HGF调节体外培养人增生性瘢痕成纤维细胞胶原代谢的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
增生性瘢痕(hypertrophic scar,HS)又称肥厚性瘢痕,是一种常见的病理性愈合现象,主要表现为创伤后局部组织的过度修复,常发生于深度烧伤或外伤后因各种原因延期愈合的创面。增生性瘢痕的危害主要在于,破坏人体组织器官的正常解剖结构,导致毁容及功能障碍,给创伤后的功能恢复和重建带来很大的障碍。目前增生性瘢痕的发病机理仍不完全清楚,可能与外伤、烧伤、手术、感染、异物、机体局部胶原代谢失调、遗传及局部免疫功能等多种因素有关。临床上常用治疗方法有:外科手术切除、物理治疗、硅凝胶治疗、放射治疗及基因治疗等,但是这些方法都有一定的创伤性,或是副作用太大,各有一定的局限性,不易广泛使用。临床上也曾采用一些药物用于增生性瘢痕的治疗,但由于效果不肯定,或毒副作用大,临床应用受到很大限制。所以寻找新的防治药物有重要意义。
     从组织病理学检查的结果看,增生性瘢痕和正常皮肤组织相比,最显著的改变是大量纤维化基质的堆积。在啮齿类动物,正常皮肤组织的胶原蛋白具有网状排列的模式,而增生性瘢痕组织中的胶原蛋白,则以几乎和基底膜成直角的方式大量成束状平行排列。而人类的胶原排列方式与此相比,胶原蛋白更多,胶原纤维更粗大,胶原排列更加有序,但这种胶原排列的方式却几乎和皮肤相平行。增生性瘢痕组织和正常皮肤相比,在结构上更多的区别包括不同比例的胶原类型和缺乏毛囊、汗腺等结构。
     在从肉芽组织向增生性瘢痕组织转化的过程中,胶原的重塑依赖于在低速率上持续的胶原合成代谢和分解代谢的改变。伤口或创面中胶原的讲解被几种称之为基质金属蛋白酶(matrix metalloproteinases,MMPs)的生物活性物质所控制,这些基质金属蛋白酶由巨噬细胞、上皮细胞、内皮细胞和成纤维细胞所分泌。伤口愈合的不同阶段,不同性质和数量组合的基质金属蛋白酶及其抑制物(tissue inhibitors of metalloproteinases,TIMPs)之间的组合与平衡发挥了重要的作用。增加的TIMPs和减少的MMPs的表达,暗示了过度纤维化或细胞外基质的过度沉积等疾病。
     经过近20年的研究发现,肝细胞生长因子具有多种生物学功能,例如,它是有丝分裂原(mitogenic)、促使细胞运动(motogenic)、抗凋亡(antiapoptotic)、抗纤维化(antifibrotic),并和形态发生有关(morphogenic)。因此,HGF在伤后和外伤后阻止纤维化并使伤口组织再生变得容易。有研究表明,在动物背部急性皮肤切割伤口使用HGF基因治疗,在切割伤缝合处,HGF基因显著抑制凋亡,产生极轻的纤维化,在愈合过程早期,断裂强度也下降。因此,可以推测HGF因为它的抗纤维化和抗炎症效应而减轻瘢痕化。但至目前为止,对于HGF在抗病理性瘢痕类纤维化疾病的研究方面,仍然缺乏比较细致的了解,例如在病理性瘢痕组织局部的蛋白表达水平、其对细胞外基质代谢的影响及其机制均缺乏足够的了解。对此,我们展开了以下实验研究,深入了解HGF/c-met对增生性瘢痕的抑制作用机制。
     方法:
     1.采集临床增生性瘢痕病理标本,进行免疫细胞化学染色,并行体外原代细胞培养,以多种方式研究HGF对体外培养的增生性瘢痕成纤维细胞胶原代谢的影响,
     2.具体的技术手段和检测指标有:
     (1)HGF/c-met在增生性瘢痕组织局部表达的对照检测:采用免疫组织化学染色的方法,结合计算机辅助图像分析技术,对所采集的增生性瘢痕和正常皮肤的临床标本进行检测;(2)体外成纤维细胞培养:采集成纤维细胞进行体外细胞培养,MTT法绘制细胞增殖曲线,并采用免疫细胞化学染色的技术对其进行细胞学鉴定;(3)对胶原蛋白表达的作用:3H-脯氨酸掺入胶原后检测胶原蛋白的总量变化;(4)对Ⅰ、Ⅲ型胶原和CTGF转录水平的测量:采用RT-PCR的方法检测Ⅰ、Ⅲ型胶原和CTGF mRNA的表达;(5)对MMP-1、MMP-2、MMP-9、TIMP-1、TIMP-3和c-jun的表达进行检测:采用免疫蛋白印记技术进行半定量检测; (6)探索HGF影响MMPs/TIMPs表达的信号通路:采用细胞信号转导阻滞技术,结合免疫蛋白印记的方法,对ERK 1/2信号转导途径进行检测。
     结果:
     1.在表皮层和真皮层的定位研究中,均能发现HGF/c-met蛋白的表达,但增生性瘢痕组织的阳性率较正常皮肤要高,且在真皮层中HGF的差异更加显著;
     2.体外培养的细胞镜下形态观察为梭形,胞浆丰富,胞体较大,波形蛋白免疫细胞化学染色呈阳性结果,MTT法绘制细胞自然增殖曲线表明细胞为稳定型成纤维细胞,可以满足后续的实验需要;
     3. 3H-脯氨酸掺入法的结果表明HGF处理细胞后胶原蛋白的含量变少;
     4. RT-PCR法检测结果表明HGF处理细胞后,Ⅰ、Ⅲ型胶原和CTGF mRNA转录水平下调;
     5. Westernblot法检测MMP-1、MMP-2、MMP-9、TIMP-1、TIMP-3的表达,结果表明HGF可以促进MMP-1、MMP-9的表达上调,而MMP-2、TIMP-1和TIMP-3的表达下调;
     6. PD98059阻断ERK 1/2信号转导实验结果表明,HGF通过ERK 1/2途径上调MMP-1的表达,下调TIMP-1的表达,并上调c-jun的表达。
     讨论:
     目前已知,HGF可在包括肝脏在内的多种组织细胞广泛表达,包括成纤维细胞、上皮细胞、内皮细胞、枯否式细胞以及某些肿瘤细胞[30-43]。皮肤组织中,HGF主要由表皮细胞和成纤维细胞合成、分泌,通过旁分泌和自分泌的方式作用于自身及临近的细胞[44]。癌基因c-met的产物是HGF的唯一受体,它同样在多种组织细胞内表达,包括上皮细胞、色素细胞、内皮细胞、小胶质细胞和神经元等。
     近年来,众多的动物实验表明,HGF是一种关键的抗纤维化疾病的内源性生长因子。本研究的结果表明,HGF/c-met在增生性瘢痕和正常皮肤组织中均有表达,阳性细胞主要位于表皮层;而相比较与正常皮肤组织,在增生性瘢痕组织真皮层成纤维细胞表达HGF上调,并可能由此诱导其受体c-met表达升高。这种真皮层HGF/c-met表达水平的改变,提示了其在增生性瘢痕的疾病转归过程中可能发挥了重要作用。
     增生性瘢痕的主要病理改变是细胞外基质(Extracullar matrix,ECM)的堆积。胶原(collagen)是ECM的主要组成成分,是ECM的骨架成分,主要由多种中胚层细胞分泌。正常生理状态下,胶原的合成和降解两种代谢维持着一种平衡,动态地调整组织形态结构。成纤维细胞是合成胶原的主要细胞,成纤维细胞的大量增殖或细胞合成与分泌胶原能力的增强,都可能导致胶原总量的增加。细胞外基质的过度沉积,是HS发生与形成的病理基础。胶原合成增加、胶原酶含量降低所导致的胶原代谢平衡失调,是瘢痕增生的重要因素,也是纤维化疾病发病的共同原因。
     3H-脯氨酸掺入实验是一种比较准确的测量胶原蛋白含量的方法,加入了HGF的细胞内其胶原蛋白含量明显减少,为了进一步的明确这种蛋白代谢的变化机制,我们从合成和分解两方面对胶原代谢进行了较深入的研究。经检测,Ⅰ、Ⅲ型胶原mRNA在HGF干预后转录水平下调,它和CTGF mRNA的下调是一致的,提示HGF对于CTGF表达具有一定的抑制效应,这可能是HGF抑制胶原蛋白合成的机制之一。
     胶原的分解代谢是由MMP/TIMP表达比例平衡的结果来决定的。本研究的结果表明,HGF可以改善人增生性瘢痕成纤维细胞MMP/TIMP表达的比例,从而促进胶原分解代谢;在这种生物学效应中,ERK信号转导通路和c-jun转录因子发挥了重要的作用。
     结论:
     1.HGF/c-met蛋白在增生性瘢痕组织中表达明显升高,表明其在增生性瘢痕的病理生理转归中具有重要的生物学意义;
     2. HGF可以减少人增生性瘢痕成纤维细胞胶原蛋白总量,抑制纤维化的发生;
     4. HGF可以在转录水平抑制胶原的合成;能促进胶原蛋白合成代谢的CTGF mRNA在转录水平同样被HGF明显下调;
     4. HGF可以改善人增生性瘢痕成纤维细胞MMP/TIMP的比例,提示这是HGF调节人增生瘢痕成纤维细胞胶原代谢的重要方式。
     5. HGF可以促进c-jun蛋白的表达,这可能是HGF抑制纤维化病程进展的另一重要机制;
     6.在人增生性瘢痕成纤维细胞中,HGF改善MMP/TIMP比例的重要机制是通过改变细胞信号分子ERK 1/2的磷酸化水平来实现的,而ERK 1/2的磷酸化水平还影响到了c-jun蛋白的表达,从而表明HGF抑制胶原蛋白合成、促进胶原蛋白分解的机制是互相影响的。
Hypertrophic scar (HS) is one of the major unsettled clinical problems that due to abnormal proliferation of fibroblast and excessive deposition of extracellular matrix. The scars most commonly occur when epithelialization has been delayed during, foe example, the healing of deep dermal burn wounds. The HS are thick and raised and often darker in color than surrounding skin, moreover, that are frequently associated with pruritus and pain. Therefore, it is significant that exploring the mechanism of HS formation to look for effective prevention and treatment. Many published reports documented the mechanism and advocated a variety of therapies; however, few studies provide a coherent therapeutic plan.
     Collagen remodeling during the transition from granulation tissue to hypertrophic scar is dependent on continued synthesis and catabolism of collagen at a low rate. The degradation of collagen in the wound is controlled by several proteolytic enzymes termed matrix metalloproteinases (MMPs), which are secreted by macrophages, epidermal cells, and endothelial cells, as well as fibroblasts. The various phases of wound repair rely on distinct combinations of matrix metalloproteinases and tissue inhibitors of metalloproteinases (TIMPs). When MMPs gene expression was examined in fetal scarless and scarring rat skin wounds, an increase in expression occurred. However, the magnitude of this increase was greater in scarless fetal wounds than in scarring wounds. Moreover, expression of the tissue inhibitor of metalloproteinases (TIMPs) was higher in the scarred wounds, suggesting that the MMP/TIMP activity ratio maybe higher in scarless wounds. The production of MMPs and their associated inhibitors produces a delicate balance between matrix deposition and degradation. Subtle differences in MMP activity in fetal wounds may therefore tip this balance, allowing more rapid ECM turnover, which maybe necessary for scarless repair. Increased TIMP and decreased MMP expression has been implicated in diseases of excessive fibrosis and extracellular matrix deposition, such as scleroderma.
     Hepatocyte growth factor (HGF) can be produced by various cells, including fibroblasts, epithelial and endothelial cells, Kupffer’s cells and fat-storing cells in the liver, and malignant cells such as lung and pancreatic carcinoma and leukaemic cell lines. Although earlier studies implicated HGF in embryo development and in promoting tissue regeneration after acute injury, evidence is now emerging that HGF is also an intrinsic antifibrotic factor that plays a critical role in preventing tissue fibrosis in various animal models. Over the past several years, progress has been made in identifying the cellular targets of HGF and in unraveling the molecular mechanisms that underlie its action in tissue fibrosis. One of the anti-fibrogenic effects of HGF is thought to be expressed by the induction of matrix metalloproteinases (MMPs)
     In this study, it was hypothesised by the author that HGF, a soluble cytokine, could paly an important role to ease hypertrophic scar. But it is not clear that wheather HGF and its receptor c-met, a receptor tyrosine kinases (RTK), expression differs between hypertrophic scars and normal skins. Moreover, the exprssion of MMP-1, MMP-9, TIMP-1, and TIMP-2 of fibroblasts in vitro in adition with/without HGF were investigated to verify the hypothesis.
     Method: Hypertrophic scar tissues were obtained from 5 asian patients who had deeply burns on the limb or face. Immunohistochemistry procedure was used to investgae the localization an expressiong of HGF/c-met. HS fibroblasts were isolated and cultured by routine method. After identifaction, the 3-7 generation cells could be used. The concentrations of HGF for experimental group were: 25ug/ml, 50 ug/ml and 75 ng/ml.
     Detecting indexes:
     1. Immunohistochemistry and computer-assist image analysis technology were used to detect localization an expressiong of HGF/c-met.
     2. Detecting the cell proliferation curve using the method of MTT.
     3. immunocytochemistry identified the cultured cell with vimentin monoclone antibody.
     4. 3H-Proline dope procedure was used to detect the quantum variation of colleagen.
     5. RT-PCR to checked the transcription of mRNA ofⅠ,Ⅲtype collagen and CTGF
     6. Westernblot detected MMP-1,MMP-2, MMP-9, TIMP-1, TIMP-3, c-jun.
     Result:
     1. In both hypertrophic scar and normal skin groups, intense HGF-positive and c-met-positive cells locating at the epidermis were oberved. There was an increase in the number of HGF-positive and c-met-positive cells in granulation tissue at the dermis in the hypertrophic scar tissue groups but not in the control group. The HGF-positive cells in the tissues detected in both groups were probably mainly fibroblasts as judged by their morphology.
     2. The result of MTT with immunocytochemistry showed that the culltured HSFb met the expriment requirment.
     3. By administration of HGF, collagen synthesis of experimental HSFb decreased with the relationship with the dose.
     4. HGF could inhibit the transcription of mRNA ofⅠtype collagen,Ⅲtype collagen and CTGF.
     7. HGF could enhance the expression of MMP-1, MMP-9 and c-jun.
     8. HGF could inhibit the MMP-2, TIMP-1, TIMP-3expression of HSFb.
     9. HGF could acive the ERK 1/2 signal transduction pathway.
     Conclusion:
     HGF expression up-regulated in hypertrophic scar fibroblasts could change the colleagen metabolism via inhibiting the expression of colleagen gene, improving the MMP/TIMP. ERK 1/2 signal transduction pathway was activated by HGF to produce the complicate effect.
引文
1. Whitby, D. J. & Ferguson, M. W. J. 1991 The extracellular matrix of lip wounds in fetal, neonatal and adult mice. [J].Development 112, 651–668.
    2. Ehrlich, P. H. & Krummel, T. M. 1996 Regulation of wound healing from a connective tissue perspective. [J].Wound Repair Regen. 4, 203–210.
    3. Mignatti P, Rifkin DB, Welgus HG, et al. Proteinases and tissue remodeling. In: Clark RAF, ed. The molecular and cellular biology of wound repair. 2nd ed. New York: Plenum Press, 1996:427-74.
    4. Madlener M, Parks WC, Werner S. Matrix metalloproteinases (MMPs) and their physiological inhibitors (TIMPs) are differentially expressed during excisional skin wound repair. [J].Exp Cell Res 1998;242:201-10.
    5. Lorenz HP, Soo C, Beanes SR, et al. Differential expression of matrix metalloproteinases and their tissue-derived inhibitors in scarless fetal wound healing. [J].Surg. Forum 2001;52:397–401
    6. Catherine M.D., Steven R.B., Haofu L., et al. Scarless Fetal Wounds Are Associated with an Increased Matrix Metalloproteinase–to–Tissue-Derived Inhibitor of Metalloproteinase Ratio. [J].Plast. Reconstr. Surg., 111: 2273, 2003
    7. Bou-Gharios G.., Osman J., Black C., et al. Excess matrix accumulation in scleroderma is caused partly by differential regulation of stromelysin and TIMP-1 synthesis. [J].Clin. Chim. Acta 231: 69, 1994.
    8. Kuroda K., and Shinkai H.. Gene expression of types I and III collagen, decorin, matrix metalloproteinases and tissue inhibitors of metalloproteinases in skin fibroblasts from patients with systemic sclerosis. [J].Arch. Dermatol. Res. 289: 567, 1997.
    9. Fini M.E., Cook J.R., Mohan R., et al. (1998) in Matrix Metalloproteinases (Parks, W. C., and Mecham, R. P., eds) pp. 299–356, Academic Press, San Diego.
    10. Nakamura T, Nawa K, Ichihara A. Partial purification hepatocyte growth factor from serum hepatectomized rats. [J].Biochem Biophys Res Commun, 1984; 122: 1450-1459。
    11. Rusaill WE, McGowan JA, Bucher NLR. Biological properties of hepatocyte growth factor from rat platelets. J Cell Physiol. 1984, 119:193-197.
    12. Nakamura T, Teramoto H, Ichihara A. Purification and characterization of a growth factor from rat platelets for mature parenchymal hepatocytes in primary culture. [J]. Proc Natl Acad Sci USA, 1986; 83:6489一6493.
    13. Bottaro, D.P., et al., Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. [J].Science, 1991. 251(4995): p. 802-4.
    14. Naldini, L., et al., Hepatocyte growth factor (HGF) stimulates the tyrosine kinase activity of the receptor encoded by the proto-oncogene c-MET. [J].Oncogene, 1991. 6(4): p. 501-4.
    15. Gherardi, E., et al., Hepatocyte growth factor/scatter factor (HGF/SF), the c-met receptor and the behaviour of epithelial cells. [J].Symp Soc Exp Biol, 1993. 47: p. 163-81.
    16. Matsumoto, K. and T. Nakamura, Emerging multipotent aspects of hepatocyte growth factor. J Biochem (Tokyo), 1996. 119(4): p. 591-600.
    17. Bardelli, A., et al., HGF receptor associates with the anti-apoptotic protein BAG-1 and prevents cell death. [J].EMBO J, 1996. 15(22): p. 6205-12.
    18. Fan, S., et al., Scatter factor protects epithelial and carcinoma cells against apoptosis induced by DNA-damaging agents. [J].Oncogene, 1998. 17(2): p. 131-41.
    19. Conner, E.A., et al., HGF-mediated apoptosis via p53/bax– independent pathway activating JNK1. [J].Carcinogenesis, 1999. 20(4): p. 583-90.
    20. Gohda, E., et al., Induction of apoptosis by hepatocyte growth factor/scatter factor and its augmentation by phorbol esters in Meth A cells. [J].Biochem Biophys Res Commun, 1998. 245(1): p. 278-83.
    21. Arakaki, N., et al., Involvement of oxidative stress in tumor cytotoxic activity of hepatocyte growth factor/scatter factor. [J].J Biol Chem, 1999. 274(19): p. 13541-6.
    22. Dunsmore, S.E., et al., Mechanisms of hepatocyte growth factor stimulation of keratinocyte metalloproteinase production. [J].J Biol Chem, 1996. 271(40): p. 24576-82.
    23. Ueki, T., et al., Hepatocyte growth factor gene therapy of liver cirrhosis in rats. [J].Nat Med, 1999. 5(2): p. 226-30.
    24. Taniyama, Y., et al., Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat and rabbit hindlimb ischemia models: preclinical study for treatmentof peripheral arterial disease. [J].Gene Ther, 2001. 8(3): p. 181-9.
    25. Taub, P.J., L. Silver, and H. Weinberg, Plastic surgical perspectives on vascular endothelial growth factor as gene therapy for angiogenesis. [J].Plast Reconstr Surg, 2000. 105(3): p. 1034-42.
    26. Liechty, K.W., et al., Recombinant adenoviral mediated gene transfer in ischemic impaired wound healing. [J].Wound Repair Regen, 1999. 7(3): p. 148-53.
    27. Martin, P., Wound healing--aiming for perfect skin regeneration. [J].Science, 1997. 276(5309): p. 75-81.
    28. Ono, I., The effects of basic fibroblast growth factor (bFGF) on the breaking strength of acute incisional wounds. [J].J Dermatol Sci, 2002. 29(2): p. 104-13.
    29. Meuli, M., et al., Efficient gene expression in skin wound sites following local plasmid injection. [J].J Invest Dermatol, 2001. 116(1): p. 131-5.
    30. Yao, F. and E. Eriksson, Gene therapy in wound repair and regeneration. [J].Wound Repair Regen, 2000. 8(6): p. 443-51.
    31. Ono, I., et al., Local administration of hepatocyte growth factor gene enhances the regeneration of dermis in acute incisional wounds. J Surg Res, 2004. 120(1): p. 47-55.
    32. Nakamura T, Nishizawa T, Hagiya M, et al. Molecular cloning and expression of human hepatocyte growth factor. [J]. Nature,1989;342:440–3.
    33. Nakamura T. Structure and function of hepatocyte growth factor. [J].Prog Growth Factor Res 1991;3:67–85.
    34. Naldini L, Vigna E, Bardelli A, et al. Biological activation of pro-HGF (hepatocyte growth-factor) by urokinase is controlled by a stoichiometric reaction. [J].J Biol Chem 1995;270:603–11.
    35. Mizuno K, Tanoue Y, Okano I, et al. Purification and characterization of hepatocyte growth-factor (HGF)-converting enzyme-activation of pro-HGF. [J].Biochem Biophys Res Commun 1994;198:1161–9.
    36. Shimomura T, Kondo J, Ochiai M, et al. Activation of the zymogen of hepatocyte growth-factor activator by thrombin. [J].J Biol Chem 1993;268:22927–32.
    37. Mars WM, Zarnegar R, Michalopoulos GK. Activation of hepatocyte growth-factor by the plasminogen activators uPA and tPA. [J].Am J Pathol 1993;143:949–58.
    38. Mars WM, Liu ML, Kitson RP, et al. Immediate-early detection of urokinase receptorafter partial-hepatectomy and its implications for initiation of liver- regeneration. [J].Hepatology 1995;21:1695–701.
    39. Stoker M, Perryman M. An epithelial scatter factor released by embryo fibroblasts. [J].J Cell Sci 1985;77:209–23.
    40. Stoker M, Gheradi E, Perryman M, Gray J. Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. [J].Nature 1987;327:239–42.
    41. Shima N, Nagao M, Ogaki F, et al. Tumor cytotoxic factor: hepatocyte growth factor from human fibroblasts: cloning of its cDNA, purification and characterization of recombinant protein. [J].Biochem Biophys Res Commun 1991;80:1151–8.
    42. Noji S, Tashiro K, Koyama E, et al. Expression of hepatocyte growth factor gene in endothelial and Kupffer’s cells of damaged rat livers as revealed by in situ hybridisation. [J].Biochem Biophys Res Commun 1990;173:42–7.
    43. Ramadori G, Neubauer K, Odenthal M, et al. The gene of hepatocyte growth factor is expressed in fat-storing cells of rat liver and is down regulated during cell growth and by transforming growth factor beta. Biochem Biophys Res Commun 1992;183:739–42.
    44. Peter B, and Charles M.M. Hepatocyte growth factor: a multifunctional cytokine. [J].The Lancet, 345: 293, 1995.
    45. Ohmichi H, Matsumoto K, Nakamura T. In vivo mitogenic action of HGF on lung epithelial cells: pulmotrophic role in lung regeneration. [J].Am J Physiol 1996;270:L1031–9.
    46. Zahm JM, Debordeaux C, Raby B, Klossek JM, Bonnet N, Puchelle E. Motogenic effect of recombinant HGF on airway epithelial cells during the in vitro wound repair of the respiratory epithelium. [J].J Cell Physiol 2000;185:447–53.
    47. Ohmichi H, Koshimizu U, Matsumoto K, Nakamura T. Hepatocyte growth factor (HGF) acts as a mesenchyme-derived morphogenic factor during fetal lung development. [J].Development 1998; 125:1315–24.
    48. Ware LB, Matthay MA. Keratinocyte and hepatocyte growth factors in the lung: roles in lung development, inflammation, and repair. [J].Am J Physiol Lung Cell Mol Physiol 2002;282:924–40.
    49. Kim WH, Matsumoto K, Bessho K, Nakamura T. Growth inhibition and apoptosis in liver myofibroblasts promoted by hepatocyte growth factor leads to resolution fromliver cirrhosis. [J].Am J Pathol 2005;166:1017–28.
    50. Mizuno S, Matsumoto K, Li MY, Nakamura T. HGF reduces advancing lung fibrosis in mice: a potential role for MMP dependent myofibroblast apoptosis. [J].FASEB J 2005;19:580–2.
    51. Dohi M, Hasegawa T, Yamamoto K, Marshall BC. Hepatocyte growth factor attenuates collagen accumulation in a murine model of pulmonary fibrosis. [J].Am J Respir Crit Care Med 2000;162: 2302–7.
    52. Watanabe M, Ebina M, Orson FM, Nakamura A, Kubota K, Koinuma D, et al. Hepatocyte growth factor gene transfer to alveolar septa for effective suppression of lung fibrosis. [J].Mol Ther 2005;12:58–67.
    53. Ha X., Li Y., Lao M., et al. Effect of human hepatocyte growth factor on promoting wound healing and preventing scar formation by adenovirus-mediated gene transfer. [J]. Chin Med J (Engl). 2003, 116(7):1029-1033。
    54. Kaneko A, Hayashi N, Tanaka Y, et al. Changes in serum human hepatocyte growth factor levels after transcatheter arterial. [J]. Am J Gastroenterol. 1992 Aug;87(8):1014-7.
    55. Vivekananda J, Awasthi V, Awasthi S, et al. Hepatocyte growth factor is elevated in chronic lung injury and inhibits surfactant metabolism.Am J Physiol Lung Cell Mol Physiol. 2000 Feb;278(2):L382-92.
    56. Taniguchi T, Kitamura M, Arai K, et al. Increase in the circulating level of hepatocyte growth factor in gastric cancer patients. [J].Br J Cancer 1997;75:673–7.
    57. Kawaguchi Y., Harigai M., Fukasawa C., et al. Increased levels of hepatocyte growth factor in sera of patients with systemic sclerosis.[J]. J Rheumatol. 1999, 26 (4):1012–1013.
    58. Wen X, Li Y, Hu K, Dai C, Liu Y.Hepatocyte growth factor receptor signaling mediates the anti-fibrotic action of 9-cis-retinoic acid in glomerular mesangial cells.Am J Pathol. 2005 Oct;167(4):947-57.
    59. Dean MF, Cooper JA, Stahl P: Cell contact and direct transfer between co-cultured macrophages and fibroblasts. [J].J Leukoc Biol 1988, 43:539–546.
    60. Dean MF, Rodman J, Levy M, Stahl P: Contact formation and transfer of mannose BSA gold from macrophages to cocultured fibroblasts. [J].Exp Cell Res 1991, 192:536–542.
    61. Shock A, Laurent GJ: Adhesive interactions between fibroblasts and polymorphonuclear neutrophils in vitro. [J]. Eur J Cell Biol 1991, 54:211–216.
    62. Behzad AR, Chu F, Walker DC: Fibroblasts are in a position to provide directional information to migrating neutrophils during pneumonia in rabbit lungs. [J]. Microvasc Res 1996, 51:303–316.
    63. Burns AR, Simon SI, Kukielka GL, Rowen JL, Lu H, Mendoza LH, Brown ES, Entman ML, Smith CW: Chemotactic factors stimulate CD18-dependent canine neutrophil adherence and motility on lung fibroblasts. [J].J Immunol 1996, 156:3389–3401.
    64. Murakami S, Hino E, Shimabukuro Y, Nozaki T, Kusumoto Y, Saho T, Hirano F, Hirano H, Okada H: Direct interaction between gingival fibroblasts and lymphoid cells induces inflammatory cytokine mRNA expression in gingival fibroblasts. [J].J Dent Res 1999, 78:69–76.
    65. Rezzonico R, Burger D, Dayer JM: Direct contact between T lymphocytes and human dermal fibroblasts or synoviocytes down-regulates types I and III collagen production via cell-associated cytokines. [J].J Biol Chem 1998, 273:18720–18728.
    66. Shock A, Rabe KF, Dent G, Chambers RC, Gray AJ, Chung KF, Barnes PJ, Laurent GJ: Eosinophils adhere to and stimulate replication of lung fibroblasts‘in vitro’. [J]. Clin Exp Immunol 1991, 86:185–190.
    67. Greenberg G, Burnstock G: A novel cell-to-cell interaction between mast cells and other cell types. [J].Exp Cell Res 1983, 147:1–13
    68. Trautmann A, Krohne G, Brocker EB, Klein CE: Human mast cells augment fibroblast proliferation by heterotypic cell–cell adhesion and action of IL-4. [J].J Immunol 1998, 160:5053–5057.
    69. Oliani SM, Girol AP, Smith RL: Gap junctions between mast cells and fibroblasts in the developing avian eye. [J].Acta Anat (Basel) 1995, 154:267–271.
    70. van der Plas A, Nijweide PJ: Cell–cell interactions in the osteogenic compartment of bone. [J].Bone 1988, 9:107–111.
    71. Gurland G, Gundersen GG. Stable, detyrosinated microtubules function to localize vimentin intermediate filaments in fibroblasts [J].J Cell Biol, 1995,131(5):1275-90.
    72. Josephsen K, Smith CE, Nanci A. Selective but nonspecific immunolabeling of enamel protein-associated compartments by a monoclonal antibody against vimentin. [J]. JHistochem Cytochem, 1999,47(10):1237-45.
    73. Uo YC , Tsai WJ, Meng HC. Immune reponses in human mesangial cells regulated by emodin from Polygonum hypoleucum Ohwi. [J].Life Sci,2001, 68(11) : 1271 - 1286.
    74. Kumar A, Dhawan S, Aggarwal BB. Emidin inhibits TNF - induced NF - KappaB activation , IkappaB degradation , and expression of cell surface adhesionj proteins in human vascular endothelial cells. [J]. Oncogene ,1998 ,17(7) :913 - 918.
    75. Beldon P. Abnormal scar formation in wound healing. Nurse Times. 2000;96(1)44-45.
    76. Clark JA.,Leung KS.,Cheng F., et al. Mechanical properties of normal skin and hypertrophic scar. [J].Burns. 1996;22(2):433-446.
    77. Kawaguchi,Y., Harigar,M., Hara,M., et al. Expression of hepatocyte growth factor and its receptor (c-met) in skin fibroblasts from patients with systemic sclerosis [J]. J Rheumatol, 2002, 29(9): 1877-1883.
    78. Wu Mh, Yokozeki H, Takagawa S, et al. Hepatocyte growth factor both prevents and ameliorates the symptoms of dermal sclerosis in a mouse of scleroderma [J]. Gene Ther, 2004, 11(2): 170-180.
    79. Shannon DB, Mckeown ST, Lundy FT, et al. Phenotypic differences between oral and skin fibroblasts in wound contraction and growth factor expression. [J]. Wound Repair Regen, 2006,14(2):172-178.
    80. Bradham DM, Igarashi A, Potter RL, et al. Connective tissue growth factor : a cysteine - rich mitogen secreted by human vascuclar endothelial cells is related to the SRC - induced immediate early gene product CEF–10. [J]. J Cell Biol, 1991, 114 (6) :1285-1294.
    81. Oemar BS, Luscher TF. Connective tissue growth factor, friend of foe? [J]. Arterioscler Thromb Vasc Biol, 1997, 17(8) :1483 - 1489.
    82. Grotendorst GR ,Okochi H ,Hayashi N. A novel transforming growth factor beta response element controls the expression of the connective tissue growth factor gene. [J]. Cell Growth Differ, 1996 ,7(4) : 469-480.
    83.李世荣,刘剑毅,纪淑兴等.体外培养人增生性瘢痕成纤维细胞胶原合成及结缔组织生长因子的表达. [J].中华整形外科杂志,2004,20(2):124-127.
    84.李喆,李世荣,刘絉愕?结缔组织生长因子体外促进人增生性瘢痕成纤维细胞转分化的研究. [J].第三军医大学学报,2006,28(8):775-777.
    85. Ricupero DA, Rishikof DC, Kuang PP, et al. Regulation of connective tissue growth factor expression by prostaglandin E(2). [J]. Am J Physiol, 1999, 277(6 Pt 1) : 1165-1171.
    86. Inoue T, Okada H , Kobayashi T, et al. Hepatocyte growth factor counteracts transforming growth factor-beta1, through attenuation of connective tissue growth factor induction, and prevents renal fibrogenesis in 5/6 nephrectomized mice. [J]. FASEB J, 2003, 17(2): 268-270.
    87. Risinger GM Jr, Hunt TS, Updike DL, et al. Matrix metalloproteinase-2 expression by vascular smoot h muscle cells is mediated by bot h stimulatory and inhibitory signals in re2 sponse to growt h factors. [J]. J Biol Chem, 2006, 281( 36) : 25915-25925.
    88. Duarte AS, Pereira AO, Cabrita AM, et al. The characterisation of the collagenolytic activity of cardosin a demonst rates it s potential application for ext racellular mat rix degradative processes. [J]. Curr Drug Discov Technol, 2005, 2 (1) :37-44.
    89. Ohtake Y, Tojo H , Seiki M. Multifunctional roles of MT1-MMP in myofiber formation and morphostatic maintenance of skeletal muscle. [J]. J Cell Sci, 2006, 119 ( Pt 18) :3822-3832.
    90. Kim HS , Kim HJ , Park KG, et al . Alpha2lipoic acid inhibits mat rix metalloproteinase-9 expression by inhibiting NF2kappaB transcriptional activity. [J] . Exp Mol Med, 2007, 39 (1) :106-113.
    91. Stewart D , J avadi M , Chambers M , et al . Interleukin-4 inhibition of interleukin-1-induced expression of matrix metalloproteinase-3 (MMP-3) is independent of lipoxygenase and PPARgamma activation in human gingival fibroblasts [J] . BMC Mol Biol, 2007, 8 :12.
    92. Breyholz HJ, Wagner S, Levkau B, et al. A(18)F-radiolabeled analogue of CGS 27023A as a potential agent for assessment of matrix metalloproteinase activity in vivo. [J]. Q J Nucl Med Mol Imaging, 2007, 51(1) :24-32.
    93. Xia D, Yan LN, Tong Y, et al. Const ruction of recombinant adenoviral vector carrying human tissue inhibitor of metalloproteinase-1 gene and its expression in vitro. [J]. Hepatobiliary Pancreat Dis Int, 2005, 4(2):259-264.
    94. Lu KV, Jong KA , Rajasekaran A K, et al . Upregulation of tissue inhibitor of metalloproteinases (TIMP)-2 promotes matrix metalloproteinase (MMP)-2 activationand cell invasion in a human glioblastoma cell line. [J]. Lab Invest, 2004, 84(1):8-20.
    95. Han X , Zhang H , Jia M , et al . Expression of TIMP-3 gene by construction of a eukaryotic cell expression vector and its role in reduction of metastasis in a human breast cancer cell line. [J]. Cell Mol Immunol, 2004, 1(4):308-310.
    96. Dollery CM, McEwan J R, Wang M, et al. TIMP-4 is regulated by vascular injury in rats [J]. Circ Res, 1999, 84 (5) :498-504.
    97. Miyake H, Hara I, Gohji K, et al . Relative expression of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 in mouse renal cell carcinoma cells regulates their metastatic potential [J] . Clin Cancer Res, 1999,5 (10) : 2824-2829.
    98. Rapti M, Knauper V, Murphy G, et al . Characterization of the AB loop region of TIMP-2. Involvement in pro-MMP-2 activation. [J]. J Biol Chem, 2006, 281 (33) :23386-23394.
    99. Soo, C., Shaw, W. W., Zhang, X., et al. Differential expression of matrix metalloproteinases and their tissue-derived inhibitors in cutaneous wound repair. [J].Plast. Reconstr. Surg. 105: 638, 2000
    100. Parks, W. C. Matrix metalloproteinases in repair. [J].Wound Repair Regen. 7: 423, 1999.
    101. Pilcher, B. K., Dumin, J. A., Sudbeck, B. D., Krane, S. M., Welgus, H. G., and Parks, W. C. The activity of collagenase-1 is required for keratinocyte migration on a type I collagen matrix. [J].J. Cell Biol. 137: 1445, 1997.
    102. Yuan, W., and Varga, J. Transforming growth factor-βrepression of matrix metalloproteinases-1 in dermal fibroblasts involves SMAD3. [J].J. Biol. Chem. 276: 38502, 2001.
    103. Dang, C., Beanes, S., Soo, C., Hedrick, M., and Lorenz, H. P. A high ratio of TGF-β3 to TGF-β1 expression in wounds is associated with scarless repair. [J].Wound Repair Regen. 9: 153, 2001.
    104. Sherriff-Tadano R, Ohta A, Morito F, Mitamura M, Haruta Y, Koarada S, et al. Antifibrotic effects of hepatocyte growth factor on scleroderma fibroblasts and analysis of its mechanism. [J].Mod Rheumatol 2006;16:364–71.
    105. Matusuda,Y., Matsumoto,K., Ichida,T. and Nakamura,T. (1995) Hepatocyte growth factor suppresses the onset of liver cirrhosis and abrogates lethal dysfunction in rats.[J].J. Biochem., 118, 643–649.
    106. Parks, W. C. Matrix metalloproteinases in repair. Wound Repair Regen. 7: 423, 1999.
    107. Matrisian, L. M. The matrix-degrading metalloproteinases. [J].Bioessays 14: 455, 1992.
    108. Gillard JA, Reed MWR, Buttle D, et al. Matric metalloproteinase activity and immunohistochemical profile of matrix metalloproteinase-2 and -9 and tissue inhibitor of metalloproteinase-1 during human dermal wound healing. [J].Wound Rep Reg, 2004, 12: 295-304
    109. Annes, J. P., Munger, J. S., and Rifkin, D. B. (2003) Making sense of latent TGFbeta activation. [J].J. Cell Sci. 116, 217–224
    110. Sato, Y., and Rifkin, D. B. (1989) Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-beta 1-like molecule by plasmin during co-culture. J. Cell Biol. 109, 309–315
    111. Yu, Q., and Stamenkovic, I. (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. [J].Genes Dev. 14, 163–176
    112. Schultz-Cherry, S., and Murphy-Ullrich, J. E. (1993) Thrombospondin causes activation of latent transforming growth factor-beta secreted by endothelial cells by a novel mechanism. [J].J. Cell Biol. 122, 923–932
    113. Overall, C. M., Wrana, J. L., and Sodek, J. (1989) Independent Regulation of Collagenase, 72-kDa Progelatinase, and Metalloendoproteinase Inhibitor Expression in Human Fibroblasts by Transforming Growth Factor-β. [J].J. Biol. Chem. 264, 1860–1869.
    114. Yang M, Huang H, Li J, Huang W, Wang H. Connective tissue growth factor increases matrix metalloproteinase-2 and suppresses tissue inhibitor of matrix metalloproteinase-2 production by cultured renal interstitial fibroblasts. [J].Wound Repair Regen. 2007 Nov-Dec;15(6):817-24.
    115. Manuel JA, Gawronska-Kozak B. Matrix metalloproteinase 9 (MMP-9) is upregulated during scarless wound healing in athymic nude mice. [J].Matrix Biol. 2006 Oct;25(8):505-14
    116. Gong R, Rifai A, Tolbert EM, Centracchio JN, Dworkin LD. Hepatocyte growth factor modulates matrix metalloproteinases and plasminogen activator/plasmin proteolyticpathways in progressive renal interstitial fibrosis. [J].J Am Soc Nephrol. 2003 Dec;14(12):3047-60.
    117. Parks, W C., R.P. Mecham, Matrix Metalloproteinases, Academic Press, 1998, San Diego.
    118. Chester, L., D.W Golde, N. Sersch, et al. Metalloproteinase inhibition and erythroid potentiation are independent activities of tissue inhibitor of metalloproteinase-1. [J].Blood; 1995, 86: 4506-4515
    119. Docherty, A., J.A. Lyons, B.J. Smith, E.M. Wright,1'.E. Stephens, T.J. Harris, G. Murphy, J.J. Reynolds. Sequence of human tissue inhibitor of metalloproteinases and its identity to erythroid-potentiating activity. [J].Nature, 1985, 318:66-69.
    120. Baker,A. H., Edwards, D. R.,&Murphy, G. (2002). Metalloproteinase inhibitors: biological actions and therapeutic opportunities. [J].J. Cell Sci., 115(Pt 19), 3719–3727.
    121. Qi, J. H., Ebrahem, Q., Moore, N., Murphy, G., Claesson-Welsh, 1109 L., Bond, M., et al. (2003). A novel function for tissue inhibitor 1110 of metalloproteinases-3 (TIMP3): Inhibition of angiogenesis by 1111 blockage of VEGF binding to VEGF receptor-2. [J].Nat. Med., 9(4), 1112 407–415.
    122. Furge KA, Zhang YW, Vande Woude GF. Met receptor tyrosine kinase: enhanced signaling through adapter proteins. [J].Oncogene 2000 Nov 20;19(49):5582-9
    123. Baeuerle,P.A. Pro-inflammatory signaling:last pieces in the NF-kappaB puzzle? [J].Current Biol. (1998)8,R19–22.
    124. Jinnin M, Ihn H, Mimura Y, Asano Y, Yamane K, Tamaki K. Matrix metalloproteinase-1 up-regulation by hepatocyte growth factor in human dermal fibroblasts via ERK signaling pathway involves Ets1 and Fli1. [J].Nucleic Acids Res. 2005 Jun 21;33(11):3540-9
    125. Bogatkevich GS, Ludwicka-Bradley A, Highland KB, et al. Down-regulation of collagen and connective tissue growth factor expression with hepatocyte growth factor in lung fibroblasts from white scleroderma patients via two signaling pathways. [J].Arthritis Rheum. 2007 Oct;56(10):3468-77.
    126. Schiller M., Javelaud D., Mauviel A. TGF-b-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. [J].J Dermatol Sci. (2004) 35, 83—92
    127. Verrecchia F, ChuM L, Mauviel A. Identification of novel TGF- beta /Smad gene targets in dermal fibroblasts using a combined cDNA microarray/p romoter transactivation app roach. [J]. J Biol Chem, 2001, 276 (20) : 17058-17062.
    128. Yuan W, Varga J. Transforming growth factor2beta rep ression of matrix metalloproteinase-1 transcription in dermal fibroblasts involves Smad3. [J]. J Biol Chem, 2001, 276 (42) : 38502-38510.
    129. HallM C, YoungD A, Waters J G, et al. The comparative role of activator p rotein 1 and Smad factors in the regulation of Timp-1 and MMP-1 gene expression by transforming growth factor-beta 1. [J]. J Biol Chem, 2003, 278 (12) : 10304-10313.
    130. Dennler S., Prunier C., Ferrandi N., et al. c-Jun Inhibits Transforming Growth Factor b-mediated transcription by Repressing Smad3 Transcriptional Activity. [J]. J Bio Chem, 2000,275(15):28858-28865
    131. Wong C., ROUGIER-CHAPMAN E.J., FREDERICK J.P., Smad3-Smad4 and AP-1 Complexes Synergize in Transcriptional Activation of the c-Jun Promoter by Transforming Growth Factor b. [J]. Mol Cellular Biology, 1999, 19(3): 1821–1830
    132. Verrecchia F,Tacheau C,Schorpp K.Induction of the AP-1 members c-Jun and JunB by TGF-beta/Smad suppresses early Smad-driven gene activation. [J].Oncogene,2001,26; 20(18):2205-2211
    1. Nakamura T, Nawa K. Partial purification and characterization of hepatocyte growth factor from serum of hepatectomized rats. [J]. Biochem Biophys Res Commun, 1984, 122:1450-1459.
    2. Michalopoulos GK, Zarnegav R. Hepatocyte growth factor. [J]. Hepatology, 1992, 15(1):149-155.
    3. Bottaro DP, Rubin JS, Faletto DL, et al. Identification of hepatocyte growth factor receptor as the c-met proto-oncogene product. [J]. Science, 1991, 251(2)∶802-804.
    4. Ponzetto C, Bardelli A, Zhen Z, et al. A multifunctional dock ing site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. [J]. Cell, 1994, 77(4): 261-265.
    5. Ponzetto C, Zhen Z, Audero E, et al. Specific a coupling of GRB2 form the Met receptor. [J]. J Bio Chem, 1996, 271(9)∶14119-14250.
    6. Yao, F. and E. Eriksson, Gene therapy in wound repair and regeneration. Wound Repair Regen, 2000. 8(6): p. 443-51.
    7. Ono, I., et al., Local administration of hepatocyte growth factor gene enhances the regeneration of dermis in acute incisional wounds. J Surg Res, 2004. 120(1): p. 47-55.
    8. Nakamura T, Nishizawa T, Hagiya M, et al. Molecular cloning and expression of human hepatocyte growth factor. Nature,1989;342:440–3.
    9. Nakamura T. Structure and function of hepatocyte growth factor. Prog Growth Factor Res 1991;3:67–85.
    10. Naldini L, Vigna E, Bardelli A, et al. Biological activation of pro-HGF (hepatocyte growth-factor) by urokinase is controlled by a stoichiometric reaction. J Biol Chem 1995;270:603–11.
    11. Mizuno K, Tanoue Y, Okano I, et al. Purification and characterization of hepatocyte growth-factor (HGF)-converting enzyme-activation of pro-HGF. Biochem Biophys Res Commun 1994;198:1161–9.
    12. Shimomura T, Kondo J, Ochiai M, et al. Activation of the zymogen of hepatocyte growth-factor activator by thrombin. J Biol Chem 1993;268:22927–32.
    13. Mars WM, Zarnegar R, Michalopoulos GK. Activation of hepatocyte growth-factor by the plasminogen activators uPA and tPA. Am J Pathol 1993;143:949–58.
    14. Mars WM, Liu ML, Kitson RP, et al. Immediate-early detection of urokinase receptor after partial-hepatectomy and its implications for initiation of liver- regeneration. Hepatology 1995;21:1695–701.
    15. Stoker M, Perryman M. An epithelial scatter factor released by embryo fibroblasts. J Cell Sci 1985;77:209–23.
    16. Stoker M, Gheradi E, Perryman M, Gray J. Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature 1987;327:239–42.
    17. Shima N, Nagao M, Ogaki F, et al. Tumor cytotoxic factor: hepatocyte growth factor from human fibroblasts: cloning of its cDNA, purification and characterization of recombinant protein. Biochem Biophys Res Commun 1991;80:1151–8.
    18. Noji S, Tashiro K, Koyama E, et al. Expression of hepatocyte growth factor gene in endothelial and Kupffer’s cells of damaged rat livers as revealed by in situ hybridisation. Biochem Biophys Res Commun 1990;173:42–7.
    19. Ramadori G, Neubauer K, Odenthal M, et al. The gene of hepatocyte growth factor is expressed in fat-storing cells of rat liver and is down regulated during cell growth and by transforming growth factor beta. Biochem Biophys Res Commun 1992;183:739–42.
    20. Peter B, and Charles M.M. Hepatocyte growth factor: a multifunctional cytokine. The Lancet, 345: 293, 1995.
    21. Wen Jiang, Stephen Hiscox, Kunio Matsumoto, Toshikazu Nakamura. Hepatocyte growth factor:scatter factor, its molecular, cellular and clinical implications in cancer. Critical Reviews in Oncology:Hematology 29 (1999) 209–248.
    22. Westermarck J, Seth A, Kahari VM. Differential regulation of interstitial collagenase(MMP-1)gene expression by ETS tran- scription factors. [J]. Oncogene, 1997, 14(22):2651-2660.
    23. Jinnin M, Ihn H, Mimura Y, et al. Matrix metall oproteinase- 1 up-regulation by hepatocyte growth factor in human dermal fibroblasts via ERK signaling pathway involves Ets1 and Fli1. [J]. Nucleic Acids Research, 2005, 33(11):3540-3549.
    24. Gastman BR, Futrell JW, Manders EK, et al. Apoptosis and plastic surgery. [J]. Plast Reconstr Surg, 2003, 111(4):1481- 1496.
    25. Liu ZX, Yu CF, Nickel C, et al. Hepatocyte growth factor induces ERK-dependent paxillin phosphorylation and regulates paxillin-focal adhesion kinase association. [J]. J Bio Chem, 2002, 277(12):10452-10458.
    26. Nakagami H, Morishita R, Yamamoto K, et al Mitogenic and antiapoptoticactions of hepatocyte growth factor through ERK, STAT3, and AKT in endothelial cells. [J]. Hypertension, 2001, 37:581-586.
    27. Zeigler ME, Chi Y, Schmidt T, et al. Role of ERK and JNK pathways in regulating cell motility and matrix metallopro- teinase 9 Production in growth factor-stimulated human epi- dermal keratinocytes. [J].J Cell Physiol, 1999, 180(2):271-284.
    28. Nakanishi K, Uenoyama M, Tomita N, et al. Gene transfer of human hepatocyte growth factor into rat skin wounds mediated by liposomes coated with the sendai virus(Hemagglutinating Virus of Japan). [J]. Am J Pathol, 2002, 161:1761-1772.
    29. Matsumoto K, Hashimoto K, Yoshikawa K, et al. Marked stimulation of growth and motility of human keratinocytes by hepatocyte growth factor. [J]. Exp Cell Res, 1991, 196:114-120.
    30. Marchese C, Rubin J, Ron D, et al. Human keratinocyte growth factoractivity on proliferation and differentiation of human keratinocytes: differentiation response distinguishes KGF from EGF family. [J]. J of Cell Phys, 1990, 144:326-332.
    31. Chavakis E, Dimmeler S. Regulation of endothelial cell sur- vival and apoptos is during angiogenesis. [J]. Arterioscler Thromb Vasc Biol, 2002, 22(6):887-893.
    32. Toyoda M, Takayama H, Horiguchi N, et al. Overexpession of hepatocyte growth factor/scatter factor promotes vascularization and granulation tissue formation in vivo. [J]. FEBS Letters, 2001, 509(1):95-100.
    33. Duan HF, Wu CT, Lu Y, et al. Sphingosine kinase activation regulates hepato cyte growth factor-induced migration of endothelial cells. [J]. Exp Cell Res. 2004, 298(2):593-601.
    34. Wang X, Zhou Y, Kim HP, et al. Hepatocyte growth factor protects against hypoxia/reoxygenationinduced apoptosis in endothelial Cells. [J]. J Biol Chem, 2004, 279(7):5237-5243.
    35. Hiraoka N, Allen E, Pel IJ, et al. Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins. [J]. Cell, 1998, 95:365-377.
    36. McCawley LJ, Brien P, Hudson LG, et al. Epidermal growth factor (EGF)-and scatter factor/hepatocyte growth factor (SF/HGF)-mediated keratinocyte migration is coincident with induction of matrix metaloproteinase (MMP)-9. [J]. J Cell Physiol, 1998, 176:255-265.
    37. Lund LR, Romer J, Bugge TH, et al. Functional overlap between two classes of matrix-degrading proteases in wound healing. [J]. The EMBO Journal, 1999, 18(17):4645-4656.
    38. Kunugiza1 Y, Tomita1 N, Taniyama Y, et al. Acceleration of wound healing by combined gene transfer of hepatocyte growth factor and prostacyclin synthase with Shima Jet. [J]. Gene Therapy, 2006, 13(15):1143-1152.
    39. Lindner G,Menard A,Gherardi E,et al.Glenn Merlino Pia Welk2 er,Bori Han Djiski,Birgij Roloff and Ralf Paus.Involvement of hepatocyte growth factorΠscatter factor and MET receptor signaling in hair follicle morphogenesis and cycling.Faseb J 2000;14:319- 332.
    40. Gusak VK,Vasilev RG,Zubov DA,et al.Role of polypeptide growth factor in the regulation of epidermal keratinocyte prolifera2 tion.Tsitol Genet 2001;35(6):64-73.
    41. McGill GG,Haq R,Nishimura EK,et al.c-Met expression is regulated by mitf in the melanocyte lineage.J Biol Chem 2006;281 (15):10365-10373.
    42. Peluso JJ.Putative mechanism through which N-cadherin-medi2 ated cell contact maintains calcium homeostasis and therapy prevent ovarian cells from undergoing apoptosis.Biochem Pharmacol 1997; 54;847-853.
    43. Lindner G,Botchkarev VA,Botchkareva NV.Analysis of apoptosis during hair follicle regression(catogen).Am J Pathol 1997;151: 1601-1617.
    44. Stenn KS,Combates NJ,Eilertsen KJ,et al.Hair follicle growth control.Dermatol Clin 1996;14:543-557.
    45. Birchmeier C , Gherardi E.Developmental roles of HGF/SF and its receptor ,thec-METtyrosine kinase.Trends Cells Biol 1998;8:404 -410.
    46. Lu ZF,Cai SQ,WU JJ,et al.Biological characterization of cul2 tured dermal papilla cells and hair follicle regeneration in vitro and in vivo.Chin Med J 2006;20:119(4)275-281.
    47. Fujie K,Katoh S,Oura H,et al.The chemotactic effect of a der2 mal papillacedd-derived factor on outer root sheath cells.J Der2 matol Sci 2001;25(3):206-212.
    48. Mecklenburg L,Tobin DJ,Muller-Rover S,et al.Active hair growth(anagen)is associated with angiogenesis.J Invest Dermatol 2000;114;906-916.
    49. Jindo T,J suboi R,Takamori K,et al.Local injection of Hepato2 cyte growth factor/scatter factor(HGF/SF)alters cyclic growth of murine hair follicles.J Invest Dermatology 1998;110:338-342.
    50. Yamaguchi T,Sawa Y,Mivamoto Y,et al.Therapeutic Angiogen2 esis induced by injecting hepatocyte growth factor in ischemic ca2 nine hearts.Surg Today 2005;35:855-860.
    51. Abounaer R,Laterra J.Scatter factor/hepatocyte growth factor in brain tumor growth and angiogenesis.Neuro-Oncol 2005;7(4): 436-451.
    52. Van Belle E,Witzenbichler B,Chen D,et al.Potentiated angio2 genic effect of scatter factor/hepatocyte growth factor via induction of vascular endothelial growth factor:the case for paracrine ampli2 cation of angiogenesis.Circulation 1998;97:381-390.
    53. Wang H, Keiser JA. Hepatocyte growth factor enhances MMP activity in human endothelial. [J]. Biochem Biophys Res Commun, 2000, 272:900-905.
    54. Bhora FY, Dunk BJ, Batzri S, et al. Mechanisms of hepatocyte growth factor stimulation of keratinocyte metalloproteinase pro- duction. [J]. J Biol Chem, 1996, 271:24576-24582.
    55. Ha XQ, Li YM, Lao MF, et al. Effect of human hepatocyte growth factor promoting wound healing and preventing scar formation by adenovirus-mediated gene transfer. [J]. Chinese Medical Journal, 2003, 116(7):1029-1033.
    56. Okazaki M, Yoshimura K, Uchida G, et al. Elevated expression of hepatocyte and keratinocyte growth factor in cultured buccal-mucosa-derived fibroblasts compared with normal-skin- derived fibroblasts. [J]. J Dermatol Sci, 2002, 30:108-115.
    57. Ono, I., et al., Local administration of hepatocyte growth factor gene enhances the regeneration of dermis in acute incisional wounds. J Surg Res, 2004. 120(1): p. 47-55.
    58. Imokawa G, Yada Y, Morisaki N, et al. Biological characteri- zation of human fibroblast-derived mitogenic factors for human melanocytes. [J]. Biochem J, 1998, 330:1235-1239.
    59. Takami Y, Yamamoto I, Tsubouchi H, et al. Modulation of hepatocyte growth factorinduction in human skin fibroblasts by retinoic acid. [J]. Biochim Biophys Acta, 2005, 1743:49-56.
    60. Gohda E, Kuromitsu K, Matsunaga T, et al. Short commu nication synergism between interferon-γand cAMP in induction of hepatocyte growth factor in human skin fibroblast. [J]. Cytokine, 2000, 12(6):780-785.
    61. Vincent KM, Huang L, Burd A. Biostimulation of dermal fibroblast by sublethal Q-switched Nd:YAG 532nm laser: Collagen remodeling and pigmentation. [J]. J Photochem Photobiol B, 2005, 81:1-8.
    1. Gabbiani G.The cellular derivation and the life span of themyofibroblast. [J]. Pathol Res Pract 1996;192(7):708-711
    2. Linares HA.From wound to scar. [J]. Burns 1996;22(5):339-352
    3. Shin D,Minn KW.The effect of myofibroblast on contracture ofhypertrophic scar. [J]. Plast Reconstr Surg 2004;113(2):633-640
    4. Nakazono-Kusaba A,Takahashi-Yanaga F,Morimoto S,et al.Staurosporine-induced cleavage of alpha-smooth muscle actin duringmyofibroblast apoptosis. [J]. J Invest Dermatol. 2002;119(5):1008-1013
    5. Van Beurden HE,Von den Hoff JW,Torensma R et al.Myofibroblasts inpalatal wound healing:prospects for the reduction of wound contractionafter cleft palate repair. [J]. J Dent Res 2005;84(10):871-880
    6. Desmouliere A,Chaponnier C,Gabbiani G.Tissue repair,contraction,and the myofibroblast. [J]. Wound Repair Regen 2005,13(1):7-12
    7. Ehrlich HP,Desmouliere A,Diegelmann RF,et al.Morphological andimmunochemical differences between keloid and hypertrophic scar. [J]. Am J Pathol 1994;145(1):105-113
    8. Darby I,Skalli O,Gabbiani G.Alpha-smooth muscle actin is transientlyexpressed by myofibroblasts during experimental wound healing. [J]. Lab invest 1990;63(1):21-29.
    9. Schmitt-Graff A,Desmouliere A,Gabbiani G.Intestinal intraepithelial Tcell derived lymphoma not associated with enteropathy. [J]. Clin Investig1994;72(4):313-314.
    10. Moulin V,Castilloux G,Jean A,et al.In vitro models to study woundhealing fibroblasts. [J]. Burns 1996;22(5):359-362
    11. Desmouliere A,Rubbia-Brandt L,Abdiu A,et al.Alpha-smooth muscleactin is expressed in a subpopulation of cultured and cloned fibroblastsand is modulated by gamma-interferon. [J]. Exp Cell Res 1992;201(1):64-73
    12. Tomasek JJ,Gabbiane G,Hinz B,et al.Myofibroblasts andmechano-regulation of connective tissue remodelling. [J]. Nat Rev Mol CellBiol 2002;3:349-363
    13. Bogatkevich GS,Tourkina E,Abrams CS et al.Contractile activity andsmooth muscle alpha-actin organization in thrombin-induced human lungmyofibroblasts. [J]. Am J Physiol Lung Cell Mol Physiol 2003;285(2):L334-43
    14. Darby IA,bisucci T,Pittet B,et al.Skin flap-induced regression ofgranulation tissue correlates with reduced growth factor and increasedmetalloproteinase expression. [J]. J Pathol 2002;197(1):117-127.
    15.李永林瘢痕挛缩机理的研究和生物学治疗进展. [J].国外医学创伤与外科基本问题分册,1997;18(1)∶7
    16. Uo YC , Tsai WJ, Meng HC. Immune reponses in human mesangial cells regulated by emodin from Polygonum hypoleucum Ohwi. [J]. Life Sci,2001, 68(11) : 1271 - 1286.
    17. Beldon P. Abnormal scar formation in wound healing. [J]. Nurse Times. 2000;96(1)44-45.
    18. Kumar A, Dhawan S, Aggarwal BB. Emidin inhibits TNF - induced NF - KappaB activation , IkappaB degradation , and expression of cell surface adhesionj proteins in human vascular endothelial cells. [J]. Oncogene ,1998 ,17(7) :913 - 918.
    19. Duarte AS, Pereira AO, Cabrita AM, et al. The characterisation of the collagenolytic activity of cardosin a demonst rates it s potential application for ext racellular mat rix degradative processes. [J]. Curr Drug Discov Technol, 2005, 2 (1) :37-44.
    20. Ohtake Y, Tojo H , Seiki M. Multifunctional roles of MT1-MMP in myofiber formation and morphostatic maintenance of skeletal muscle. [J]. J Cell Sci, 2006, 119 ( Pt 18) :3822-3832.
    21. Kim HS , Kim HJ , Park KG, et al . Alpha2lipoic acid inhibits mat rix metalloproteinase-9 expression by inhibiting NF2kappaB transcriptional activity. [J] . Exp Mol Med, 2007, 39 (1) :106-113.
    22. Stewart D , J avadi M , Chambers M , et al . Interleukin-4 inhibition of interleukin-1-induced expression of matrix metalloproteinase-3 (MMP-3) is independent of lipoxygenase and PPARgamma activation in human gingival fibroblasts [J] . BMC Mol Biol, 2007, 8 :12.
    23. Breyholz HJ, Wagner S, Levkau B, et al. A(18)F-radiolabeled analogue of CGS 27023A as a potential agent for assessment of matrix metalloproteinase activity in vivo. [J]. Q J Nucl Med Mol Imaging, 2007, 51(1) :24-32.
    24. Xia D, Yan LN, Tong Y, et al. Const ruction of recombinant adenoviral vector carrying human tissue inhibitor of metalloproteinase-1 gene and its expression in vitro. [J]. Hepatobiliary Pancreat Dis Int, 2005, 4(2):259-264.
    25. Lu KV, Jong KA , Rajasekaran A K, et al . Upregulation of tissue inhibitor of metalloproteinases (TIMP)-2 promotes matrix metalloproteinase (MMP)-2 activation and cell invasion in a human glioblastoma cell line. [J]. Lab Invest, 2004, 84(1):8-20.
    26. Han X , Zhang H , Jia M , et al . Expression of TIMP-3 gene by construction of a eukaryotic cell expression vector and its role in reduction of metastasis in a human breast cancer cell line. [J]. Cell Mol Immunol, 2004, 1(4):308-310.
    27. Dollery CM, McEwan J R, Wang M, et al. TIMP-4 is regulated by vascular injury in rats [J]. Circ Res, 1999, 84 (5) :498-504.
    28. Miyake H, Hara I, Gohji K, et al . Relative expression of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 in mouse renal cell carcinoma cells regulates their metastatic potential [J] . Clin Cancer Res, 1999,5 (10) : 2824-2829.
    29. Rapti M, Knauper V, Murphy G, et al . Characterization of the AB loop region of TIMP-2. Involvement in pro-MMP-2 activation. [J]. J Biol Chem, 2006, 281 (33) :23386-23394.
    30. Soo, C., Shaw, W. W., Zhang, X., Longaker, M. T., Howard, E. W., and Ting, K. Differential expression of matrix metalloproteinases and their tissue-derived inhibitors in cutaneous wound repair. [J]. Plast. Reconstr. Surg. 105: 638, 2000
    31. Parks, W. C. Matrix metalloproteinases in repair. Wound Repair Regen. 7: 423, 1999. Saarialho-Kere, U., Kovacs, S. O., Pentland, A. P., Olerud, J. E., Welgus, H. G., and Parks, W. C. Cell-matrix interactions modulate interstitial collagenase expression by human keratinocytes actively involved in wound healing. J. Clin. Invest. 92: 2858, 1993.
    32. Pilcher, B. K., Dumin, J. A., Sudbeck, B. D., Krane, S. M., Welgus, H. G., and Parks, W. C. The activity of collagenase-1 is required for keratinocyte migration on a type I collagen matrix. [J]. J. Cell Biol. 137: 1445, 1997.
    33. Yuan, W., and Varga, J. Transforming growth factor-βrepression of matrix metalloproteinases-1 in dermal fibroblasts involves SMAD3. [J]. J. Biol. Chem. 276: 38502, 2001.
    34. Dang, C., Beanes, S., Soo, C., Hedrick, M., and Lorenz, H. P. A high ratio of TGF-β3 to TGF-β1 expression in wounds is associated with scarless repair. [J]. Wound Repair Regen. 9: 153, 2001.
    35. Kischer CW,Thies AC,Choap h ilM.PerivascularMyo fibroblast s and microvascular occusion in hyper2t rop hic scars and keloids. [J]. H um Pat hol,1982,13(9):819-824.
    36. Tanaka A,Hatoko M,Tada H,et al.Exp ressio n of p53family in scars. [J]. J Dermatol Sci,2004,34(1):17224.
    37.卿勇.皮肤病理性瘢痕微血管密度及V E GF表达的关系及临床意义[D].四川:四川大学,2003.
    38. Aiba S, Tabata N, Ishii H,et al. Dermatofibrosarcoma protuberans is a unique fibrohistiocytic tumour expressing CD34. [J]. Br J Dermatol. 1992 Aug;127(2):79-84.
    39.岳毅刚,蒋常文,李佩英等. VEGF抗体靶向血管治疗增生性瘢痕的研究. [J].中国实用美容整形外科杂志. 2006;17(1):68-71