用户名: 密码: 验证码:
MSCs复合载万古霉素支架修复兔桡骨感染性骨缺损的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景及目的:
     各种外伤、战伤所引起的感染性骨缺损在临床上十分常见。单纯的植骨术很可能因感染未控制而失败,因此患者往往不能进行一期植骨,而须彻底清创,待感染因素消除、伤口愈合、血管重建后再进行二期植骨修复骨缺损。这种治疗方法既增加了患者的痛苦,也延长了治疗时间,增加了医疗费用。近年的研究表明,载抗生素缓释系统,如聚甲基丙烯酸甲酯或者可降解的缓释材料复合抗生素系统等,可以有效控制感染,但由于其无促进成骨作用,因此骨愈合延迟或骨不连的情况仍时有发生。如能制备既可以有效释放抗生素控制感染,又能促进成骨的载抗生素缓释材料,将可能为感染性骨缺损的治疗提供一有效途径及手段。现阶段,骨组织工程学被认为是骨缺损修复的最理想方法之一。脱钙骨基质(demineralized bone matrix,DBM)具有传导成骨及诱导成骨的特性;具有良好的组织相容性和生物可降解性,降解产物对细胞无毒、无刺激;具有良好的孔隙率,可通过其表面化学结构及内部的各种生长因子和粘附分子,直接对细胞发挥作用,促进细胞生长,因此被认为是理想的骨组织工程材料。I型胶原是骨组织细胞外基质的主要成分。研究发现,胶原修饰的支架材料,对种子细胞的早期粘附及随后的分化、增殖及成骨均有促进作用。同时胶原也可作为药物的缓释载体。有研究表明,各种类型抗生素中,万古霉素对细胞的毒性最低,且能有效杀灭革兰氏阳性菌,对临床上较为棘手的严重的耐药金黄色葡萄球菌和表皮葡萄球菌等感染性疾病亦有较好疗效。因此,制备载万古霉素的胶原DBM支架材料,可能能有效控制抗生素在局部的释放,发挥其良好的抗菌活性,同时又可作为良好的种子细胞粘附载体。与此同时,由于骨髓间充质干细胞(mesenchymal stem cells,MSCs)具有多向分化潜能及自我更新能力,易于取材及体外培养扩增,并可进行自体移植,而被研究者视为最佳的种子细胞。因此,本研究拟对体外培养的兔骨髓间充质干细胞进行成骨诱导,再将其与载万古霉素的胶原DBM支架材料复合,植入兔桡骨感染性骨缺损处,观察其抗感染与促进骨愈合的能力,为临床感染性骨缺损的治疗提供实验基础。
     实验方法:
     1.采用Percoll密度梯度离心与贴壁培养相结合的方法分离、纯化、培养原代兔MSCs,对获得的细胞进行成骨诱导培养,以碱性磷酸酶染色、茜素红染色、四环素荧光标记法鉴定;对其进行成脂肪诱导培养,以油红染色鉴定;对其进行成软骨诱导培养,以阿新蓝染色鉴定。
     2.观察不同浓度万古霉素(0μg/ml、100μg/ml、200μg/ml、400μg/ml、700μg/ml、1000μg/ml)及缓释万古霉素对体外培养MSCs的增殖、成骨分化的影响:以MTT比色法测定细胞生长率;测定碱性磷酸酶的活性;以茜素红染色观察MSCs诱导成骨情况;以半定量RT-PCR法检测诱导成骨后,成骨基因cbfα-1、I型胶原在mRNA水平上的表达。
     3.制备载万古霉素的胶原DBM支架材料,以扫描电镜观察其表面形态,以高效液相色谱法测定其体外万古霉素释放曲线,以体外抑菌实验检测其抑菌能力。
     4.将兔MSCs成骨诱导后,与载万古霉素胶原DBM支架材料体外复合,检测MSCs与支架材料的生物相容性:以扫描电镜观察支架表面形态及细胞生长情况;对粘附于支架上的MSCs予以胰酶消化后进行细胞计数、MTT比色法测定细胞生长率,检测与支架复合的MSCs的数量及增殖情况;测定碱性磷酸酶活性,检测与支架复合后的MSCs的成骨能力;以染色体核型分析、平板克隆实验、裸鼠致瘤性实验检测MSCs的致瘤性。
     5.建立兔桡骨感染性骨缺损模型,将兔MSCs与载万古霉素胶原DBM支架材料体外复合后,植入兔桡骨感染性骨缺损处,通过一般情况的观察、血清C反应蛋白及红细胞沉降率的测定、X线摄片、组织学切片、生物力学测试,检测该生物复合材料的抗感染及促进成骨能力。
     结果:
     1.成功分离、纯化、培养获得原代兔MSCs。对其成骨诱导后,碱性磷酸酶染色、钙结节茜素红染色、四环素荧光标记均呈阳性;对其成脂肪诱导后,油红染色呈阳性;对其成软骨诱导后,阿新蓝染色呈阳性。
     2.不同浓度万古霉素(0μg/ml、100μg/ml、200μg/ml、400μg/ml、700μg/ml、1000μg/ml)及缓释万古霉素条件下,体外培养的MSCs在细胞生长率、碱性磷酸酶活性、诱导成骨后成骨基因cbfα-1及I型胶原mRNA的表达各方面,均无统计学差异。
     3.成功制备载万古霉素胶原DBM支架材料,其具有良好的万古霉素缓释能力及抑菌能力,万古霉素释放时间可持续32天,体外抑菌可持续4周。
     4.将兔MSCs与载万古霉素胶原DBM支架材料体外复合,扫描电镜下观察可见,载万古霉素胶原DBM支架材料上有大量MSCs爬行、生长、聚集。与普通DBM支架相比较,载万古霉素胶原DBM支架材料更有利于MSCs的粘附、爬行、聚集,其粘附的MSCs数量显著增多,并保持MSCs的增殖能力及成骨能力。与载万古霉素胶原DBM支架材料复合培养的MSCs,染色体核型正常、平板克隆实验阴性、裸鼠致瘤实验阴性。
     5.与吸附胶原的DBM支架组相比较,载万古霉素PDLLA/β-TCP支架组、载万古霉素胶原DBM支架组、MSCs复合载万古霉素胶原DBM支架组,抗感染能力均较强,其血清C反应蛋白及红细胞沉降率的下降速度均显著增快。术后X线摄片及组织学切片结果提示:与吸附胶原的DBM支架组、载万古霉素PDLLA/β-TCP支架组相比较,载万古霉素胶原DBM支架组、MSCs复合载万古霉素胶原DBM支架组的促进成骨作用显著。MSCs复合载万古霉素胶原DBM支架组的促进成骨作用,较载万古霉素胶原DBM支架组显著,其生物力学测试的扭转强度亦显著增强,与未骨折的正常对照组之间比较,无统计学差异。
     结论:
     1.以Percoll密度梯度离心法与贴壁培养相结合的方法,可获得纯度及数量均较高的原代兔MSCs,可满足实验研究的需求。
     2.不同浓度万古霉素(浓度≤1000μg/ml)及缓释万古霉素对MSCs的增殖及成骨分化能力无明显影响。
     3.制备的载万古霉素胶原DBM支架材料具有良好的万古霉素缓释能力及体外抑菌能力,是理想的载抗生素缓释材料。
     4. MSCs与载万古霉素胶原DBM支架材料,具有良好的生物相容性:与支架复合后的MSCs仍具有良好的增殖能力及成骨活性,未见致瘤性。
     5. MSCs复合载万古霉素胶原DBM支架材料,能较好地修复兔感染性桡骨缺损模型,具有良好的抗感染和促进成骨能力。
Background and Objective:
     Infected bone defects are common caused by trauma or war high-energy injured fracture. The treat strategy aims at elimination of infection as the first and major objective and bone union as the next objective because of infection. The inflammation is characterized by a predominant presence of leukocytes and macrophages, which contribute to the destruction of bone tissues.Vascular channels are compressed and obliterated by the inflammatory process. The destruction of vascular channels leaves a portion of dead and infected bone (sequestrum) that is detached from the adjoining healthy bone and surrounded by avascular soft tissue. Owing to the impaired vascularity, antibiotics may not be delivered adequately to the lesion by the intravenous route. The local delivery of antibiotics is an effective option for treating infection. The most common of these is the incorporation of antibiotics into bone cement (polymethylmethacrylate (PMMA)) or a biodegradable carrier as slow release system .These materals can eat many types of infections,but They can’t repair bone defects.
     The best release system can not only control bone infection, but also repair bone defects.Bone tissue engineering technigue is the best selection to repair bone defects.Scafflds are the important element of tissue engineering.Antibiotic loaded scafflds can not only release local antibiotic but also be attached by seeding cells.In this experiment,MSCs were isolated and inducted from rabbits in vitro and seeded on the vancomycin loaded collagen DBM scafflods to control bone infection and repair bone defects. and provide a potential treatment procedure for infected bone defects.
     Methods:
     1.The original generation of MSCs were isolated from bone marrow of rabbits by density gradient centrifugation and adherent culture.Culture-expanded were idetified with osteogenic, chondrogenic and adipogenic differentiation.
     2.MTT assay, alkaline phosphatase (ALP) activity and reverse transcription polymerase chain reaction (RT-PCR) were used to observe the influence of different concentrations of vancomycin (0μg/ml、100μg/ml、200μg/ml、400μg/ml、700μg/ml、1000μg/ml)and delayed release vancomycin on the proliferation and osteoinductive differentiation in vitro.
     3.The vancomycin loaded collagen DBM scafflods were made and the morphology, release characteristics of vancomycin and bacteriostasis ability were observed.
     4.Mesenchymal stem cells seeded on the vancomycin loaded scaffolds .The MSC/scaffold constructs were cultured in vitro and the biocompatibility was detected using MTT assay, alkaline phosphatase (ALP) activity and scanning electronic microscopy (SEM). The cellar oncogenicity of the MSCs on the the vancomycin loaded scaffolds was observed.
     5.To investigate the in vivo anti-infection and osteogenesis of the MSCs/ vancomycin loaded scaffolds, the biomaterals were implanted in rabbit infected radii bone defect and studied by macroscopic , C-reactive protein (CRP), erythrocyte sedimentation rate(ESR), X-ray radiographs, the histologic images and biomechanics.
     Results:
     1.Four days of MSCs of original generation,the fibroblast-like cell colony was observed and MSCs have fulfilled the bottom of the monolayer cultural bottle in 9-12 days,while the passage cells having done in 4-7 days.After the osteogenic induction, most of cells were polygonal and clustered. ALP staining was strong positive. Calcareous infarct could be detected by tetracycline dying in cell clump and stained red by alizarin red. After the adipogenic induction,most of cells were stained positive by oil red. After the chondrogenic induction,most of cells were stained positive by alcian blue.
     2.The results of MTT assay, alkaline phosphatase (ALP) activity and reverse transcription-polymerase chain reaction (RT-PCR) of osteogenic genes showed that different concentrations of vancomycin (0μg/ml、100μg/ml、200μg/ml、400μg/ml、700μg/ml、1000μg/ml)and delayed release vancomycin have no effect on MSCs proliferation and osteogenic differentiation
     3.The release of vancomycin from the vancomycin loaded scaffolds was good . The release of vancomycin and bacteriostasis ability can be sustained for 32 days.
     4.The morphology of MSCs attached onto the scaffolds was evaluated using SEM shows that cells have dramatically reproduced and aggregated with each other to form stratified cell layers, accompanying with filamentous fibers formed on the surface. Statistical analysis indicated significant difference in the cell number between MSCs seeded on the vancomycin loaded collagen DBM scaffolds and empty DBM scaffolds through MTT assay. the level of ALP activity increased substantially on he vancomycin loaded collagen DBM scaffolds. Statistical analysis indicated that there was significant difference between all groups (p<0.05).
     5.The caryotype of MSCs that were seeded on the vancomycin loaded collagen DBM scaffolds and cultured on them for 10 days was nomal,the clone formation experiment showed negative and the tumorgenesis experiment of nude mouse showed also negative.
     6.The MSCs/ vancomycin loaded scaffolds and vancomycin loaded scaffolds control infection and facilitate new bone formation. Moreover, the introduction of MSCs to vancomycin loaded dramatically enhanced the efficiency of new bone formation.The vancomycin PDLLA/β-TCP could control infection but could not repair bone defects.The empty collagen DBM scaffolds could not control infection.
     Conclusions:
     1.The MSCs of third generation obtained from dissociating red marrow by density gradient centrifugation and adherent culture have matched the MSCs features in aspects of appearance.The MSCs can successfully be inductived to osteoblast, chondrocyte and adipocyte.The MSCs of third generation have high purity and considerable quantity and are good seeding cells in bone tissue engineering.
     2.Different concentrations of vancomycin (≤1000μg/ml)and delayed release vancomycin have no effect on MSCs proliferation and osteogenic differentiation .
     3.The vancomycin loaded collagen DBM scaffolds have good ability of release of vancomycin and bacteriostasis .They are good local delivery system. the vancomycin loaded scaffolds are biocompatible and have no negative effects on the MSCs in vitro.The MSCs on the vancomycin loaded collagen DBM scaffolds can grow dramatically and keep osteogenesis.The MSCs have no tumorgenesis.
     4. The MSCs/ vancomycin loaded scaffolds and vancomycin loaded scaffolds control infection and facilitate new bone formation. The vancomycin loaded scaffolds have the potential to be applied in orthopedic to treat infected bone defect.
引文
1. Panagiotis M. Classification of nonunion. Injury Int Care Injured 2005,365:S30-37.
    2. Motsitsi NS. Management of infected nonunion of long bones:The last decade (1996-2006). Injury, 2008,39:155-160.
    3. Klemm KW.Antibiotic bead chains.Clin Orthop,1993.(295):63-76.
    4.王子明,王爱民.抗生素骨水泥在人工关节置换术中的应用.中国矫形杂志,2001, 8(12):1208-1210.
    5. Hassen AD.Local antibiotic delivery vehicles in the treatment of musculoskeletal infection.Clin Orthop,2005,437:91-96.
    6. Dion A,Langman M,Hall G,et al.Vancomycin release behaviour from amorphous calcium polyphosphate matrices intended for osteomyelitis treatment.Biomaterials. 2005,26(35):7276-7280.
    7. Kim HW,Lee EJ,Jun IK,et al.Degradation and drug release of phosphate glass/polycaprolactone biological composites for hard-tissue regeneration.J Biomed Mater Res B Appl Biomat.2005,75(1):34-41.
    8. Ambrose CG,Clybum TA,Louden K,et a1.Efective treatment of osteomyelitis withbiodegradable microspheres in a rabbit model.Clin Orthop,2004,421:293-299.
    9. Michalak KA,Khoo PP,Yates PJ.Iontophoresed segmental allografts in revision arthroplasty for infection. J Bone Joint Surg Br. 2006 ,88(11):1430-1437.
    10. Hutmacher D W.Scaffolds in tissue engineering bone and cartilage.Biomaterials, 2000,21(24):2529-2543.
    11. Ng AM, Tan KK, Phang MY, Differential osteogenic activity of osteoprogenitor cells on HA and TCP/HA scaffold of tissue engineered bone.J Biomed Mater Res A. 2007,21(24):529-543.
    12. Lickorish D,Guan L,Davies JE.A three-phase,fully resorbable,polyester/calcium phosphate scaffold for bone tissue engineering:Evolution of scaffold design. Biomaterials. 2007, 28 (8) :1495-1502.
    13. D.J. Pacaccio and S.F. Stern, Demineralized bone matrix: basic science and clinical applications, Clin. Podiatr. Med. Surg. North Am. 2005,22(4):599-606.
    14. J.R. Mauney,C Jaquiery, V Volloch, M.In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering, Biomaterials, 2005,26(16):3173-3185.
    15. Donzelli E, SalvadèA, Mimo P.Mesenchymal stem cells cultured on a collagen scaffold: In vitro osteogenic differentiationArch Oral Biol. 2007 ,52(1):64-73.
    16. Ungaro F, Biondi M, d'Angelo I, Microsphere-integrated collagen scaffolds for tissue engineering: effect of microsphere formulation and scaffold properties on protein release kinetics. J Control Release, 2006,113(2):128-136.
    17. Calvi LM,Adams GB,Weibrecht KW,et al.Osteoblastic cells regulate the haematopoietic stem cell niche. Nature, 2003, 425:841-846
    18. Ankeny DP,McTigue DM,Jakeman LB.Bone nlarrow transplants provide tissue protection and directional guidanee for axons after contusive spinal cord injury in rats.Exp Neurol 2004,190(1):17-31.
    1.费军,王爱民.骨科固定物与感染治疗新进展.中华创伤骨科杂志,2007,9(12): 1189-1191.
    2. Charalampos G,Zalavras,Michael J,et al.Local antibiotic therapy in the treatment of open fractures and osteomyelitis. Clin Orthop,2004,427: 86-93.
    3. Calvi LM,Adams GB,Weibrecht KW,et al.Osteoblastic cells regulate the haematopoietic stem cell niche.Nature,2003,425:841-846.
    4. Friedenstein AJ,Chailakhjan RK,Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells.Cell Tissue Kinet, 1970,3:393-403.
    5.王爱民,王子明,唐桂阳,等.万古霉素骨水泥在感染人工髋关节翻修中作用的实验研究与临床观察.中华创伤骨科杂志,2004,6(6):603-607.
    6. Edwlman ER.Vascular tissue engineering:designer arteries.Circ Res,1999,85(12): 1115-1117.
    7. Langer R,Vacanti JP.Tissue engineering.Science.1993;260:920-926.
    8. Pittenger MF,Mackay AM,Beck SC,et al.Multilineage potential of adult human mesenchymal stem cells. Science ,1999,284:143-47.
    9. Van VP,Falla N,Snoeck H. Characterization and purification of osteogenic cells from murine bone marrow by two-color cell sorting using anti-sca1 monoclonal antibody and wheat germ agglutinin. Blood,1994,84:753-763.
    10. Haack-Sorensen M,Bindslev L,Mortensen S,et al.The influence of freezing and storageon the characteristics and functions of human mesenchymal stromal cells isolated for clinical use. Cytotherapy.2007,9(4):328-37.
    11. Encina NR,Billotte WG,Hofmann MC. Immunomagnetic isolation of osteoprogenitors from human bone marrow stroma.Lab Invest,1999,79:449-457.
    12. Oreffo ROC,Virdi AS,Triffitt JT. Retroviral marking of human bone marrow fibroblasts:in vitro expansion and localization in calvarial sites after subcutaneous transplantation in vivo.J Cell Physiol, 2001,186:201-209.
    13. Lodie TA,Blickarz CE,Devarakonda TJ,et al. Systematic analysis of reportedly distinct populations of multipotent bone marrow-derived stem cells reveals a lack of distinction. Tissue Engineering, 2002, 8:739-751.
    14. Titorencu I,Jinga VV.Proliferation,differentiation and characterization of osteoblasts from human BM mesenchymal cells. Cytotherapy. 2007,9(7):682-96.
    15. Schrepfer S,Deuse T,Lange C. Simplified protocol to isolate,purify,and culture expand mesenchymal stem cells.Stem Cells Dev,2007,16(1):105-107.
    16. Li WJ,Tuli R,Huang X, Laquerriere P,et al.Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold.Biomaterials, 2005,26 (25):5158-5166.
    17. Beyer Nardi N,da Silva Meirelles L.Mesenchymal stem cells:isolation,in vitro expansion and characterization.Handb Exp Pharmacol,2006,(174):249-282.
    18. Kemp KC,Hows J,Donaldson C.Bone marrow-derived mesenchymal stem cells.Leuk Lymphoma. 2005,46(11):1531-1544.
    19. Ortiz LA,Gambelli F, McBride C,et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proceedings of the National Academy of Sciences of the United States of America,2003,100:8407-8411.
    20. Simmons PJ,Torok-Storb B.Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood, 1991,78:55-62.
    21. Bruder SP,Horowitz MC,Mosca JD,et al. Monoclonal antibodies reactive with human osteogenic cell surface antigens.Bone,1997,21:225-235
    22. Hwang NS, Varghese S, Puleo C,et al.Morphogenetic signals from chondrocytes promote chondrogenic and osteogenic differentiation of mesenchymal stem cells.J CellPhysiol.2007,2(2):281-284.
    23. Chen X, Xu H, Wan C,et al.Bioreactor expansion of human adult bone marrow-derived mesenchymal stem cells.Stem Cells. 2006 ,24(9):2052-2059.
    24. Bernardo ME, Emons JA, Karperien M. Human mesenchymal stem cells derived from bone marrow display a better chondrogenic differentiation compared with other sources. Connect Tissue Res,2007,48(3):132-140.
    25. Park H,Temenoff JS,Tabata Y,et al.Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering.Biomaterials,2007,28(21):3217-3227.
    26. Taylor SM,Jones PA. Changes in phenotypic expression in embryonic and adult cells treated with 5-azacytidine.Journal of Cellular Physiology,1982, 111:187-194.
    27. Mingueii JJ,Erices A,Conget P.Mesenchymal stem cells.Exp Biol Med,2001 226: 507-520.
    28. Koc ON,Gerson SL,Cooper BW,et al. Rapid hematopoietic recovery after coinfusion of autologousblood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol, 2000,18:307-316
    29. Bruder SP,Jaiswal N,Haynesworth SE. Growth kinetics,self-renewal and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation.J Cell Biochem,1997,64:278-294.
    30. Colter DC,Class R,DiGirolamo CM,et al. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow.Proceedings of the National Academy of Sciences of the United States of America,2000,97:3213-3218.
    31. Bruder SP,Jaiswal N,Haynesworth SE. Growth kinetics,self-renewal and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation.J Cell Biochem,1997,64:278-294.
    32. Moussavi HF,Duwayri Y,Martin JA.Oxygen effects on senescence in chondrocytes and mesenchymal stem cells:consequences for tissue engineering. Iowa Orthop J, 2004, 24:15-20.
    33. Castro-Malaspina H,Gay RE,Resnick G,et al. Characterization of human bone marrow fibroblast colony-forming cells(CFU-F) and their progeny.Blood,1980,56:289-301.
    34. Mathon NF,Lloyd AC. Cell senescence and cancer. Nat Rev Cancer,2001,1:203-213.
    35. Hanssen AD,Osmon DR,Patel R.Local antibiotic delivery systems where are we and where are we going. Clin Orthop,2005,237:111-114.
    36. Kim HW,Knowles jc,Kim HE,et a1.Development of hydmxya patite bone scafold for controUed drug release via poly(epsilon-caprolactone)and hydmxyapatite hybrid coatings.J Biomed Mater Res,2004,70B:240-249.
    37. Holtom PD,Pavkovic SA,Bravos PD,et al.Inhibitory effects of the quinolone antibiotics trovafloxacin,ciprofloxaxin,and levofloxacin on osteoblastic cells in vitro.J Orthop Res,2000,18:721-727.
    38. Isefuku S,Joyner CJ,Simpson AH.Toxic effect of rifampicin on human osteoblast-like cells. J Orthop Res,2001,19:950-954.
    39. Chang Y, Goldberg VM, Caplan AI. Toxic effects of gentamicin on marrow-derived human mesenchymal stem cells.Clin Orthop,2006,452:242-249.
    40. Edin ML,Miclau T,Lester GE,et al.Effect of cefazolin and vancomycin on osteoblasts in vitro.Clin Orthop,1996,333:245-251.
    41. Ueng SW, Lee MS, Lin SS, et a1.Development of a biodegradable alginate carrier system for antibiotics and bone cells. J Orthop Res, 2007,25:62-72.
    1. Charalampos G,Zalavras,Michael J.et al.Local antibiotic therapy in the treatment of open fractures and osteomyelitis. Clin Orthop,2004,427: 86-93.
    2. Hassen AD.Local antibiotic delivery vehicles in the treatment of musculoskeletal infection.Clin Orthop,2005,437:91-96.
    3. Ueng SW,Lee MS,Lin SS,et a1.Development of a biodegradable alginate carrier system for antibiotics and bone cells. J Orthop Res,2007,25:62-72.
    4. Hutmacher DW.Scaffolds in tissue engineering bone and cartilage.Biom-ate rials, 2000, 21(24):2529-2543.
    5. Ng AM,Tan KK,Phang MY.Differential osteogenic activity of osteoprogenitor cells on HA and TCP/HA scaffold of tissue engineered bone.J Biomed Mater Res A. 2007, 21 (24): 529-543.
    6. Lickorish D,Guan L,Davies JE.A three-phase, fully resorbable, polyester/calcium phosphate scaffold for bone tissue engineering:Evolution of scaffold design. Biomaterials. 2007,28(8):1495-1502.
    7. Mastrogiacomo M,Papadimitropoulos A,Cedola A.Engineering of bone using bone marrow stromal cells and a silicon-stabilized tricalcium phosphate bioceramic: evidence for a coupling between bone formation and scaffold resorption. Biomaterials. 2007 ,28(7):1376-1784.
    8. Giardino R,Nicoli Aldini N,Fini M.Bioabsorbable scaffold for in situ bone regeneration. Biomed Pharmacother. 2006,60(8):386-92.
    9. J.R. Mauney, V. Volloch DL, Kaplan. Role of adult mesenchymal stem cells in bone tissue engineering applications:current status and future prospects.Tissue Eng,2005,11 (5–6):787–802.
    10. P. Eickholz, B. Pretzl, R. Holle,T.S. Kim.Long-term results of guided tissue regeneration therapy with non-resorbable and bioabsorbable barriers. III. Class II furcations after 10 years, J. Periodontol. 2006,77(1): 88-94.
    11. M. Mastrogiacomo, A. Muraglia, V. Komlev,et al.Tissue engineering of bone:search for a better scaffold, Orthod. Craniofac. 2005,(4):277-284.
    12. D.J. Pacaccio and S.F. Stern, Demineralized bone matrix: basic science and clinicalapplications, Clin. Podiatr. Med. Surg. North Am. 2005,22(4):599-606.
    13. J.R. Mauney, C Jaquiery, V. Volloch, M. In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering, Biomaterials, 2005,26(16):3173-3185.
    14. Donzelli E, SalvadèA, Mimo P.Mesenchymal stem cells cultured on a collagen scaffold: In vitro osteogenic differentiationArch Oral Biol. 2007 ,52(1):64-73.
    15. Ungaro F, Biondi M, d'Angelo I.Microsphere-integrated collagen scaffolds for tissue engineering: effect of microsphere formulation and scaffold properties on protein release kinetics. J Control Release. 2006,113(2):128-136.
    16. Lee SJ, Lim GJ, Lee JW, In vitro evaluation of a poly (lactide-co-glycolide)-collagen composite scaffold for bone regeneration.Biomaterials. 2006,27(18):3466-3472.
    17. Edin ML,Miclau T,Lester GE,et al.Effect of cefazolin and vancomycin on osteoblasts in vitro.Clin Orthop,1996,333:245-251.
    18.王雨,杜全印,王爱民.缓释万古霉素对兔骨髓间充质干细胞增殖和成骨分化的影响.医学临床研究,2007,24(11):1848-1850.
    1 Panagiotis M.Classification of nonunion. Injury Int Care Injured 2005,365:S30-37.
    2 Arnez ZM,Smrke D.Treatment of extensive bone and soft tissue defects of the lower limb by traction and free-flap transfer. Injury Int J Care Injured,2000,31:153-62.
    3 Atesalp AS,Basbozkurt M,Komurcu M,et al.The treatment of infected tibial nonunion with aggressive Debridement and internal bone transport.Mil Med,2002,167(12): 978-981.
    4 Beris AE,Dailiana Z,Johnson EO,et al.Vascularized bone grafts for the management of nonunion. Injury Int J Care Injured,2006,375:S41-50.
    5 Klemm KW.Antibiotic bead chains.Clin Orthop,1993.(295):63-76.
    6 Charalampos G,Zalavras,Michael J,et al.Local antibiotic therapy in the treatment ofopen fractures and osteomyelitis. Clin Orthop,2004,427:86-93.
    7 Nelson CL.The current status of materials used for depot deliveryof drugs.Clin Orthop, 2003,427:72-78.
    8 Passuti N,Gouin F.Antibiotic-loaded bone cement in orthopedicsurgery.Joint Bone Spine,2003,70:169-174.
    9王爱民,王子明,唐桂阳,等.万古霉素骨水泥在感染人工髋关节翻修中作用的实验研究与临床观察.中华创伤骨科杂志,2004,6(6):603-607.
    10王子明,唐桂阳,王爱民.万古霉素一聚甲基丙烯酸甲酯在兔人工股骨头感染一期翻修中的作用.中国修复重建杂志,2006,20(6):635-639.
    11尤瑞金,王爱民.万古霉素骨水泥治疗全髋关节术后感染.骨与关节损伤杂志, 2003,18(3):166-168.
    12 Hassen AD.Local antibiotic delivery vehicles in the treatment of musculoskeletal infection.Clin Orthop,2005,437:91-96.
    13 Buttaro MA, Pusso R, Piccaluga F. Vancomycin-supplemented impacted bone allografts in infected hip arthroplasty.Two-stage revision results.J Bone Joint Surg Br.2005 , 87(3):314-319.
    14 Michalak KA,Khoo PP,Yates PJ.Iontophoresed segmental allografts in revision arthroplasty for infection. J Bone Joint Surg Br.2006,88(11):1430-1437.
    15 Hanssen AD.Prophylactic use of antibiotic bone cement:an emerging standard--in opposition. J Arthroplasty.2004,19(4 Suppl 1):73-77.
    16 Rhyu KH,Jung MH,Yoo JJ,et al.In vitro release of vancomycinfrom vancomycin-loaded blood coated demineralised bone. Int Orthop, 2003,27:53–55.
    17 Shirtliff ME,Calhoun JH,Mader JT.Experimental osteomyelitistreatment with antibiotic impregnated hydroxyapatite.Clin Orthop, 2002,401:239-247.
    18 Gitelis S, Brebach GT.The treatment of chronic osteomyelitis witha biodegradable antibiotic-impregnated implant. J Orthop Surg(Hong Kong) ,2002 ,10:53-60.
    19 McKee MD,Wild LM,Schemitsch EH,et a1.The use of antibiotic impregnated, osteoconductive,bioabsorbale bone subsititute in the treatment of infected long bone defects:early results of a prospective trial.J Orthop Trauma,2002,16(9):622-627.
    20 Mader JT, Stevens CM, Stevens JH, et al.Treatment of experimentalosteomyelitis with a fibrin sealant antibiotic implant.Clin Orthop,2002,403:58-72.
    21 Mehta S,Humphrey JS,Schenkman DI,et al.Gentamicin distribution from a collagen carrier. J Orthop Res, 1996,14:749-754.
    22 Burd TA,Anglen JO,Lowry KJ,et a1.In vitro elution of tobramycin from bioabsorbablepolycaprolactone beads.J Orthop Trauma,2001,15:424-428.
    23 Ambrose CG,Clybum TA,Louden K,et a1.Efective treatment of osteomyelitis with biodegradable microspheres in a rabbit model.Clin Orthop,2004,421:293-299.
    24 Ambrose CG,Clybum TA,Louden K,et a1.Efective treatment of osteomyelitis with biodegradable microspheres in a rabbit model.Clin Orthop,2004,421:293-299.
    25 Yoo YJ.Efect of lactide/glycolide monomers on release behaviors of gentamicin sulfate-loaded PLGA discs.Int J Pharm,2003,276(1-2):31-39.
    26 Kim HW,Knowles JC,Kim HE,et a1.Development of hydmxya patite bone scafold for controlled drug relese via poly(epsilon-caprolactone)and hydmxyapatite hybrid coatings. J BiomedMater Res,2004,70B:240-249.
    27 Cevher E, Orhan Z, Mülazimo?lu L, et al. Characterization of biodegradable chitosan microspheres containing vancomycin and treatment of experimental osteomyelitis caused by methicillin resistant Staphylococcus aureus with prepared microspheres. Int J Pharm,2006,317(2):127-135.
    28 Dion A,Langman M,Hall G,et al.Vancomycin release behaviour from amorphous calcium polyphosphate matrices intended for osteomyelitis treatment.Biomaterials. 2005, 26(35):72-76.
    29 Kim HW,Lee EJ,Jun IK,et al.Degradation and drug release of phosphate glass/polycaprolactone biological composites for hard-tissue regeneration.J Biomed Mater Res B Appl Biomat,2005,75(1):34-41.
    30 Yenice I,Cali? S,Atilla B,et al.In vitro/in vivo evaluation of the efficiency of teicoplanin-loaded biodegradable microparticles formulated for implantation to infected bone defects.J Microencapsul,2003,20(6):705-717.
    31 Rhyu KH,Jung MH,Yoo JJ,et al.In vitro release of vancomycin from vancomycin loaded blood coated demineralised bone.Int Orthop,2003,27(1):53-55.
    32 Ueng SW,Lee MS,Lin SS,et a1.Development of a biodegradable alginate carrier system for antibiotics and bone cells. J Orthop Res, 2007,25:62-72.
    33 Niskanen RO,Pammo H,Korkala O.Serum C-reactive protein levels after total hip and knee arthroplasty. J Bone Joint Surg Br ,1996,78(4):431-433.
    34 Sanzen L,Sundberg M.Periprosthetic low grade hip infections.Erythrocyte sedimentation rate and C-reactive protein in 23 cases. Acta Orthop Scand,1997, 68(5): 461-465.
    1.于学忠,张伯勋.骨植入型可降解抗生素缓释系统的研究进展.中国误诊学杂志,2006,6(14):2676-2677.
    2. Charalampos G,Zalavras,Michael J.et al.Local antibiotic therapy in the treatment of open fractures and osteomyelitis. Clin Orthop,2004,427: 86-93.
    3. Klemm KW.Antibiotic bead chains.Clin Orthop,1993.(295):63-76.
    4. Buchholz HW, Elson RA, Engelbrecht E, et al: Management of deep infection of total hip replacement. J Bone Joint Surg,1981,63:342–353.
    5. Ostermann PA,Seligson D,Henry SL,et a1.Local antibiotic therapy for sever open fractures.J Bone Joint Surg Br,2005,77(1):93-97.
    6. Sudhakar G,Madanagopal H,Seligson D,et a1.The antibiotic cement nail for infection after tibial nailing.Orthopedics,2004,27(7):709-712.
    7. Baker AS,Greenham LW.Release of gentamicin from aerylic bone cement,elution and diffusion studier.J Bone Joint Surg Am,1988,70(101):1551-1557.
    8. Passuti N,Gouin F.Antibiotic-loaded bone cement in orthopedic surgery.Joint Bone Spine,2003,70:169-174.
    9. Nelson CL.The current status of materials used for depot delivery of drugs.Clin Orthop,2003,427:72-78.
    10. Hassen AD.Local antibiotic delivery vehicles in the treatment of musculoskeletal infection.Clin Orthop,2005,437:91-96.
    11. Hanssen AD.Prophylactic use of antibiotic bone cement: an emerging standard in opposition.J Arthroplasty,2004 ,19(4 Suppl 1):73-77.
    12. Thonse R,Conway J. Antibiotic cement-coated interlocking nail for the treatment of infected nonunions and segmental bone defects.J Orthop Trauma.2007, 21(4):258-268.
    13. Lombardi AJr,Karnes JM,Berend KR A.motion maintaining antibiotic delivery system. J Arthroplasty. 2007,22(4 Suppl 1):50-55.
    14. Zelken J, Wanich T, Gardner M, PMMA is superior to hydroxyapatite for colony reduction in induced osteomyelitis. Clin Orthop Relat Res. 2007,462:190-194.
    15. Tuzuner T, Sencan I, Ozdemir D, In vivo evaluation of teicoplanin- and calcium sulfate-loaded PMMA bone cement in preventing implant-related osteomyelitis inrats.J Chemother.2006,18(6):628-33.
    16. McLaren AC.Alternative materials to acrylic bone cement for delivery of depot antibiotics in orthopaedic infections.Clin Orthop,2004,427:101-106.
    17. Yan S, Cai X, Yan W Continuous wave ultrasound enhances vancomycin release and antimicrobial efficacy of antibiotic-loaded acrylic bone cement in vitro and in vivo. J Biomed Mater Res B Appl Biomater. 2007,82(1):57-64.
    18. Tahara Y.Ishii YL.Apatite cement containing cis-diamminedichloro- platinum implanted in rab bit femur for sustained release of the anti-cancer drug and bone formation.J Orthop Sci,2001,6:556-565.
    19. Kamegai A,Shimam ura N,Naitou K,et a1.Bone formation under the influence of bone morphogenetic protein-sefsetting apatite cement composite as a delivery system. Biomed Mater Eng,1994,4(4):291-307.
    20. Otsuka M,Matsuda,Fox JL,et a1.A novel skeletal drug delivery system using self-setting calcium phosphate cement Effect of themixing solution volum on anticancer drug release from homogeneous drug-loaded cement.J Pharm Sci, 1995,84(6):733-736.
    21. Joostena U,Joistb A,Goshegerc G,et a1.Effectiveness of hydroxyapatite vancomycin bone cement in the treatment of staphylococcus anreus induced chronic osteomyelitis.Biomaterials,2005,26:5251-5258.
    22. Takech IM,Miyam oto Y,Ishikawa K,et a1.Effects of added antibi- otics on the basic properties of anti-washout-type fast-setting cacium phosphate cement.J Biomed Mater Res,1998,39(2):308-316.
    23. Dos Santos LA,Carrodeguas RG,Boschi AO,et al.Dual setting calcium phosphate cement modified with ammonium polyacrylate.Artif Organs, 2003, 27(5):412-418.
    24. Xu HHK,Quinn JB,Takagi S,et a1.Synergistic reinforcement of in situ hardening calcium phosphate composite scaffold for bone tissue engineering.Biomaterials,2004,25:1029-1037.
    25. Gbureck U,Barralet JE,Spatz K,et a1.Ionic modification of calcium phosphate cement viscosity Part I:Hypodermic injection and strength improvement of apatite cement.Biomaterials,2004,25:2187-2195.
    26. Passuti N,Gouin F.Antibiotic-loaded bone cement in orthopedic surgery.Joint BoneSpine,2003,70:169-174.
    27. McLaren AC.Alternative materials to acrylic bone cement for de livery of depot antibiotics in orthopaedic infections.Clin Orthop,2004,427:101-106.
    28.袁志,胡蕴玉,孙梁,等.抗感染重组合异种骨系列实验研究.中华医学杂志,2003,83:128-132.
    29. Buttaro MA,Pusso R,Piccaluga F.Vancomycin-supplemented impacted bone allografts in infected hip arthroplasty.Two-stage revision results.J Bone Joint Surg Br. 2005 ,87(3):314-319.
    30. Michalak KA, Khoo PP, Yates PJ Iontophoresed segmental allografts in revision arthroplasty for infection. J Bone Joint Surg Br. 2006 ,88(11):1430-1437.
    31. Rhyu KH, Jung MH, Yoo JJ, et al: In vitro release of vancomycin from vancomycin-loaded blood coated demineralised bone. Int Orthop, 2003,27:53-55.
    32. Shirtliff ME, Calhoun JH, Mader JT: Experimental osteomyelitis treatment with antibiotic-impregnated hydroxyapatite. Clin Orthop, 2002,401:239-247.
    33. Gitelis S, Brebach GT: The treatment of chronic osteomyelitis with a biodegradable antibiotic-impregnated implant. J Orthop Surg (Hong Kong) ,2002,10:53-60.
    34. McKee MD,Wild LM,Schemitsch EH,et a1.The use of antibioticimpregnated,0steoconductive,bioabsorbale bone subsititute in the treatment of infected long bone defects:early results of a prospective trial.J Orthop Trauma,2002,16(9): 622-627.
    35. Buranapanitkit B,Srinilta V,Ingviga N,et a1.The eficacy of a hydroxyapatite composite as a biodegradable antibiotic delivery system.Clin Orthop Relat Res, 2004, (424): 244-252.
    36. Sanchez E,Baro M,Soriano I,et a1.In vivo-in vitro study of biodegradable and osteointegrable gentam icin bone implants.Eur J Pharm Biopharm,2001,52(2: 151-158.
    37. Mitragotri S.Healing sound:The use of ultrasound in drug delivery and other therapeutic applications.Nat Rev Drug Discov,2005,4 (3):255-260.
    38. Evis Z,Sato M,Webster TJ,et a1.Increased osteoblast adhesion on nanograined hydroxyapatite and partially stabilized zirconia composites.J Biomed Mater Res A,2006,78(3):500-507.
    39. Kim HW,Knowles JC,Li LH,et a1.Mechanical performance and osteoblast-like cell responses of fluorine-substituted hydroxyapatite and zirconia dense composite.JBiomed Mater Res A,2005,72(3):258-268.
    40. Kwasny O,Boekhorn G,Vecsei V.The use of gentanfiein collagen floss in the treatment of infections in trauma surgery.Orthopedics,1994,17(5):421-425.
    41. Mader JT,Stevens CM,Stevens JH,et al.Treatment of experimental osteomyelitis with a fibrin sealant antibiotic implant.Clin Orthop,2002,403:58-72.
    42. Mehta S,Humphrey JS,Schenkman DI,et al.Gentamicin distribution from a collagen carrier. J Orthop Res,1996,14:749-754.
    43. Murata M,Huan g BZ,Shibata T,et a1.Bone augmentation by recombinant human BMP-2 and collagen on adult rat parietal bone.Int J Oral Maxillofac Surg,1999, (28):232-237.
    44.高秋明,刘兴炎,董晓萍,等.纤维蛋白凝胶复合骨形态发生蛋白和庆大霉素缓释药物治疗感染性骨缺损的实验研究.骨与关节损伤杂志,2003,18(6): 384-387.
    45. Burd TA,Anglen JO,Lowry KJ,et a1.In vitro elution of tobramycin from bioabsorbable polycaprolactone beads.J Orthop Trauma,2001,15:424-428.
    46. Ambrose CG,Clybum TA,Louden K,et a1.Efective treatment of osteomyelitis with biodegradable microspheres in a rabbit model.Clin Orthop,2004,421: 293-299.
    47. Nelson CL.The current status of materials used for depot delivery of drugs.Clin Orthop,2003,427:72-78.
    48. Garvin KI,Miiyan JA,Robinson D,et a1.Polylactide/polyglycolide an tibiotic implants in the treatment of osteomyelitis,A canine model.J Bone Joint surgery,1994, 76 (10): 1500-1506.
    49. Yoo YJ.Efect of lactide/glycolide monomers on release behaviors of gentamicin sulfate-loaded PLGA discs.Int J Pharm,2003,276(1-2):31-39.
    50. Devin JE,Attawia MA,Laurencin CT.Three-dimensional degradable porous polymer-ceramic matrices for use in bone repair.J Biomat Sci Polym Ed,1996, 7(8):661-669.
    51. Niemela T.Efect of 3-tricalcium phosphate addition on the in vitro degradation of self-reinforced poly-1,d-lactide.Polymer Degradation and Stability,2005,(11):235 -242.
    52. Yoo YJ,Kima JM,Khanga G,et a1.Efect of lactide/glycolide monomers on release behaviors of gentamicin sulfate-loaded PLGA discs.Int J Pharm,2004, 276(12):1-9.
    53. Kim HW,Knowles jc,Kim HE,et a1.Development of hydmxya patite bone scafold for controUed drug release via poly(epsilon-caprolactone) and hydmxyapatite hybrid coatings.J BiomedMater Res,2004,70B:240-249.
    54. Cevher E,Orhan Z,Mülazimo?lu L,et al.Characterization of biodegradable chitosan microspheres containing vancomycin and treatment of experimental osteomyelitis caused by methicillin-resistant Staphylococcus aureus with prepared microspheres.Int J Pharm. 2006 ,24;317(2):127-135.
    55. Dion A,Langman M,,Hall G,et al.Vancomycin release behaviour from amorphous calcium polyphosphate matrices intended for osteomyelitis treatment. Biomaterials. 2005 ,26(35):72-76.
    56. Kim HW,Lee EJ,Jun IK,et al.Degradation and drug release of phosphate glass/polycaprolactone biological composites for hard-tissue regeneration.J Biomed Mater Res B Appl Biomat.2005,75(1):34-41.
    57. Yenice I, Cali? S, Atilla B, et al. In vitro/in vivo evaluation of the efficiency of teicoplanin-loaded biodegradable microparticles formulated for implantation to infected bone defects.J Microencapsul. 2003;20(6):705-717.
    58. Rhyu KH,Jung MH,Yoo JJ,et al.In vitro release of vancomycin from vancomycin loaded blood coated demineralised bone.Int Orthop, 2003, 27(1): 53-55.
    59. Ueng SW,Lee MS, Lin SS, et a1.Development of a biodegradable alginate carrier system for antibiotics and bone cells. J Orthop Res ,2007,25:62-72.
    60. Donlann RM.Biofilms:Microbial life on surfaces.Emerging infections Disease,2002,8(9):881.
    61. Costerton JW,Stewart PS,GrembergEP,et a1.Bacterial biofilms:a COB-Hm cause ofpersi~entinfections.Science,1999,284:1318.
    62.朱斌,吴安华.生物膜细菌感染控制面临的新挑战.中国感染控制杂志,2004,3(2):185-188.
    63. Hanssen AD, Osmon DR. and Patel R, Local antibiotic delivery systems where are we and where are we going. Clin Orthop,2005,237:111-114.
    64. Ensing GT, Neut D, van Horn JR, et al.The combination of ultrasound with antibiotics released from bone cement decreases the viability of planktonic and biofilm bacteria: an in vitro study with clinical strains. J Antimicrob Chemother. 2006;58(6):1287-1290.
    65. Kim HW,Knowles jc,Kim HE,et a1.Development of hydmxya patite bone scafold for controUed drug release via poly(epsilon-caprolactone) and hydmxyapatite hybrid coatings.J Biomed Mater Res,2004,70B:240-249.
    66. Holtom PD,Pavkovic SA,Bravos PD,et al.Inhibitory effects of the quinolone antibiotics trovafloxacin,ciprofloxaxin,and levofloxacin on osteoblastic cells in vitro.J Orthop Res,2000,18:721-727.
    67. Isefuku S,Joyner CJ,Simpson AH.Toxic effect of rifampicin on human osteoblast-like cells. J Orthop Res,2001,19:950-954.
    68. Chang Y,Goldberg VM,Caplan AI.Toxic effects of gentamicin on marrow derived human mesenchymal stem cells.Clin Orthop,2006,452:242-249.
    69. Edin ML,Miclau T,Lester GE,et al.Effect of cefazolin and vancomycin on osteoblasts in vitro.Clin Orthop,1996,333:245-251.
    1. W. Jiang, A. Ma,T. Wang,et al.Homing and differentiation of mesenchymal stem cells delivered intravenously to ischemic myocardium in vivo: a time-series study, Pflugers Arch 2006,453 (1) :43-52.
    2. Van Damme A, Vanden Driessche T, Collen D,et al.Bone marrow stromal cells as targets for gene therapy.Curr Gene Ther. 2002 May;2(2):195-209.
    3. Badiavas EV, Falanga V. Treatment of chronic wounds with bone marrow-derived cells. Arch Dermatol. 2003 Apr;139(4):510-516.
    4. Pittenger MF,Mackay AM,Beck SC,et al. Multilineage potential of adult human mesenchymal stem cells.Science,1999,284:143-147.
    5. Calvi LM,Adams GB,Weibrecht KW,et al. Osteoblastic cells regulate the haematopoietic stem cell niche.Nature,2003,425:841-846.
    6. Y. Liu, X.Z. Shu and G.D. Prestwich. Osteochondral defect repair with autologous bone marrow-derived mesenchymal stem cells in an injectable, in situ, cross-linked synthetic extracellular matrix, Tissue Eng,2006,12(12):. 3405-3416.
    7. X. Shao, J.C. Goh, D.W. Hutmacher, E.H. Lee and G. Zigang, Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model, Tissue Eng,2006,12(6): 1539-1551.
    8. Murphy M,Fink DJ,Hunziker EB,et al. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheumatism,2003,48:3464-3474.
    9. Kitano Y,Radu A,Shabban A,et al. Selection,enrichment and culture expansion of murine mesenchymal progenitor cells by retroviral transduction of cycling adherent bone marrow cells.Exp Hematol,2000,28:1460-1469.
    10. M. Tatebe, R. Nakamura, H. Kagami,et al.Differentiation of transplanted mesenchymal stem cells in a large osteochondral defect in rabbit, Cytotherapy,2005,7 (6):520-530.
    11.刘晓丹,郭子宽,李秀森等.人骨髓间充质干细胞分离与培养方法的建立。军事医学科学院院刊,2000,24:282-284.
    12. Encina NR,Billotte WG,Hofmann MC. Immunomagnetic isolation of osteoprogenitors from human bone marrow stroma.Lab Invest, 1999,79:449-457.
    13. Oreffo ROC,Virdi AS,Triffitt JT. Retroviral marking of human bone marrowfibroblasts:in vitro expansion and localization in calvarial sites after subcutaneous transplantation in vivo. J Cell Physiol,2001,186:201-209.
    14. Lodie TA,Blickarz CE,Devarakonda TJ,et al. Systematic analysis of reportedly distinct populations of multipotent bone marrow-derived stem cells reveals a lack of distinction.Tissue Engineering, 2002,8:739-751.
    15. McBride C, Gaupp D,Phinney DG. Quantifying levels of transplanted murine and human mesenchymal stem cells in vivo by real-time PCR.Cytotherapy,2003,5:7-18.
    16. S. Wakitani and T. Yamamoto, Response of the donor and recipient cells in mesenchymal cell transplantation to cartilage defect, Microsc Res Tech,2002,58 (1):14-18.
    17. Ortiz LA,Gambelli F, McBride C,et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects.Proceedings of the National Academy of Sciences of the United States of America,2003,100:8407-8411.
    18. Jiang Y,Jahagirdar BN,Reinhardt RL,et al.Pluripotency of mesenchymal stem cells derived from adult marrow.Nature,2002, 418:41-49.
    19. Lodie TA,Blickarz CE,Devarakonda TJ,et al. Systematic analysis of reportedly distinct populations of multipotent bone marrow-derived stem cells reveals a lack of distinction.Tissue Engineering, 2002,8:739-751.
    20. Simmons PJ,Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood, 1991,78:55-62.
    21. Bruder SP,Horowitz MC,Mosca JD,et al. Monoclonal antibodies reactive with human osteogenic cell surface antigens.Bone,1997,21:225-235.
    22. M.R. Pagnotto, Z. Wang, J.C. Karpie,et al.Adeno-associated viral gene transfer of transforming growth factor-beta1 to human mesenchymal stem cells improves cartilage repair, Gene Ther, 2007,14 (10),804-813.
    23. Haynesworth SE,Baber MA,Caplan AI. Cell surface antigens on human marrow derived mesenchymal cells are detected by monoclonal antibodies. Bone,1992,13: 69-80.
    24. Barry FP,Boynton RE,Haynesworth S,et al. The monoclonal antibody SH-2,raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105).Biochemical and Biophysical Research Communications,1999, 265:134-139.
    25. J.H. Cui, S.R. Park, K. Park,et al.Preconditioning of mesenchymal stem cells with low-intensity ultrasound for cartilage formation in vivo, Tissue Eng, 2007,13 (2): 351-360.
    26. Barry F,Boynton R,Murphy M,et al. The SH-3 and SH-4 antibodies recognize distinct epitopes on CD73 from human mesenchymal stem cells. Biochemical and Biophysical Research Communications, 2001, 289: 519-524.
    27. Mingueii JJ,Erices A,Conget P. Mesenchymal stem cells. Exp Biol Med,2001 226:507-520.
    28. Koc ON,Gerson SL,Cooper BW,et al. Rapid hematopoietic recovery after coinfusion of autologousblood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol, 2000,18:307-316.
    29. Suzawa M,Takada I,Yanagisawa J,et al. Cytokines suppress adipogenesis and PPAR-gamma function through the TAK1/TAB1/NIK cascade. Nature Cell Biology, 2003, 5: 224-230
    30. S.S. Park, H.R. Jin, D.H. Chi and R.S. Taylor, Characteristics of tissue-engineered cartilage from human auricular chondrocytes, Biomaterials, 2004, 25 (12):2363-2369.
    31. F. Dell Accio, C. De Bari and F.P. Luyten, Microenvironment and phenotypic stability specify tissue formation by human articular cartilage-derived cells in vivo, Exp Cell Res ,2003,287 (1):16-27.
    32. Kohyama J,Abe H,Shimazaki T,et al. Brain from bone: efficient "meta-differentiation" of marrow stroma-derived mature osteoblasts to neurons with Noggin or a demethylating agent. Differentiation, 2001,68:235-244.
    33. Woodbury D,Reynolds K.,Black IB. Adult bone marrow stromal stem cells express germline,ectodermal,endodermal and mesodermal genes prior to neurogenesis. Journal of Neuroscience Research,2002, 69:908-917.
    34. Deng W,Obrocka M,Fischer I.In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochemical and Biophysical Research Communications, 2001,282:148-152.
    35. Jackson KA,Majka SM,Wang H,et al.Regeneration of ischemic cardiac muscle andvascular endothelium by adult stem cells. The Journal of Clinical Investigation,2001, 107:1395-1402.
    36. Al-Khaldi A,Al-Sabti H,Galipeau J,et al.Therapeutic angiogenesis using autologous bone marrow stromal cells: improved blood flow in a chronic limb ischemia model. The Annals of Thoracic Surgery, 2003,:204-209.
    37. Davani S,Marandin A,Mersin N,et al.Mesenchymal progenitor cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a rat cellular cardiomyoplasty model. Circulation, 2003, 108: 11253-11258.
    38. Gojo S,Gojo N,Takeda Y,et al.In vivo cardiovasculogenesis by direct injection of isolated adult mesenchymal stem cells .Experimental Cell Research,2003,288: 51-59.
    39. B. Sharma, C.G. Williams, M. Khan,,et al.In vivo chondrogenesis of mesenchymal stem cells in a photopolymerized hydrogel, Plast Reconstr Surg,2007,119 (1):112-120.
    40. N. Ortega, D.J. Behonick and Z. Werb.Matrix remodeling during endochondral ossification, Trends Cell Biol,2004,14 (2):86-93.
    41. D.A. Walsh.Angiogenesis in osteoarthritis and spondylosis:successful repair with undesirable outcomes, Curr Opin Rheumatol,2004,16 (5) :609-615.
    42. C.S. Bonnet,D.A. Walsh, Osteoarthritis, angiogenesis and inflammation, Rheumatology (Oxford) ,2005,44 (1):7-16.
    43. Ponticiello MS, Schinagl RM, Kadiyala, et al. Gelatin-based resorbale sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy. J Biomed Mater Res 2000, 52(2):98-106.
    44. Kon E,Maraglla A,Corsi A,et a1.Autologus bone nlarrow stromal cells loaded onto porous.hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones.J Biomed Mater Res ,2000,49(3):328-337.
    45. Livingston T.Repair of canine segment bone defects using allogenlc mesenchymal stem cells Transactions of the 47th Annul ORSmeeting,2001,26-49.
    46. Wakitani s Imoto yamamoto T saito M,et a1.Human autologous culture expanded bone nlarrow mesenehymal cell transplantation for repair ofcartilage defeats in osteoarthritic knees.Osteoarthritis cartilage,2002,10:199-206.
    47.郭晓东,杜靖远,郑启新,等.TGF-B1基因修饰的间充质于细胞/仿生基质材料复合移植修复兔关节软骨缺损.中国生物医学工程学报,2002,21 (2):l11-l31.
    48. Im GI,Kim DY,Shin JH,et a1.Repair of cartilage defect in the rabbit with eultured Mesenchymal stem cells from bone nlarrow.J Bone Joint Surg Br,2001,83(2):289-294.
    49. Fuchs JR.with cartilage engineered from bone marrow-derived mesenchymal progenitor cells.J pediatr surg,2003,38:984-987.
    50. N. Isogai, H. Kusuhara, Y. Ikada,et al.Comparison of different chondrocytes for use in tissue engineering of cartilage model structures, Tissue Eng,2006,12 (4):691-703.
    51. Chopp M,Zhang XH,LI Y,et a1.Spinal cord injury in rat:treatment with bone nlarrow stromal cell transplantationNeuroreport ,2000,11(13):3001-3005.
    52. Ankeny DP,McTigue DM,Jakeman LB.Bone nlarrow transplants provide tissue protection and directional guidanee for axons after contusive spinal cord injury in rats.Exp Neurol,2004,190(1):17-31.
    53. Sataker K;Lou J.Lenke LG.Mirgration of mesenchymal stem cells through cerebrospinal fluid into injured spinal cord tissue.Spine,2004,9(18):l97l-1979.
    54.徐青镭,吴海山,周维江,等.胶原与骨髓干细胞重建免半月板组织工程研究.中华骨科杂志,2002,22 (2):113-117.
    55 J. Dai and A.B. Rabie.VEGF:an essential mediator of both angiogenesis and endochondral ossification.J Dent Res,2007,86 (10):937-950.
    56 Young RG,Butler DL,Weber W,et a1.Use of mes-enehymal stem cellsin a collagen matrix for Achilles tendon repair.J Orthop RES,1998,16:406-413.
    57 Giuliana F,Gabriella CA,M arcello C.Muscle regeneration by bone narrow derived myognie P rogenitors.Science.1998,279:1528-1530.
    58 E. Dupont, P. Falardeau, S.A. Mousa,et al.Antiangiogenic and antimetastatic properties of Neovastat (AE-941), an orally active extract derived from cartilage tissue.Clin Exp Metastasis, 2002,19 (2):145–153.
    1. R. Langer and J.P. Vacanti, Tissue engineering, Science 260 (1993), pp. 920–926.
    2. A.J. Salgada, O.P. Coutinho and R.L. Reis, Bone tissue engineering: state of the art and future trends, Macromol Biosci 4 (2004), pp. 743–765.
    3. D.W. Hutmacher, Scaffolds in tissue engineering bone and cartilage, Biomaterials 21 (2000) (24), pp. 2529–2543.
    4. P.X. Ma, Scaffolds for tissue fabrication, Mater Today 7 (2004) (5), pp. 30–40.
    5. C. Guoping, U. Takashi and T. Tetsuya, Scaffold design for tissue engineering, Macromol Biosci 2 (2002) (2), pp. 67–77.
    6. E.J.P. Jansen, R.E.J. Sladek, H. Bahar, A. Yaffe, M.J. Gijbels and R. Kuijer et al., Hydrophobicity as a design criterion for polymer scaffolds in bone tissue engineering, Biomaterials 26 (2005), pp. 4423–4431.
    7. W. Guobao and P.X. Ma, Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering, Biomaterials 25 (2004) (19), pp. 4749–4757.
    8. Z. Yong and Z. Minqin, Three-dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load-bearing bone implants, J Biomed Mater Res 61 (2002), pp. 1–8.
    9. C.R. Kothapalli, M.T. Shaw and M. Wei, Biodegradable HA-PLA 3-D porous scaffolds: effect of nano-sized filler content on scaffold properties, Acta Biomater 1 (2005) (6), pp. 653–662.
    10. P.X. Ma, R. Zhang, G. Xiao and R. Franceschi, Engineering new bone tissue in vitro on highly porous poly(α-hydroxyl acids)/hydroxyapatite scaffolds, J Biomed Mater Res 54 (2001), pp. 284–293.
    11. Y.-W. Wang, Q. Wu, J. Chen and G.-Q. Chen, Evaluation of three-dimensional scaffolds made of blends of hydroxyapatite and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) for bone reconstruction, Biomaterials 26 (2005), pp. 899–904.
    12. H.H.K. Xu and C.G. Simon Jr, Fast setting calcium phosphate-chitosan scaffold: mechanical properties and biocompatibility, Biomaterials 26 (2005), pp. 1337–1348.
    13. S.-S. Kim, M.S. Park, O. Jeon, C.Y. Choi and B.-S. Kim, Poly (lactide-co-glycolide) /hydroxyapatite composite scaffolds for bone tissue engineering, Biomaterials 27 (2006), pp. 1399–1409.
    14. C. Du, F.Z. Cui, W. Zhang, Q.L. Feng, X.D. Zhu and K. de Groot, Formation of calcium phosphate/collagen composites through mineralization of collagen matrix, J Biomed Mater Res 50 (2000) (4), pp. 518–527.
    15. H. Wang, Y. Li, Y. Zuo, L. Cheng, Y. Wang and H. Li, Nano-hydroxyapatite/polymer composite scaffold for bone tissue engineering, Key Eng Mater 330–332 (2006), pp. 365–368.
    16. I.N.G. Springer, B. Fleiner, S. Jepsen and Y. Ail, Culture of cells gained from temporomandibular joint cartilage on non-absorbable scaffolds, Biomaterials 22 (2001), pp. 2569–2577.
    17. H. Koji, T. Naohide, Y. Takafumi and T. Yoshinori, Prospects for bone fixation—development of new cerclage fixation techniques, Mater Sci Eng C 17 (2001) (1–2), pp. 19–26.
    18. D.J. Upadhyay, N.-Y. Cui, C.A. Anderson and N.M.D. Brown, A comparative study of the surface activation of polyamides using an air dielectric barrier discharge, Colloids Surf A: Physicochem Eng Aspects 248 (2004) (1–3), pp. 47–56.
    19. L.L. Hench and O. Andersson, Bioactive glasses. In: L.L. Hench and J. Wilson, Editors, An introduction to bioceramics, World Scientific, Singapore (1993), pp. 41–59.
    20. H.M. Kim, T. Furuya, T. Kokubo, T. Miyazaki and T. Nakamura, Composition of apatite produced in simulated body fluids. In: S. Brown, I. Clarke and P. Williams, Editors, Bioceramics vol. 14, Trans Tech Publications, Switzerland (2001), pp. 621–624.
    21. W. Xuejiang, L. Yubao, W. Jie and K. de Groot, Development of biomimetic nano-hydroxyapatite/poly(hexamethylene adipamide) composites, Biomaterials 23 (2002) (24), pp. 4787–4791.
    22. J. Wei and Y. Li, Tissue engineering scaffold material of nano-apatite crystals and polyamide composite, Eur Polym J 40 (2004) (3), pp. 509–515.
    23. I. Pountos and P.V. Giannoudis, Biology of mesenchymal stem cells, Injury 36 (2005) (3), pp. 8–12.
    24. Y. Wang, H.-J. Kim, G. Vunjak-Novakovic and D.L. Kaplan, Stem cell-based tissue engineering with silk biomaterials, Biomaterials 27 (2006) (36), pp. 6064–6082.
    25. C.T. Gomillion and K.J.L. Burg, Stem cells and adipose tissue engineering, Biomaterials 27 (2006) (36), pp. 6052–6063.
    26. D. Nabil, D.A. Taylor and E.B. Diethrich, Editors, Stem cell therapy and tissue engineering for cardiovascular repair from basic research to clinical applications, Springer US, USA (2006), pp. 137–157.
    27. Li Yubao, Zuo Yi, Wei Jie. Preparation of nano-hydroxyapatite/polyamide composite biomaterial. China Patent No. CNZL 200310111033.5, 2003.
    28. Y. Zuo, Y. Li, J. Wei, J. Han and F. Xu, The preparation and characterization of n-HA/PA series biomedical composite, Funct Mater 35 (2004) (4), pp. 513–516.
    29. Y. Li, J. de Wijn, C.P.A.T. Klein, S.v.d. Meer and K. de Groot, Preparation and characterization of nanograde osteoapatite-like rod crystals, J Mater Sci: Mater Med 5 (1994), pp. 252–255.
    30. L. Cerroni, R. Filocamo, M. Fabbri, C. Piconi, S. Caropreso and S.G. Condò, Growth of osteoblast-like cells on porous hydroxyapatite ceramics: an in vitro study, Biomol Eng 19 (2002) (2–6), pp. 119–124.
    31. Y.S. Nam and T.G. Park, Biodegradable polymeric microcellular foams by modified thermally induced phase separation method, Biomaterials 20 (1999) (19), pp. 1783–1790.
    32. P. Kasten, R. Luginbuhl, M. van Griensven, T. Barkhausen, C. Krettek and M. Bohner et al., Comparison of human bone marrow stromal cells seeded on calcium-deficient hydroxyapatite, beta-tricalcium phosphate and demineralized bone matrix, Biomaterials 24 (2003) (15), pp. 2593–2603.
    33. W. Lan, L. Yubao, Z. Yi, Z. Li, M. Yuanhua and H. Jimei, Study on the biomimetic properties of bone substitute material: nano-hydroxyapatite/polyamide 66 composite, Mater Sci Forum 510–511 (2006), pp. 938–941.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700