用户名: 密码: 验证码:
基于心外膜标测技术的房颤表征方法及电生理机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心房颤动(简称房颤)是临床最常见的一种复杂心律失常。与其他医学研究不同的是,房颤治疗的发展是一个机制研究与临床研究并进的过程,期间伴随着标测工具的不断更新与发展。目前房颤药物治疗效果较差,非药物治疗的复发率较高,且手术有一定的风险,关键原因在于房颤的电生理机制尚未完全阐明。本研究主要在构建全心房心外膜标测的基础上,对房颤的电活动进行整体的连续跟踪;通过动物实验研究,初步探索房颤的发生和维持机制;通过房颤数据的表征方法研究及优化,希望为房颤的临床研究提供更丰富的信息。
     本文首先概括了128道的全心房心外膜标测系统的研制,介绍了心外膜标测的相关技术。针对心外膜局部标测不能反映房颤时心房整体的复杂电活动情况,研制出128位点的全心房心外膜标测电极,建立了128道的全心房心外膜动态标测系统,可对肺静脉和心房的电活动进行直观的全面演示。动物实验结果证实这种便携式的全心房心外膜动态标测技术可实现多道心电同步连续采样和连续监测,对心房的电活动进行连续跟踪,满足现场实时采集和观测的需求。
     本文分析了单双极复合利用提高标测精度的方法,利用基于该组合标测方法的64道心外膜标测系统,通过对局部心房外膜电活动的记录和分析,对房颤的表征方法进行了初步研究。除了常规的等时图,主要采用了动态等电位图(波动图)、散点图(矢量图的叠加),并对某些时段的心外膜电信号进行了统计处理,对窦性心律和房颤数据的这些信息表达作了详尽的描述。结果表明,利用波动图和矢量图可对房颤进行动态观测,通过统计图可得知房颤时心肌的激动规律,这可为临床上房颤的精密诊断和治疗提供理论依据。
     本文通过将信息熵概念引入心外膜标测数据的信息表征研究,对心动周期的统计性质进行了定量的估计。从心动周期信息熵的空间分布图可直观快捷地了解到房颤活动的复杂度,验证了其中偏高区域具有异位兴奋灶或参与房颤折返的可能,可用于临床房颤射频消融治疗的靶点定位。结果表明,信息熵概念引入心外膜标测数据的分析可优化房颤的表征方法。
     最后,本文开展了基于全心房心外膜标测的房颤电生理机制初步研究。利用标测数据研究了房颤时心房外膜不同部位的平均房颤周长(AFCL)分布情况,初步探讨了房颤的发生机制;通过实验数据分析了刺激脂肪垫迷走神经丛在肺静脉局灶性快速激动引发房颤中的作用。研究表明短阵猝发(burst)刺激诱发的房颤发生过程中肺静脉和心房各部位的AFCL呈现显著的梯度分布,其中肺静脉是激动频率最快的部位;心脏脂肪垫内迷走神经张力增高可能是肺静脉起源的阵发性房颤发生的基础;房颤持续和发展过程中有多种机制共同参与。该研究也证实了128道全心房心外膜标测系统在动物实验以及今后临床研究实际应用中的可行性。
     本文研究显示,全心房心外膜标测技术有助于动物实验和临床实验对房颤机制进行更深层次的研究;开展标测数据的表征方法研究,可为房颤的电生理机制研究及临床上射频消融靶点的精确定位提供应用基础。
Atrial fibrillation (AF) is the most common complex arrhythmia in clinical practice. The development of the therapy of AF is different from other medical studies, because it exists concurrently with the mechanism study and mapping technique renovation. Nowadays the medication effects of AF are very poor. However the recurrence of non-medication is also a ubiquitous trend and has a high risk of dangerous during operation. The most important reason of this case is that the mechanisms of AF are not well understood. In this dissertation, a whole-atrial epicardial mapping system has been developed, which can detect the electrical activity on the epicardial surface of atrium and show epicardial electrical activity visually and comprehensively. Animal tests are performed to study the occurrence and maintenance mechanism of AF. Mapping data representation methods and its optimization is also described to offer more information to characterize AF in clinical practice.
     Firstly, the development of 128-channel epicardial mapping system is introduced to explain the mapping technique. Because local epicardial mapping technique cannot show the complex electrical activity comprehensively during AF, 128-channel whole-atrial epicardial mapping system was constructed with 128-site epicardial mapping electrode patches. The system can directly show the epicardial electrical activities of pulmonary veins (PVs) and bi-atrium simultaneously. Animal tests proved that the system could describe the atrial electrical activity continuously by synchronous sample of multi-channel electrocardiogram (ECG) of epicardium. Result shows that this system can perform successfully in a surgical setting.
     Combined unipolar and bipolar mapping technique for recording epicardial electrical activity was applied to detect the propagation of depolarization wave over the epicardium. It can improve the electrode efficiency and the precision in epicardial mapping. Initial study of mapping data representation on AF was performed with recorded data from local atrial epicardial surface. Besides traditional isochronal maps, other methods were used to express the characteristics of AF which including dynamic isopotential maps, scattergraph and some statistical graphs. All these maps were used to describe the electrical activity during sinus rhythm and AF. All kinds of maps were presented clearly and the activity of sinus rhythm or AF can be seen quite differently. The dynamic isopotential map and the scattergraph can display the active electrical conduction of the atrium. Furthermore statistical results are also very useful for analysis the exciting mode of AF. The results will help us to find the optimal technique to diagnose the foci of AF for clinical therapy.
     Comentropy theory was applied to the study of data representation of AF through quantitative estimation of the statistical character of cardiac cycle. The spatial entropy distribution of cardiac cycle can reveal the complexity of electrical activity during AF and the regions with high value may be ectopic exciting foci or reentry paths. This study will be helpful for the radiofrequency ablation of AF. Result shows that methods for mapping data representation may be improved by comentropy theory.
     Finally, initial study of the mechanisms of AF is performed based on whole-atrial epicardial mapping technique. The occurrence mechanism of AF was operated by measuring local AF cycle length (AFCL) of different sites that arranged all over the epicardial surface of PVs and bi-atrium. To investigate the effects of the fat pad on AF triggered by rapid exciting of PVs, whole-atrial epicardial ECGs after fat pad stimulation were studied. Results show that during AF there exists an AFCL gradient while the shortest AFCL is PV and enhanced spontaneous neural activity at cardiac fat pad may serve as a substrate for focal PV triggering AF. The development process of AF may involve many mechanisms that interact each other. It also shows that the whole-atrial epicardial mapping system described here may be a useful tool for animal tests and clinical study of AF.
     Assembling the above-mentioned studies, the whole-atrial epicardial mapping technique will be helpful for the further investigation into the mechanisms of AF in animal tests and clinical research. Studies on mapping data representation may benefit the clinical basic research for mechanisms of AF and deciding the foci of AF undergoing radiofrequency ablation.
引文
[1]周自强,胡大一,陈捷等.中国心房颤动现状的流行病学研究[J].中华内科杂志,2004,43(7):491-494.
    [2]Schalij MJ,Rugge FPV,Siezenga M,et al.Endocardial activation mapping of ventricular tachycardia in Patients:First application of a 32-Site bipolar mapping electrode catheter[J].Circulation,1998,98(20):2168-2179.
    [3]Harada A,Sasaki K,Fukushima T,et al.Atrial activation during chronic atrial fibrillation in patients with isolated mitral valve disease[J].Ann Thorac Surg,1996,61(2):104-120.
    [4]Mansour M,Mandapati R,Berenfeld O,Chen J,Samie FH,Jalife J.Left-to-right gradient of atrial frequencies during acute AF in the isolated sheep heart[J].Circulation,2001,103(21):2631-2636.
    [5]Efimov IR,Nikolski VP,Salama G.Optical imaging of the heart[J].Circ Res,2004,95(1):21-33.
    [6]Markides V,Segal OR,Tondato F,Peters NS.Mapping[A].In:Zipes DP et al.Cardiac Electrophysiology from Cell to Bedside[M].America:Saunders Company,2004:858-868.
    [7]Malkin RA,Kramer N,Schnitz B,Gopalakrishnan M,Curry AL.Advances in electrical and mechanical cardiac mapping[J].Physiological Measurement,2005,26(1):R1-R14.
    [8]Durrer D,Dam R TV,Freud GE,et al.Total excitation of the isolated human heart [J].Circulation,1971,12:899.
    [9]Allessie MA,Bonke F IM,Schopman F JG,et al.Circus movement in rabbit atrial muscle as a mechanism of tachycardia.Ⅱ.The role of nonuniform recovery of excitation in the occurrence of unidirectional block as studied with multiple microelectrodes[J].Circ Res,1976,39:168.
    [10]Boinean JP,Schuessler RB,Mooney CR,et al.Widespread distribution and rate differentiation of the atrial pacemaker complex[J].Am J Cardiol,1980,239:406.
    [11]Salama G,Morad M.Merocyanine 540 as an optical probe of transmembrane electrical activity in the heart[J].Science,1976:485-487.
    [12]Pertsov AM et al.Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle[J].Circ Res,1993,72:631-650.
    [13]Gray RA et al.Nonstationary vortexlike reentrant activity as a mechanism of polymorphic ventricular tachycardia in the isolated rabbit heart[J].Circulation,1995,91:2454-2469.
    [14]Jalife J et al.A fungal metabolite that eliminates motion artifacts[J].J Cardiovasc Electrophysiol,1998,9:1358-1362.
    [15]Wu J et al.Cytochalasin D as excitation-contraction uncoupler for optically mapping action potentials in wedges of ventricular myocardium[J].J Cardiovasc Electrophysiol,1998,9:1336-1347.
    [16]Taccardi B,Punske BB.Body surface potential Mapping[A].In:Zipes DP et al.Cardiac Electrophysiology from Cell to Bedside[M].America:Saunders Company,2004:803-811.
    [17]Taccardi B,Punske BB,Lux RL et al.Useful lessons from body surface maping [J].J Cardiovasc Electrophysiol,1998,9:773-786.
    [18]方丕华,张澍.电生理标测新技术进展[J].新医学,2003,34(8):469-471.
    [19]包明威,黄从新,江洪.心内膜标测技术的进展[J].医学综述,2002,8(10):591-593.
    [20]Schilling RJ,Peters NS,Davies DW.Simutaneous endocardial mapping in the human left ventricle using a noncontact catheter:comparison of contact and reconstructed electrograms during sinus rhythm[J].Circulation,1998,98(9):887.
    [21]Sun HB,Velipasaoglu EO,Wu DE.Simutaneous multisite mapping of the right and left atrial septum in the canine intact beating heart[J].Circulation,1999,100(3):312.
    [22]Harada A et al.Atrial activation during chronic atrial fibrillation in patients with isolated mitral valve disease[J].Ann Thoracsurg,1996,61:104.
    [23]Derakhchan K,Li D,Courtemanche M et al.Method for simultaneous epicardial and endocardial mapping of in vivo canine heart:Application to atrial conduction properties and arrhythmia mechanisms[J].J Cardiovasc Electrophysiol,2001,12:548-555.
    [24]Yamauchi S,Ogasawara H,Saji Y,et al.Efficacy of intraoperative mapping to optimize the surgical ablation of atrial fibrillation in cardiac surgery[J].Ann Thorac Surg,2002,74:450-457.
    [25]Lopes RD,Mahaffey K,Harrington RA,et al.Atrial fibrillation is independently associated with a high risk of death in patients with acute coronary syndromes[J]. Circulation, 2007, 116(16): 315.
    
    [26] Lemola K, Khan R, Nattel S, et al. Atrial fibrillation predicts ventricular arrhythmogenicity in heart failure [J]. Circulation, 2007, 116(16): 438.
    [27] Durrer D, van der Twell LH. Spread of activation in the left ventricular wall of the dog. I. [J]. Am Heart J, 1953, 46 (5): 683-691.
    [28] Moe GK, Abildskov JA. Atrial fibrillation as a self-sustained arrhythmia independent of focal discharge [J]. Am Heart J, 1959, 58: 59-70.
    [29] Moe GK. On the multiple wavelet hypothesis of atrial fibrillation [J]. Arch Int Pharmacodyn Ther, 1962,140: 183-188.
    [30] Allessie MA, Bonke FIM, Schopman FJG, et al. Circus movement in rabbit atrial muscle as a mechanism of tachycardia [J]. Circ Res, 1973, 33: 54.
    
    [31] Allessie MA, Bonke F IM, Schopman F JG, et al. Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The leading circle concept: a new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle [J]. Circ Res, 1977,41: 9.
    [32] Wells JL, Karp RB, Konchoukos NT, et al. Characterization of atrial fibrillation in man: Studies following open heart surgery [J]. Pacing Clin Electrophysiol, 1978,1:426-438.
    [33] Hoffman BF, Rosen MR. Cellular mechanism for cardiac arrhythmia [J]. Circ Res, 1981,49(1): 1-15.
    [34] Cox JL, Canavan TE, Schuessler RB, et al. The surgical treatment of atrial fibrillation II: Intraoperative electrophysiologic mapping and description of the electrophysiologic basis of atrial flutter and atrial fibrillation [J]. J Thorac Cardiovasc Surg, 1991,101: 401-426.
    [35] Konings KT, Kirschhof CJ, Smeets JR, et al. High density mapping of electrically induced atrial fibrillation in human [J]. Circulation, 1994, 89: 1665-1680.
    [36] Wijffel MCEF, Kirchhor CJHJ, Dorland R, et al. Atrial fibrillation begets fibrillation: A study in awake chronically instrumented goats [J]. Circulation, 1995,92: 1954-1968.
    [37] Sahadevan J, Ryu K, Peltz L, et al. Epicardial mapping of chronic atrial fibrillation in patients [J]. Circulation, 2004; 110:3293-3299.
    [38] Houben RPM, et al. S-wave predominance of epicardial electrograms during atrial fibrillation in humans [J]. Heart Rhythm, 2004, 1(6): 639-647.
    [39]Becker R,Senges JC,Bauer A,et al.Suppression of atrial aibrillation by multisite and septal pacing in a novel experimental model[J].Cardiovascular Research,2002,54(2):476-481.
    [40]陈实培等.心房心外膜多位点标测系统的研制[J].医疗卫生装备,2001,22(5):5-7.
    [41]陈实培,郭明贤.多片组合式心房心外膜标测电极的研制[J].医疗装备,2003,16(3):4-5.
    [42]侯凤贞,陈颖,宁新宝等.64导心外膜Mapping系统的研制[J].微处理机,2006.6:116-118.
    [43]Zou RQ,Fang ZX,et.al.A epicardial mapping method with feedback adjustment [J].Chinese Journal of Biomedical Engineering,1999,8(4):65.
    [44]Gong YF,Xie F,Stein KM,et al.Mechanism underlying initiation of paroxysmal atrial flutter/atrial fibrillation by ectopic foci[J].Circulation,2007,115(16):2094-2102.
    [45]Scherf D.Studies on auricular tachycardia caused by aconitine administration[J].Proc Exp Biol Med,1947,64:233-239.
    [46]Allessie MA,Lammers WJEP,Bonke FIM,et al.Experimental evaluation of Moe's multiple wavelet hypothesis of atrial fibrillation[A].In:Zipes DP,Jalife J.Cardiac Electrophysiology and Arrhythmias[M].Orlando,Fla:Grune & Stratton,1985:265-276.
    [47]Cox JL,Schuessler RB,et al.The surgical treatment of atrial fibrillation Ⅲ:Development of a definitive surgical procedure[J].J Thorac Cardiovasc Surg,1991,101:569-583.
    [48]Kumagai K,Khrestian C,Waldo AL.Simultaneous multisite mapping studies during induced atrial fibrillation in the sterile pericarditis model:insights into the mechanism of its maintenance[J].Circulation,1997,95:511-521.
    [49]Skanes AC,Mandapati R,Berenfeld O,et al.Spatiotemporal periodicity during atrial fibrillation in the isolated sheep heart[J].Circulation,1998,98:1236-1248.
    [50]Ha(?)ssaguerre M,Ja(?)s P,Shah DC,et al.Spontaneouse initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins[J].N Engl J Med,1998,339:659-666.
    [51]刘兴鹏,马长生,曹林生等.肺静脉在犬持续性心房颤动发病机制中的作用[J].中国心脏起搏与心电生理杂志,2002,16(1):46-49.
    [52]马长生,董建增,刘兴鹏等.犬Marshall韧带与心房颤动的关系及其关键消 融部位[J].中华心律失常学杂志,2003,7(1):50-53.
    [53]Sanders P,Berenfeld O,Hocini M,et al.Spectral analysis identifies sites of high-frequency activity maintaining atrial fibrillation in humans[J].Circulation,2005,112:789-797.
    [54]方祖祥,邬小玫,杨翠微.心外膜电位的动态标测[A].见:郭继鸿.心电学进展[A].北京:北京医科大学出版社,2002:245-250.
    [55]杨翠微,方祖祥.用于复杂心律失常电生理研究的心外膜标测[A].见:中国介入心脏病杂志,中华医学会心血管病介入培训中心,中国心脏起搏与心电生理学杂志.中国西北心血管病国际论坛论文汇编[C].中国西北心血管病国际论坛,新疆,2003:179.
    [56]宁新宝.生物医学电子学[M].湖南:湖南科学技术出版社,1985:32.
    [57]Yilmaz B,MacLeod RS,Shome S,et al.Minimally invasive epicardial activation mapping from multielectrode catheters[A].In:Kyoto University.Annual Reports of the Research Reactor institute,Kyoto University[C].23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society,Istanbul,Turkey,2001.Kyoto,Japan,2001,1:290-293.
    [58]Boineau JP,Canavan TE,Schuessler RB,et al.Demonstration of a widely distributed atrial pacemaker complex in the human heart[J].Circulation,1988,77:1221-1237.
    [59]谭琛,郑强荪,杜日映,陈马丁.心房心外膜标测电极的研制[J].中国医疗器械杂志,1998,22(1):24-25.
    [60]Sih HJ,Zipes DP,Berbari EJ,et al.Differences in organization between acute and chronic atrial fibrillation in dogs[J].J Am Coll Cardiol,2000,36(3):924-931.
    [61]Toyama J.Recognition of the epicardial breakthrough on body surface isopotential maps:influence of the inter-electrode distance on the patterns reflecting the epicardial breakthrough[J].Japanese Circulation Journal,1981,45(10):1172-1178.
    [62]Yoyama J.Estimation of inter-electrode distance for body surface mapping:application of Fourier analysis to potential distribution due to the epicardial breakthrough[J].Japanese Circulation Journal,1981,45(11):1325-1330.
    [63]Shors SM,Sahakian AV,Sih HJ and Swiryn S.A method for determining high-resolution activation time delays in unipolar cardiac mapping[J].IEEE Transactions on Biomedical Engineering,1996,43(12):1192-1196.
    [64]王保华.生物医学电子学[M].北京:高等教育出版社,1998:40.
    [65]陆俊,杨翠微,方祖祥.一种用于心外膜动态标测三维仿真的方法[J].中国医疗器械杂志,2005,29(2):84-86+91.
    [66]陆俊.心外膜三维动态标测及其在房颤研究中的应用[D].上海:复旦大学,2005:
    [67]Thompson JA,Jenkins JM,Goyal R.A comparison of two interpolation methods for estimation of electrograms within a two-dimensional epicardial plaque[J].IEEE,Computers in Cardiology,1999,26:293-296.
    [68]刁鸿英,马长生,李淑梅,等.犬慢性快速心房起搏心房颤动模型的建立[J].中国心脏起搏与心电生理杂志,2001,15(2):98-100.
    [69]Morillo CA,Klein GJ,Jones DL,et al.Chronic rapid atrial pacing:Structural,functional,and electrophysiological characteristics of a new model of sustained atrial fibrillation[J].Circulation,1995,91:1588-1595.
    [70]Boineau JP et al.Potential distribution mapping of ventricular tachycardia[A].In:G Breitharrdt.Cardiac Mapping[M].America:Mount Kisco,NY:Futura,1993:85-107.
    [71]Rogers JM and Bayly PV.Quantitative analysis of complex rhythms[A].In:DS Rosenbaum.Quantitative Cardiac Electrophysiology[M].America:New York:Dekker,2002:408-428.
    [72]Ideker RE et al.The assumptions of isochronal cardiac mapping[J].Pacing Clin Electrophysiol,1989b,12:456-478.
    [73]Berbari EJ et al.Ambiguities of epicardial mapping[J].J Electrocardiol,1992,24:16-20.
    [74]Ha(?)ssaguerre M,Shoda M,Ja(?)s P,et al.Mapping and ablation of idiopathic ventricular fibrillation[J].Circulation,2002,106(8):962-967.
    [75]Bayly PV,KenKnight BH,Rogers JM,et al.Estimation of conduction velocity vector fields from epicardial mapping data[J].IEEE Transactions on Biomedical Engineering,1998,45(5):563-571.
    [76]邹人强等.64 路心外膜电位标测系统的研制[J].中国医疗器械杂志,2000,24(3):147-150.
    [77]Friesen GM,Jannett TC,Jadallah MA,et al.A comparison of the noise sensitiveity of nine QRS detection algorithms[J].IEEE Transactions on Biomedical Engineering,1990,37(1):85-98.
    [78]邬小玫,方祖祥,杨翠微.心房颤动时心外膜电活动波动图的记录与分析 [J].中国心脏起搏与心电生理杂志,2004,18(2):148-150.
    [79]傅祖芸.信息论-基础理论与应用[M].北京:电子工业出版社,2001:1.
    [80]Shannon CE.A mathematical theory of communication,Part Ⅰ[J].Bell Syst Tech J,1948,27:379-423.
    [81]Shannon CE.A mathematical theory of communication,Part Ⅱ[J].Bell Syst Tech J,1948,27:623-656.
    [82]沈世镒,吴忠华.信息论基础与应用[M].北京:高等教育出版社,2005:15.
    [83]何西培,何坤振.信息熵辨析与熵的泛化[J].情报杂志,2006,25(12):109-112.
    [84]黄天常.信息熵的内涵与外延[J].陇东学院学报(自然科学版),2006,16(1):15-18.
    [85]张继国.降水时空分布的信息熵研究[D].南京:河海大学,2004:
    [86]张光辉等.水文循环演化的信息熵及其应用[J].勘察科学技术,2000,(1):26-29.
    [87]Vasicek O.A test for normality based on sample entropy[J].JRSS Ser.B,1976,38:54-59.
    [88]Ebrahimi N.Two measure of sample entropy[J].Statistics & Probability Letter,1994,20:225-234.
    [89]苗东升.系统科学精要(第二版)[M].北京:中国人民大学出版社,2006:236-242.
    [90]沈禄赓.系统科学概要[M].北京:北京广播学院出版社,2000:145-158.
    [91]王纪龙.大学物理(第二版)下册[M].北京:科学出版社,2003:
    [92]曾丹苓等.工程热力学(第二版)[M].北京:高等教育出版社,2002:
    [93]孟庆生.信息论[M].陕西:西安交通大学出版社,1986:
    [94]Singh VP and Rajagopal AK.A New method of parameter estimation for hydrologic frequency analysis[J].Hydrol Science and Technol,1987,2(3):33-40
    [95]邹人强.心外膜电位标测系统的研究及其在房颤机理研究中的应用[D].上海:复旦大学,1999:
    [96]Hoekstra BP,Diks CG,Allessie MA et al.Nonlinear analysis of epicardial atrial electrograms of electrical induced atrial fibrillation in man[J].J Cardiovasc Electrophysiol,1995,6(6):419-440.
    [97]陆宏伟,陈亚珠.RR间隔的相关维及最大Lyapunov指数定征[J].航天医学与医学工程,2003,16(6):396-399.
    [98]Denton TA,Diamond GA,Helfant RH et al.Fascinating rhythm:a primer on chaos theory and its application to cardiology[J].Am Heart J,1990,120(60):1419-1440.
    [99]WU G,Huang CX,Tang YH,et al.Changes of IK,ATP current density and allosteric modulation during chronic atrial fibrillation[J].Chin Med J,2005,118:1161-1166.
    [100]Oral H,Knight BP,Tada H,et al.Pulmonary vein isolation for paroxysmal and persistent atrial fibrillation[J].Circulation,2002,105:1077-1081.
    [101]Nademanee K,McKenzie J,Kosar E,et al.A new approach for catheter ablation of atrial fibrillation:mapping of the electrophysiologic substrate[J].J Am Coll Cardiol,2004,43:2044-2053.
    [102]Scherlag BJ,Yamanashi WS,Jackman WM,et al.Electrical stimulation to identify neural elements on the heart:Their role in atrial fibrillation[J].J Interv Cardiol Electrophysiol,2005,13(11):37-42.
    [103]张镜如,乔健天.生理学(第四版)[M].北京:人民卫生出版社,1996:111-112.
    [104]马丽,侯月梅.心脏自主神经与心房颤动[J].国际心血管病杂志,2007,34(2):94-97.
    [105]Kneller J,Zou R,Vigmond EJ,et al.Cholinergic atrial fibrillation in a computer model of a two-dimensional sheet of canine atrial cells with realistic ionic properties[J].Circ Res,2002,90(9):73-87.
    [106]耿宁,孙英贤.心脏自主神经活动在阵发性心房颤动发生和维持中的作用[J].中华心律失常学杂志,2007,11(2):147-148.
    [107]侯月梅等.心脏脂肪垫在肺静脉引发房颤中的作用[J].临床心电学杂志,2007,16(2):123-126.
    [108]Scherlag BJ,Yamanashi WS,Patel U,et al.Autonomically induced conversion of pulmonary vein focal firing into atrial fibrillation[J].J Am Coll Cardiol,2005,45(11):1878-1886.
    [109]杨玉辉,郑强荪,董建军等.犬右肺静脉脂肪垫对心房及右上肺静脉心房纤颤诱发的影响[J].医学研究生学报,2006,19(6):512-514.
    [110]杨延宗.心房颤动发生机制研究进展[J].中华老年多器官疾病杂志,2006,5(1):14-17.
    [111]侯月梅.关于心房颤动机制的一点认识和思考[J].中国心脏起搏与心电生理杂志,2005,19(6):434-435.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700