev. 2004, 14(2): 174-180.
    33. Mochizuki K, Fine NA, Fujisawa T, et al. Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in tetrahymena. 2002; 110 (6):689-699.
    34. Elbashir SM, Martinez J, Patkaniowska A, et al. Functional anatomy of siRNA for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO, 6877-6888.
    35. Harborth J, Elbashir SM, Bechert K, et al. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J Cell Sci, 2001, 114(Pt24):4557-4565.
    36. Elbashir SM, Harborth J, Lendechel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in mammalian cell culture. Nature,2001.411:494-498.
    37. Ebashir SM, Lendechel W and Tuschi T.RNA interference is mediated by 21-and 22-nudeotid RNAs Genes Dev.2001;15:188-200.
    38. Thomas Tuschl, James B Thomson and Fritz Eckstein . RNA cleavage by small catalytic RNAs. Current Opinion in Structural Biology, 1995,5(3):296-302.
    39. Worby CA, Simonson-Leff N, Dixon J E. RNA interference of gene expression (RNAi)in cultured Drosophlila cells. Sci STKE, 2001, (95): PLl.
    40. Elbashir SM, Harborth J. RNAs mediate RNA interference in Lendeckel W, et al. Duplexes of 21-nucleotide cultured mammalian cells. Nature, 2001, 411(6836):494-498.
    41. Sohail M, Doran G, Riedemann J, et al. A simple and cost-effective method for producing small interfering RNAs with high efficacy. Nucleic Acids Res, 2003, 31(7):38.
    42. Yu JY, DeRuiter SL, Turner DL. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci, 99(9):6047-6052.
    43. Yang D,Buchholz F,Huang Z,et al. Short RNA duplexes produced by hydrolysis with Escherichoa coli RNase III mediate effective RNA interference in mammalian cells. Proc Natl Acad Sci USA, 2002, 99 (15):9942-9947.
    44. Sui G, Soohoo C, Affarel B, et al. A DNA vector一based RNAi technology to suppress gene expression in mammalian cells.Proc Natl Acad Sci USA, 2002, 99(8):5515-5520.
    45. Daniela Castanotto, Michaela Scherr and John J. Rossi.Intracellular expression and function of antisense catalytic RNAs. Methods in Enzymology, 2000, 313:401-420.
    46. Harborth J, Elbashir SM, Bechert K, et al. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J Cell Science, 2001, 114(24): 4557-4565.
    47. Schmid Aloisia, Schindelholz B, Zinn K. Combinatorial RNAi: a method for evaluating the functions of gene families in Drosophila .Trends in Neurosciences, 2002, 25(2): 71-74.
    48. Wojtkowiak A, Siek A, Alejska M, et al. RNAi and viral vectors as useful tools in the functional genomics of plants Construction of BMV-Based Vectors for RNA Delivery into Plant Cells. Cell Mol Biol Lett, 2002, 7(2A): 511-522.
    49. Xuemin Wang, Xiaoli Tang, Xiaoming Gong,et al. Regulation of hepatic stellate cell activation and growth by transcription factor myocyte enhancer factor 2. Gastroenterology, 2004, 127(4):1174-88.
    50. Zimin Wang, Zhongyu Gao,Yi Shi,et al. Inhibition of Smad3 expression decreases collagen synthesis in keloid disease fibroblasts. Journal of Plastic, Reconstructive & Aesthetic Surgery, 2007,11,11(60): 1193-9.
    51. Makimura H, Mizuno TM, Mastaitis JW, et al. Reducing hypothalamic AGRP by RNA interference increases metabolic rate and decreases body weight without influencing food intake. Nurosci, 2002, 3(1):18.
    52. Zhou A, Scoggin S and Gaynor RB. Identification of NF- KB-regulated genes induced by TNF a utilizing expression profiling and RNA interference. Oncogene. 2003; 22, 2034-2044.
    53. Xia Haibin, Mao Qinwen, Henry, Paulson, et al. siRNA-ediated gene silencing in vitro and in vivo. Nature Biotech, 2002, 20(10): 1006-1010.
    54. Carthew RW. RNA interference: the fragile X syndromeconnection. Curr Biol,2002,12(24):852-854.
    55. Ishizuka A, Siomi MC, Siomi H. A Drosophila fragile Xprotein interacts with components of RNAi and ribosomal proteins. Genes Dev, 2002 ,16(19):2497-2508.
    56. Lin SL, Chuong CM, Ying SY et al. A Novel mRNA-cDNA interference phenomenon for silencing bcl-2 expression in human LNCaP cells. Biochem BiophysRes Commun, 2001; 281(3): 639-644.
    57. Wilda M, Fuchs U, Wossmann W, et al. Killing of leukemic cells with a BCR/ ABL fusion gene by RNA interference (RNAi). Oncogene, 2002, 21 (37):5716-5724.
    58. Jiang M, Milner J. Selective silencing of viral gene E6 and E7 expression in HPV positive human cervical carcinoma cells using small interfering RNAs.Methods Mol Biol. 2005; 292:401-420.
    59. McCaffrey AP, Meuse L, Pham TT, et al. RNA interference in adult mice. Nature, 2002; 418:38-39.
    60. Kapadia SB, Amy BA, and Chisari FV. Interference of hepatitis C virus RNA replication by short interfering RNAs. PNAS,2003; 100(4): 2014-2018.
    61. Wilson JA, Jayasena S, Khvorova A, RNA interference blocks gene expression and RNA synthesis from hepatitis C replicons propagated in human liver cells PNAS,2003, 100(5)2783-2788.
    62. McCaffrey AP, Nakai H, Pandey K, et al. Inhibition of hepatits B virus in mice by RNA interference. Nature Bio, 2003; 21(6): 639-644.
    63. Qin XF, An DS, Irvin SY, et al. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci, 2003, 1:183-188.
    64. Capodici J, Kariko K, Weissman D. et al. Inhibition of HIV-1 infection by small interfering RNA-mediated RNA interference J Immunol, 2002; 169(9) :5196-5201.
    65. Wenlong Han, Megan Wind-Rotolo, Richard L, et al. Inhibition of humanimmunodeficiency virus type 1 replication by siRNA targeted to the highly conserved primer binding site. J Virol, 2004;330(1):221-232.
    66. David Lawrence. RNAi could hold promise in the treatment of HIV. Lancet. 2002, 359(9322):2007.
    67. Song E, Lee SK, Wang J, et al. RNA interference targeting fas protects mice from fulminant hepatitis. Nature med. 2003,9(3): 347-351.
    68. Judy Lieberman, Erwei Song, Sang-Kyung Lee ,et al. Interfering with disease: opportunities and roadblocks to harnessing RNA interference. Trends in Molecular Medicine, 2003,9(9):397-403.
    69. Zender L, Hutker S, Liedtke C, et al. Caspase 8 small interfering RNA prevents acute liver failure in mice. PNAS. 2003;100(13):7797-7802.
    70. David E, Mahil Rao, Christopher DF, et al. Biliverdin reductase: A major physiologic cytoprotectant. Proc Natl Acad Sci, 2002, 25: 16093-16098.