用户名: 密码: 验证码:
多重乳液法聚羟基丁酸酯基印迹微球的制备、结构与特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用水/油/水多重乳液法制备了平均粒径为101~102μm的聚羟基丁酸酯(PHB)基微球,采用光学显微技术研究了乳液形成过程及其固化成球过程,在此基础上采用包埋法制备了牛血清白蛋白(BSA)印迹的PHB微球、PHB/聚乙二醇(PEG)微球,并对微球的制备、结构和特性进行了较为详细地探讨。
     研究表明,多重乳液的结构和稳定性,特别是初乳液滴和复乳液滴的形态和直径是影响微球结构的重要因素,由此最终可得到坍陷、空心或类似蜂巢等不同结构的微球。制备过程中添加PEG组分具有改善乳化效果、提高亲水性和模板致孔等多种作用,对微球结构也有重要影响。微球的最终结构还与成球过程中PHB的结晶行为密切相关。
     系统研究了二次乳化搅拌速度、W_1/O比例、(W_1/O)/W_2比例等乳液形成条件,PHB、PEG、PVA、BSA等用量以及PHB/PEG的质量比对微球粒径大小、表面形貌、孔疏密程度的影响规律,探讨了微球结构、包埋率与溶出特性之间的关系,确定了较优化的制备工艺。
     吸附行为研究表明,BSA印迹的PHB基微球具有较高的吸附选择性和再生性。适中的模板加入量、较低的PHB分子量以及添加PEG组分等均可使PHB印迹微球显示出更大的平衡吸附量。讨论了PHB作为新型分子印迹基材的原理。
In this dissertation water in oil in water (w1/o/w2) multiple emulsion method was selected to prepare bovine serum albumin (BSA) imprinted Poly(3-hydroxybutyrate) (PHB) microspheres with average diameter from 101μm to 102μm. Optical microscope was used for observation the course of solvent evaporation and solidification of multiple emulsion microdroplets. On the basis of the study BSA molecular imprinted PHB microspheres and PHB/Poly(ethylene glycol) (PEG) microspheres were prepared with embedding technique. The preparation, structure, characteristic and properties of the microspheres were detailedly discussed too.
     The result of research showed that structure of the multiple emulsion, especially the microdroplets’diameter and morphology of initial emulsion and multiple emulsion was a crucial factor to influence the structure of microspheres, which would form different structures such as deflated, closed, hollow or honeycomb at last. Participation of Poly(ethylene glycol) (PEG) strengthened the emulsification effect, improved the hydrophilic properties, played a role of pores-maker as templates and had an important influence on the structure of microspheres, The structure of microspheres had close relatively with the crystallizing behavior of PHB during the course of forming microspheres.
     The factors that worked on the diameter, surface morphology and porosity of the microspheres were systematically studied, including stirring speed of the second emulsion, volume ratio of W1/O and (W1/O)/W2, concentration of PHB, PEG, polyvinyl alcohol (PVA), BSA and mass ratio of PHB/PEG. Also the relationship between the structure of microspheres and entrapment rate and the property of dissolving out was discussed. The optimized processes parameters were fixed after that.
     The research of adsorption behavior showed that molecular imprinted PHB based microspheres had good specific adsorption, recognition and regeneration of the template. Greater absorption capacity could be achieved at equilibrium for the template at the preparation conditions of moderate template adding, lower molecular weight of PHB and the addition of PEG. The principle of PHB as a new molecularly imprinted material was discussed.
引文
[1] R. Arshady. Microspheres and microcapsules: A survy of manufacturing techniques, Part1: Suspension cross-linking.Polymer Engineering and Science, 1989,29(24):1746-1758
    [2] R. Arshady. Microspheres and microcapsules: A survy of Manufacturing Techniques, Part 2: Coacervation. Polymer Engineering and Science, 1989,30(15):905-914
    [3] 陆彬 ,药物新剂型与新技术 ,北京 :人民卫生出版社 ,1998
    [4] Esposito E, Menegatti E and Cortesi R. Hyaluronan-based microspheres as tools for drug delivery: a comparative study. International Journal of Pharmaceutics, 2005, 288: 35-49
    [5] Silva CM, Ribeiro AJ, Figueiredo IV, et al. Alginate microspheres prepared by internal gelation: Development and effect on insulin stability. International Journal of Pharmaceutics, 2006, 311: 1-10
    [6] Debenedetti PG, Toms JW, Yeo SD, et al. Application of supercritical fluids for the production of sustained delivery devices. J. Control. Release, 1993, 24: 27-44
    [7] Matsuyama K, Zhang DH, Urabe T, et al. Formation of L-poly(lactic acid) microspheres by rapid expansion of CO 2 saturated polymer suspensions. Journal of supercritical Fluids, 2005, 33:275-281
    [8] Breitenbach A, Mohr D and Kissel T. Biodegradable semi-crystalline comb polyesters influence the microsphere production by means of a supercritical fluid extraction technique (ASES). Journal of Controlled Release, 2000, 63: 53-68
    [9] Falk RF, Randolph TW, Meyer JD, et al. Controlled release of ionic compounds from poly(L-lactide)microspheres produced by precipitation with a compressed antisolvent. Journal of Controlled Release, 1997, 44:77-85
    [10] McDonald CJ, Bouck KJ, Chaput AB, et al. Emulsion polymerization of voided particles by encapsulation of a nonsolvent. Macromolecules, 2000, 3: 1593-1605
    [11] Okubo M, Minami H and Yamamoto Y. Penetration/release behaviors of various solvents into/from micron-sized monodispersed hollow polymer particles. Colloids Surf. A, 1999, 153: 405-411
    [12] Lee DI, Mulders MR, Nicholson DJ, et al. Hollow polymer latexparticles. US 5521253, 1996
    [13] Boudy V, Voute N, Pradeau D. Adsorption of an ionizable drug onto microshperes: experimental and modeling studies. Int. J. pharmaceutics, 2002, 239:13-22
    [14] Jang J and Ha H. Fabrication of hollow polystyrene nanospheres in microemulsion polymerization using triblock copolymers. Langmuir, 2002, 18: 5613-5618
    [15] Brien DF, Armitage B, Benedicto A, et al. Polymerization of preformed self-organized assemblies. Acc. Chem. Res., 1998, 31: 861-868
    [16] Zhang L, Eisenberg A. Multiple morphologies and characteristics of “crewcut”micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions. J. Am. Chem. Soc., 1996, 118: 3168-3181
    [17] Jenekhe SA, Chen XL. Self-assembly of ordered microporous materials from rod-coil block copolymers. Science, 1999, 283: 372-375
    [18] Carosu F, Trau D, Mohwald H, et al. Enzyme encapsulation in layer-by-layer engineered polymer multiplayer capsules. Langmuir, 2000, 16: 1485-1488
    [19] Sukhorukov GB, Donath E, Lichfenfeld H, et al. Layer-by-layer self assembly of polyelectrolytes on colloidal particles. Colloid Surf. A, 1998, 137: 253-266
    [20] Sukhorukov GB, Donath E, Davis S, et al. Stepwise polyelectrolyte assembly on particle surfaces:a novel approach to colloid design. Polym. Adv. Technol., 1998, 9: 759-767
    [21] Voigt A, Lichfenfeld H, Sukhorukov GB, et al. Membrance filtration for microen capsulation and microcapsules fabrication by layer-by-layer polyelectrolyte adsorption. Ind. Eng. Chem. Res., 1999, 38:4037-4043
    [22] Antipov AA, Sukhorukov GB, Leporatti S, et al. Polyelectrolyte multiplayer capsule permeability control. Colloids Surf. A, 2002, 198/200: 535-541
    [23] Antipov AA, Sukhorukov GB, Donath E, et al. Sustained release properties of polyelectrolyte multiplayer capsules. J. Phys. Chem. B, 2001, 105: 2281-2284
    [24] Junjie G, Hanna, M A. [J]. Biomacromolecules, 2004, 5( 6):2329-2339.
    [25] Seif ritz W, J Phys Chem, 1925,29:738-748.
    [26] Pilman E, Larsson K. Inverse micellephases in ternary systems of poly lipids/fats/water and protein emulsification of such phases to w/o/w emulsions, J Dispersion Science and Technology, 1980,1:267-281
    [27] Bonina F, Bader S, Montenegro C, et al, Three phase emulsions for controlled delivery in the cosmetic field, J Cosmetic Science,1992,14:65-74
    [28] Silva Cunha A, J Microencap sulation,1997,14:311-319.
    [29] 侯 吉 瑞 , 吴 文 祥 , 多 重 乳 液 型 调 剖 剂 的 研 制 , 油 田 化 学 ,1996,2 (13):132-135
    [30] Ehtezazi T, Washington C. Controlled release of macromolecules from PLA microspheres: using porous structure topology. Journal of controlled release, 2000, 68(3):361-372.
    [31] Jain R A, The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices, Biomaterials, 2000,21(23):2475-2490
    [32] Kim T H, Park T G, Critical effect of freezing/freeze-drying on sustained release of FITC-dextran encapsulated within PLGA microspheres, International journal of pharmaceutis, 2004,271(1-2):207-214
    [33] Yang YY, Chung TS, Bai XL, et al. Effect of preparation conditions on morphology and release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion method, Chemical Engineering Science, 2000, 55:2223-2236
    [34] Sandor M, Enscore D, Weston P, et al. Effect of protein molecular weight on release from micron-sized PLGA microspheres,Journal of controlled release, 2001,76(3):297-311
    [35] Kato Y, Onishi H, Machida Y, et al. Application of chitin and chitosan derivatives in the pharmaceutical field, [J]. Curr Pharm Biotechnol,2003,4(5):303-309
    [36] Berkland C, Kipper M J, Narasimhan B, et al. Microsphere size, precipitation kinetics and drug distribution control drug release from biodegradable polyanhydride microspheres. Journal of controlled release, 2004, 94(1): 129-141
    [37] Reithmeier H, Herrmann J, Gopferich A, et al. Lipid microparticlesas a parenteral controlled release device for peptides, [J]. Journal of controlled release,2001,73(2-3):339-350
    [38] Carelli V, Colo G D, Gesi M, et al. Mechamism of drug release from silicone microspheres containing polycarbophil, [J]. Journal of pharmaceutics, 1997,153(1):105-114
    [39] Martin MA, Miguens FC, Rieumont J, et al. Tailoring of the external and internal morphology of poly-3-hydroxy butyrate microparticle, Colloids and surfaces B: Biointerfaces, 2000, 17(2):111-116.
    [40] Rodriguez P, Montano N, Gonzalez K, et al. Stabilization of a-chymotrypsin at the CH 2 Cl 2 /water interface and upon water-in-oil-in-water encapsulation in PLGA microspheres. Journal of Controlled Release, 2003, 89: 71-85
    [41] Anderson A J, Dawes EA. Occurrence, metabolism, role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. , 1990, 54:450-472.
    [42] Wrobel M, Zebrowski J, Szopa J. Polyhedroxybutyrate synthesis in transgenic flax. Journal of Biotechnology, 2004, 107:41-54
    [43] Holmes PA. Application of PHB-a microbially produced biodegradable thermoplastic. Phys. Technol, 1985, 16:32-36
    [44] Wendlandt KD, Geyer W, Mirschel G., et al. Possibilities for controlling a PHB accumulation process using various analytical methods. Journal of Biotechnology, 2005, 117: 119-129
    [45] Tanaka K, Ishizake A, Ferment J, et al. Production of poly-D-3-hydroxybutyric acid from carbon dioxide by two-stage culture method employing Alcaligenes eutrophus ATCC 1769T. Bioengineering, 1994, 77:425-427
    [46] Madden LA, Anderson AJ, Shah DT, et al. Chain termination in polyhydroxyalkanoate synthesis: involvement of exogenous hydroxyl-compounds as chain transfer agents. Int. J. Biol. Macromol., 1999, 25:43-53.
    [47] Shah DT, Tran M, Berger PA, et al. Synthesis of Poly(3-hydroxybutyrate)by Ralstonia eutropha in the presence of 13C-labeled ethylene glycol. Macromolecules, 2000, 33:6624-6626
    [48] Slater SC, Houmiel KL, Tran M, et al. Multiple β-ketothiolases mediate Poly(β-hydroxyalkanoate)copolymer synthesis in Ralstonia eutropha. J. Bacteriol. , 1988, 180:1979-1987
    [49] Merrick JM., Douboroff M. Enzymic synthesis ofPoly(β-hydroxybutyric acid)in bacteria. Nature, 1961, 189: 890-892
    [50] Dawes EA, Senior PJ. The role and regulation of energy reserve polymers in microorganisms. Adv. Micobial. Physiol., 1973, 10:10135-10266
    [51] Ward AC, Rowley BI, Dawes EA. Effect of oxygen and nitrogen limitation on poly-β-hydroxybutyrate biosynthesis in ammoniumgrown Azotobacter beijerinckii. J. Gen. Microbiol., 1977, 102:61-68
    [52] Sharma L, Mallick N. Accumulation of poly-b-hydroxybutyrate in Nostoc muscorum: regulation by pH, light-dark cycles,N and P status and carbon sources. Bioresource Technology, 2005, 96:1304-1310
    [53] Pool R. In search of the plastic potato. Science, 1989, 245:1187-1189
    [54] Poirier Y. Production of new polymeric compounds in plants. Curr. Opin. Biotechnol., 1999, 10:181-185
    [55] Nawrath C, Poirier Y and Somerville C. Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana results in high levels of polymer accumulation. Proc. Natl Acad. Sci., 1994, 91:12760-12764.
    [56] Poirier Y, Dennis DE, Klomparens K, et al. Polyhydroxybutyrate, a biodegradable thermoplastic, produced in transgenic plants. Science, 1992, 256:520-523.
    [57] Poirier Y. Polyhydroxyalknoate synthesis in plants as a tool for biotechnology and basic studies of lipid metabolism. Progress in Lipid Research. 2002, 41: 131-155
    [58] Mott IEC, Hughes A and Dunnill P. Anultra scale-down process study for the production of polyhydroxybutyrate from transgenic rapeseed. Bioprocess Eng., 2000, 22:451-459.
    [59] Hughes A, Mott IEC and Dunnill P. Studies with natural rapeseed and microbially derived polyhydroxybutyrate to simulate extraction of plastic from transgenic material. Bioproc. Eng., 2000, 23:257-263
    [60] Kurdikar DL, Stauser FE, Solodar AJ, et al. High termperature PHA extraction using PHA-poor solvents. US patent 6087471, 2000
    [61] Ellar D, Lundgren D, Okamura GK, et al. Morphology of poly-β-hydroxybutyrate granules. J. Mol. Biol., 1973, 35:489-502
    [62] Barnard GN and Sanders JKM. The pooly-beta-hydroxybutyrate granule in vivo. A new insight based on NMR spectroscopy of whole cells. J. Biol. Chem., 1989, 264:3286-3291
    [63] Bonthrone KM, Clauss J, Horowitz DM, et al. The biological and physical chemistry of polyhydroxyalkanoates as seen by NMR spectroscopy. FEMS Microbiol. Rev., 1992, 103:269-277
    [64] Bernd HA, Antonio RV, Spiekermann P. Molecular characterization of the poly(3-hydroxybutyrate) (PHB) synthase from Ralstonia eutropha: in vitro evolution, site-specific mutagenesis and development of a PHB synthase protein model. Biochimica et Biophysica Acta, 2002, 1594: 178-190
    [65] Sato H, Dybal J, Murakami R, et al. Infrared and Raman spectroscopy and quantum chemistry calculation studies of C-H/O hydrogen bondings and thermal behavior of biodegradable polyhydroxyalkanoate. Journal of Molecular Structure, 2005, 744-747: 35-46
    [66] Brandl H, Gross RA, Lenz RW, et al. Pseudomonas oleovorans as a source of Poly(β-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl. Environ. Microbiol, 1988, 54:1977-1982
    [67] Barham PJ. Nucleation behavior of poly-3-hydroxy-butyrate. J. Mater. Sci., 1984, 19:3826-3834
    [68] Saad GR, Seliger H. Biodegradable copolymers based on bacterial Poly((R)-3-hydroxybutyrate): thermal and mechanical properties and biodegradation behaviour. Polymer Degradation and Stability, 2004, 83: 101-110
    [69] Waddington DS. Polyhydroxyalkanoates and film formation thereform. WO94/16000,1994
    [70] Cox MK. Properties and applications of polyhedroxyalkanoates. Biodegradable Plastics and Polymers, 1994, Amsterdam:Elsevier,120-135
    [71] 沈忠耀 ,尹进 ,李红旗 , 从微生物细胞中分离提取 PHB 的方法的综述,化工时刊,1997,11(5): 40-45
    [72] 刘芳 ,沈忠耀 , PHB 发酵及其动力学研究 ,化工进展 , 1996(6):15-18
    [73] Reneker D H, Geil P H, Morphology of polymer single crystals, J. Appl. Phys, 1960,31:1916-1925
    [74] Sauer J A, Morrow D R, Richardson G C, Morphology ofsolution-grown polypropylene crystal aggregates, J. Appl. Phys., 1965(36):3017-3021
    [75] Kunioka M and Doi Y. Thermal degradation of microbial copolyesters: Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Poly(3-hydroxybutyrate-co-4-hydroxyvalerate). Macromolecules, 1990, 23: 1933-1936
    [76] Akita S., Eigata Y., Miyaki Y., Fujita H.,Solution properties of Poly-β -hydroxybutyrate. Ⅰ .Biosynthesis and characterization,Macromolecules, 1976(9):774-780
    [77] Huglin M.B., Radwin M.A.,Unperterbed dimension of Poly-β-hydroxybutyrate in single and binary solvents, Polymer, 1991(32):1293-1298
    [78] De Koning G.J.M., Lemstra P.J., Crystallization phenomena in bacterial Poly[(R)- 3-hydroxybutyrate]2.Embrittlement and rejuvenation, Polymer, 1993(34):4089-4094
    [79] De Koning G.J.M., Scheeren A.H.C.,Lemstra P.J., Peeters M.,Reynaers H., Crystallization phenomena in bacterial Poly[(R)- 3-hydroxybutyrate]:3.Toughening via texture changes, Polymer, 1994(35):4598-4605
    [80] Barham P.J., Keller A., Otun E.L.,Holmer P.J.,Crystallization and morphology of a bacterial thermoplastic:Poly-3-htdroxybutyrate, J. Mater. Sci., 1984(19):2781-2794
    [81] Fukada E., Ando Y., Piezoelectric Properties of Poly-β-hydroxybutyrate and β-hydroxyvalerate, J. Bio. Macromol., 1986(8):361-366
    [82] Terada M., Marchessault R.H.,Determination of solubility parameters for poly(3-gydroxyalkanoates),Int. J. Biol. Macromol., 1999(25):207-215
    [83] Marchessault R.H., Okamura K., Su C.J.,Physical properties of Poly- β -hydroxybutyrate Ⅱ .Conformational aspects in Solution, Macromolecules, 1970(3):735-740
    [84] Miller ND and Williams DF. On the biodegradation of poly-β-hydroxybutyrate-hydroxyalkanoates copolymers. Biomaterials, 1987, 8:129-137
    [85] Volova T, Shishatskay E, Sevastianov V, et al. Results of biomedical investigations of PHB and PHB/PHV fibers, Biochemical Engineering Journal, 2003, 16:125-133
    [86] Davies S and Tighe B. Cell attachment to gelspun polyhydroxybutyrate fibers. Poly. Prepr., 1995, 36:103-104
    [87] Leenstra T.S.,Kuijpers_Jagtman A.M.,Maltha J.C.,The healing process of palatal tissues after palatal surgery with and without implantation of membranes:an experimental study in dogs,Journal of Materials Science,1998,9:249-255
    [88] Freier T, Kunze C, Nischan C,et al. In vitro and in vivo degradation studies for development of a biodegradable patchbased on poly(3-hydroxybutyrate). Biomaterials, 2002, 23:2649-2657
    [89] Behrend D, Nischan C, Kunze C, et al. Resorbable scaffolds for tissue engineering. Proc. European. Medical and Biological Engineering Conference. Med. Biol. Eng. Comput., 1999, 37(suppl.):1510-1511
    [90] Aebischer P, Valentini RF, Galletti PM, et al. Piezoelectric nerve guidance channels. PCT Patent Application No. WO88/06866,1988
    [91] Ljungberg C, Johansson-Ruden G., Bostrom KJ, et al. Neuronal survival using a resorbable synthetic conduit as an alternative to primary nerve repair. Micosurgery, 1999, 19:259-264.
    [92] Hazari A, Johansson-Ruden G., Junemo-Bostrom K, et al. A new resorbable wraparound implant as an alternative nerve repair technique. J. Hand Surg., 1999, 24B: 291-295
    [93] Williams S.F.,Martin d.P.,Horowitz D.M.,et al.PHA applications:addressing the price performance issue Ⅱ Tissue engineering,International Journal of Biological Macromolecules,1999,25:111-121
    [94] Doyle C, Tanner ET, Bonfied W. In vitro and in vivo evaluation of polyhydroxybutyrate and of polyhydroxybutyrate reinforced with hydroxyapatite. Biomaterials, 1991, 12:841-847.
    [95] Wang YW, Wu Q, Chen JC, et al, Evaluation of three-dimensional scaffolds made of blends of hydroxyapatite and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for bone reconstruction. Biomaterials, 2005,26:899-904
    [96] Bowald SF and Johansson EG.. A novel surgical material. European Patent Application No. 0349505A2, 1990.
    [97] Bowald SF and Johansson-Ruden G.. A novel surgical material. European Patent Application No. 0754467A1, 1997
    [98] Malm T, Bowald S, Karacagil S, et al. A new biodegradable patchfor closure of atrial spetal defect. Scand. J. Thor. Cardiovasc. Surg., 1992, 26:9-14.
    [99] Schmitz KP and Behrend D. Method of manufacturing intraluminal stents made of polymer material. European Patent Application No. 0770404A2, 1997
    [100] Unverdorben M, Schywalsky M, Labahn D, et al. Polyhydroxybutyrate(PHB) stent-experience in the rabbit. Am. J. Card. Transcatheter Cardiovascular Therapeutics, Abstract TCT-11:5S, 1998
    [101] Behrend D, Schmitz KP and Haubold A. Bioresorbable polymer materials for implant technology. Adv. Eng. Mater., 2000,2:123-125
    [102] Zhao K, Deng Y, Chen GQ. Effects of surface morphology on the biocompatibility of polyhydroxyalkanoates.Biochemical Engineering Journal, 2003, 16:115-123
    [103] Lee SY. Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng., 1996,54:450-472
    [104] Wang YW, Mo WK, Yao HL, et al. Biodegradation studies of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), Polymer Degradation and Stability, 2004, 85:815-821
    [105] Ray SS and Bousmina M. Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Progress in Materials Science, 2005, 50:962-1079
    [106] Holland SJ, Tighe BJ and Gould PL. Polymers for biodegradable medical devices .I. The potential for polyesters as controlled macromolecular release systems. J. Controlled Release, 1986, 4:155-180
    [107] Juni K and Nakano M. Poly(hydroxyl acids) in drug delivery. CRC Crit. Rev. Ther. Drug Carrier Syst., 1987, 3:209-232
    [108] Salman MA, Sahin A, Onur MA, et al. Tramadol encapsulated into polyhydroxybutyrate microspheres: in vitro release and epidural analgesic effect in rats, Acta Anaesthesiol Scand, 2003, 47(8) :1006
    [109] Scholz C. Poly(beta-hydroxyalkanoates)as potential biomedical materials: an overview. ACS Symp. Ser., 2000,764:328-334
    [110] 胡 弢 ,吴 伟 ,吴 宝 剑 , 多 柔 比 星 聚 酯 微 球 的 制 备 , 中 国 医 药 工 业 杂志, 2005,36(7):408-411
    [111] 陈建海 ,陈昆 ,Shagufla M,等 ,新型可降解聚酯材料地西泮缓释微球的研制, 2000,35(8):613-616 130
    [112] 陈 建 海 ,陈 志 良 ,侯 连 兵 等 ,聚 羟 基 丁 酸 酯 缓 释 微 球 的 制 备 与 性 能 ,功能高分子学报,2000,1(13):61-64
    [113] 王宁 ,江澄川 ,缓释型洛莫司汀对荷瘤裸鼠的局部化疗 ,中国临床药学杂志,1999,8(5):300-303
    [114] 王正容 ,陆彬 ,杨红 ,左炔诺孕酮 -聚 3-羟基丁酸酯缓释微球的研究 ,药学学报, 1999,34(1):54-57
    [115] Collins AEM, Deasy PB, MacCarthy D, et al. Evaluation of a controlled release compact containing tetracycline hydrochloride bonded to tooth for the treatment of periodontal disease. Int. J. Pharm., 1989, 51:103-114.
    [116] Deasy PB, Collins AEM, MacCarthy DJ, et al. Use of strips containing tetracycline hydrochloride or metronidazole for the treatment of advanced periodontal disease. J. Pharm. Pharmacol., 1989, 41:694-699
    [117] Sendil D, Gursel I, Wise DL, et al. Antibiotic release from biodegradable PHBV microparticles. Journal of Controlled Release, 1999, 59: 207-217
    [118] Eldridge JH, Hammond CJ, Meulbroek JA, et al. Controlled vaccine release in the gut-associated lymphoid tissues. I. Orally administered biodegradable microspheres target the Peyer’s patches. J. Controlled Release, 1990, 11:205-214.
    [119] Conway BR, Eyles JE and Alpar HO. A comparative study on the immune responses to antigens in PLA and PHB microspheres. J. Controlled Release, 1997, 49:1-9.
    [120] Kassab AC, Piskin E, Bilgic S, et al. Embolization with polyhydroxybutyrate(PHB)microspheres: In-vivo studies. J. Bioact. Compat. Polym., 1999, 14:291-303
    [121] Mcleod BJ, Haresign W, Peters AR, et al. The development of subcutaneous-delivery preparations of GnRH for the induction of ovulation in acyclic sheep and cattle. Anim. Reprod. Sci., 1988, 17:33-50
    [122] Bissery M C, Puisieux F, Thies C, A study of process parameters in the making of microspheres by the solvent evaporation procedure, Third Expo. Congr. Int. Technol. Pharm., 1983,3:233-239
    [123] Bissery M C, Valeriote F, Thies C, In vitro and in vivo evaluation of CCNU-loaded microspheres prepared from poly(L)-lactide and poly(β-hydroxybutyrate),in: Microspheres and Drug Therapy, Pharmaceutical, Immunological and Medical Aspects, Amsterdam:1984:217-227
    [124] Bissery M C, Valeriote F, Thies C, Fate and effect of CCNU-loaded mirospheres made of poly(D,L)lactide(PLA) or poly(β-hydroxybutyrate)(PHB) in mice, Proc. Int. Symp. Controlled Release bioact. Mater., 1985,12:181-182
    [125] Bissery M C, Valeriote F, Thies C, IN vitro lomustine release from small poly(β-hydroxybutyrate) and poly(D,L)lactide microspheres, Proc. Int. Symp. Controlled Release Bioact. Mater., 1984,2:25-26
    [126] Brophy M R, Deasy P B, In vitro and in vivo studies on biodegradable polyester microparticles containing sulphamethizole, Int. J. harm., 1986,29:223-231
    [127] Atkins T W, Peacock S J, The incorporation and release of bovine serum albumin from poly-hydroxybutyrate-hydroxyvalerate microcapsules, J. Microencapsulation, 1996,13:709-717
    [128] Yagmurlu MF, Korkusuz F, Gursel I, et al, polyhydroxybutyrate - co- hydroxyvalerate ( PHBV) local antibiotic delivery system: in vivo effectiveness and biocompatibility in the treatment of implant – related experimental osteomyelitis, J Biomed Mater Res, 1999,46 (4): 494-503
    [129] Kassab Ach, Piskin E, Bilgic S, et al, Embolization with polyhydroxybutyrate (PHB) microspheres: In - vivo studies, J BioactCompatible Polymers, 1999,14(4) :291-303
    [130] Pays K, Giermanska-Kahn J, Pouligny B. Double emulsions: how does release occur?. Journal of Controlled Release, 2002, 79:193-205
    [131] Hai M, Magdassi S. Investigation on the release of fluorescent markers from w/o/w emulsions by fluorescence-activated cell sorter. Journal of Controlled Release, 2004, 96:393- 402
    [132] Wang J, Wang BM, Schwendeman SP. Characterization of the initial burst release of a model peptide from poly(D,L-lactide-co-glycolide) microspheres. Journal of Controlled Release, 2002, 82:289-307
    [133] 沈正荣 ,朱家惠 ,吴兰亭 ,等 , D,L-聚乳酸微球大鼠体内的降解 , 生物医学杂志, 1994, 11(2): 98-101.
    [134] 周明兴 ,周芝芳 ,沈文照 ,等 , 乳酸 -乙醇酸聚物 (8:2)微球在大鼠体内的降解, 生物医学工程学杂志, 1990, 7 (2): 127-130
    [135] 朱家惠 ,沈正荣 ,吴兰亭 ,等 , D,L-聚乳酸微球的体外和大鼠体内的降解研究, 生物医学工程学杂志, 1993, 10 (3): 249-253.
    [136] 潘什荣 ,施锋 ,黄宁芳 ,等 , 氨基酸共聚物的生物降解性研究 , 中 国生物医学工程学报, 1993, 12 (3):161-166
    [137] Liu JW, ZHAo Q, Wan CX. Research progresses on degradation mecHAnism in vivo and medical applications of polylactic acid. J . Space Med Eng(Beijing), 2001, 14(4): 8-12
    [138] Lucke A, Schnell E. Schmeer G, et al. Biodegradable poly(D,L-lactic acid)-poly(ethylene glycol)-monomethyl ether diblock copolymers: structures and surface properties relevant to their use as biomaterials. J. Biomaterials, 2002, 21: 2361-2370
    [139] Terence WA, Sarah JP. The incorporation and release of bovine serum albumin from(β-hydroxybutyrate) microspheres. J Biomater Sci Polym Edu, 1996, 12: 1065-1073.
    [140] 李荣群 ,安玉贤 ,庄宇钢 ,等 , 聚 β-羟基丁酸酯 /超高分子量聚氧乙烯共混体系相容性和结晶行为, 高分子学报, 1999, (4): 498-501
    [141] 江涛 ,胡平 , 聚 β-羟基丁酸酯 /羟基磷灰石复合材料的制备与性能 , 高分子材料科学与工程, 2002, 18(4): 45-48.
    [142] Wong S, Shanks R, Hodzic A. Interfacial improvements in poly(3-hydroxybutyrate)-flax fibre composites with hydrogen bonding additives. Compos Sci Technol, 2004, 64(9): 1321-1330.
    [143] Ohkoshi I, Abe H, Doi Y. Miscibility and solid-state structures for blends of poly[(S)-lactide] with atactic poly[(R, S)-3-hydroxybutyrate]. Polymer, 2000, (15): 5985-5992.
    [144] Blumm E, Owen AJ. Miscibility, crystallization and melting of poly(3-hydroxybutyrate)/poly(l-lactide) blends. Polymer, 1995, 36(21): 4077-4081
    [145] Xing P, Ai X, Dong L, et al. Miscibility and crystallization of poly(β-hydroxybutyrate)/poly(vinyl acetate-co-vinylalcohol) blends. Macromolecules, 1998, 31: 6898-6907.
    [146] An YX, Don L, Xing PX, et al. Crystallization kinetics and moryhology of poly(β-hydroxybutyrate) and poly(vinyl acetate) blends. Eur. Polym J, 1997, 33(9): 1449~1452.
    [147] Hwang SH, Jung JC, Lee SW. Carysallinity and thermal characterization of p(HB-HV)/PVAc blend. Eur. Polym. J, 1998, 34(7): 949~953.
    [148] Azuma Y, Yoshie N, Sakurai M, et al, Thermal behaviour and miscibility of poly(3-Hydroxybutyrate)/poly(Vinyl alcohol) blends, Polymer, 1992, 33(22): 4763~4767
    [149] Gassner F, Owen AJ. Some properties of poly(3hydroxybutyrate-co-3hydroxyvalerate)blends. Polym Int , 1996,(3):215-219
    [150] Dufresne A, Vincecdon M. Poly(3-hydroxybutyrate)and Poly(3-hydroxyoctanoate) Blends: Morphology and Mechanical Behavior, Macromolecules, 2000, 33: 2998~3008
    [151] Pizoli M, Scandola M, Ceccorulli G. Crystallization Kinetics and Morphology of Poly(3-hydorxybutyrate)/Cellulose Ester Blends, Macromolecules, 1994, 27: 4755~4761
    [152] Yoon JS, Oh SH, Kim MN. Compatibility of poly(3-hydroxybutyrate)/poly(ethylene-co-vinyl acetate) blends, Polymer, 1998, 39(12): 2479~2487
    [153] 张连来 ,邓先模 , PHB 与 PCL、 PECL 可生物降解高分子共混体系的研究.高分子材料科学与工程, 1994, 1:64~68
    [154] Deng X, Hao JY, Yuan ML. Influence of poly(d,lactide-b-ethylene glycol) copolymer on morphology and tensile moduli of poly(d,l-lactide) composites containing hydroxyapatite nanocrystals. Journal of Materials Science Letters, 2001, 20:281~282
    [155] Saghir A, Colin W P, Lidia JN. Crystallization behaviour and drug release form bacterial polyhydroxyalkanoates. Polymer, 1992, 33(1):117-125
    [156] Williams S, Mechanical testing of a new biomaterial for potential use as a vascular graft and articular cartilage replacement,M S thesis, Georgia Institute of Technology,1998:10-15
    [157] Peppas NA, Mongia N K, Ultrapure poly -( vinylalcohol ) hydrogels with mucoadhesive drug delivery characteristics, Eur J Pharm Biopharm, 1997,43:51-58
    [158] Liu W, Wu QC, New application of polyvinyl alcohol hydrogels in aphthamology,1995,19 (2):80-83
    [159] Xue YL, The microencapsulation of cell for transplantation: medical applications, Medical Journal of China PLA,1999, 24(4):235-237
    [160] Li QH, Zhou H, Studies on like heparin of PVA blends antithrombin, Chinese Journal of Biomedical Engineering,1999, 18(1):15-21
    [161] Sun RH, Mao LJ , Hu YJ , et al, Structure and properties ofionic PVA sponges, Chinese Journal of RehabilitationTheo ry&P ractice, 2000,6 (2):56-58
    [162] Li YW, Chen J, Xue M, et al, A comparative study on cytocompatibility ofmedical PVA and intelligent PVA-g-N IPAAm hydrogels, Journal of Biomedical Engineering, 1999;16 (1):5-9
    [163] Hoffman A S, “Intelligent” polymers in medicine and biotechnology, Artificial Organs, 1995,19 (5):458-467
    [164] N. Erden, N. Celebi, Factors influencing release of salbutamol sulphate from poly(lactide-co-glycolide) microspheres prepared by water-in-oil-in-water emulsion technique, International Journal of Pharmaceutics 1996,137:57-66
    [165] H. Rafati, et al. Protein-loaded poly(DL-lactide-co-glycolide) microparticles for oral administration: formulation, structural and release characteristics, Journal of Controlled Release,1997,43:89-102
    [166] Y. Capan et al. Influence of formulation parameters on the characteristics of poly(D,L-lactide-co-glycolide) microspheres containingpoly(L-lysine) complexed plasmid DNA, Journal of Controlled Release1999,60:279-286.
    [167] J.T. He et al. Stabilization and encapsulation of a staphylokinase variant (K35R) into poly(lactic-co-glycolic acid) microspheres International Journal of Pharmaceutics,2006,309:101-108
    [168] 尹静波 ,陈红丹 ,罗坤等 , 生物可降解 5-氟尿嘧啶载药微球的制备及性能研究, 高等学校化学学报, 2005, 6, 26(6):1174~1176
    [169] Jiang W, Schwendeman SP. Stabilisation and controlled release of bovine serum albumin encapsulated in poly(d,l-lactide) and poly(ethylene glycol) microsphere blends. Pharm Res, 2001, 18: 878-885
    [170] Bouillot P, Ubrich N, Sommer F, et al. Protein encapsulation in biodegradable amphiphilic microspheres. International Journal of Pharmaceutics, 1999, 81: 159-172
    [171] LI X, ZHANG Y, Yan R, et al. Influence of process parameters on the protein stability encapsulated in poly-dl-lactide-poly(ethylene glycol) microspheres. J Controlled Release, 2000, 68: 41-52.
    [172] 何天白 ,胡汉杰 , 海外高分子科学的新进展 ,北京 :化学工业出版社 , 1997
    [173] Wulff G, Molecular Imprinting, Sponsored by Engineering Foundation, New York, NY, USA, Enzyme Engineering: Proceedings of the International Enzyme Engineering Conference New York: Acad Sci, 1984, 434: 327-333
    [174] Lei J, He X, Tan T, Molecular imprinting and its applications, Mod Chem Indu, 2001, 21(4): 17-20
    [175] Asanuma H, Hishiya T, Komiyama M, Tailor-made receptors by molecular imprinting, Adv Mater, 2000, 12(14): 1019-1030
    [176] Vidyasankar S, Arnold F H, Molecular imprinting: selective materials for separations, sensors and catalysis, Curr Opin Biotech, 1995, 6(2): 218-224
    [177] Fischer L, Mueller R, Ekberg B, et al, Direct enantioseparation of β-adrenergic blockers using a chiral station phase prepared by molecular imprinting, J Am Chem Soc, 1991, 113(24): 9358-9366
    [178] Joshi V P, Karode S K, Kulkarni M G, et al, Novel separation strategies based on molecularly imprinted adsorbents, J Eng Appl Sci, 1998, 53(13): 2271-2284
    [179] Kempe M, Antibody-mimicking polymers as chiral stationary phases in HPLC, Anal Chem, 1996, 68(11): 1948-1953
    [180] Randall H-F S, Harry M W, Huval C C, Novel cholesterol lowering polymeric drugs obtained by molecular imprinting, Macromolecules, 2001, 34(6): 1548-1550
    [181] Lele B S, Kulkarni M G, Mashelkar R A, Molecularly imprinted polymer mimics of chymotrypsin, 1. Cooperative effects and substrate specificity, React Funct Polym, 1999, 39(1): 37-52
    [182] Dickert F L, Lieberzeit P, Tortschanoff M, antibodies - a new generation of chemical sensors, Sensor Actuat, B: Chem, 2000, 65(1): 186-189
    [183] Malitesta C, Losito I, Zambonin P G, Molecularly imprinted electrosynthesized polymers: New materials for biomimetic sensors, Anal Chem, 1999, 7(7): 1366-1370
    [184] Haupt K, Mosbach K, Molecularly imprinted polymers and their use in biomimetic sensors, Chem Rev, 2000, 100(7): 2495-2504
    [185] Wulff G, Selective binding to polymers via covalent bonds. the construction of chiral cavities as specific receptor sites, Pure Appl Chem, 1982, 54(11): 2093-2102
    [186] Sellergren B, Lepisteo M, Mosbach K, Highly enantio- and substrate-selective polymers obtained by molecular imprinting based on non-covalent interactions, React Polym, 1989, 10: 306-312
    [187] Katz A Davis M E, Investigations into the mechanisms of molecular recognition with imprinted polymers, Macromolecules, 1999, 32(12): 4113-4121
    [188] Ye L, Mosbach K, Molecularly imprinted microspheres as antibody binding mimics, React Funct Polym, 2001, 48(1-3): 149-157
    [189] Rachkov A, Minoura N, Towards molecularly imprinted polymers selective to peptides and proteins. The epitope approach, Biochimica Biophysica Acta, 2001, 1544: 255-266
    [190] Ratner B D, Shi H, Recognition templates for biomaterials with engineered bioreactivity, Current Opinion in Solid State and Materials Science, 1999, 4: 395-402
    [191] Mosbach K, Ramstrom O, Molecular imprintings impact on biotechnology, Biosens Bioelectron, 1996, 11: xx
    [192] Hishiya T, Shibata M, Kakazu M, et al, Molecularly imprinted cyclodextrins as selective receptors for steroids, Macromolecules, 1999,32(7): 2265-2269
    [193] Holliger P, Hoogenboom H R, Artificial antibodies and enzymes: mimicking nature and beyond, Trends Biotechnol, 1995, 13(1): 7-9
    [194] Venton DL, Gudipati E, Influence of protein on polysiloxane polymer formation, evidence for induction of complementary protein-polymer interactions, Biochim Bioph Acta, 1995, 1250: 126-136
    [195] Kempe M, Glad M, Mosbach K, An approach towards surface imprinting using the enzyme ribonuclease A biorecognition and affinity technology, J Mole Recognit, 1995, 8(1-2): 35-38
    [196] Shi H, Tsai W-B, Ferrari S, et al, Template imprinted nanostructural surfaces for protein, Nature, 1999, 398: 593-597
    [197] [日 ]土 肥 羲 治 ,[德 ]A.斯 泰 因 比 歇 尔 主 编 ,俞雄 主 译 ,生 物 高 分 子第 3b 卷:聚酯Ⅱ-特性和化学合成, 化学工业出版社
    [198] Zhijiang Cai, Guoxiang Cheng, A novel method to produce Poly(3- hydroxybutyrate) scaffolds with controlled multi-pore size, Journal of Materials Science Letter,2003,22(22):153-155
    [199] Guoxiang Cheng, Zhijiang Cai, Ling Wang,Biocompatibility and biodegradation of poly(hydroxybutyrate)/poly(ethylene glycol) blend films,Journal of Materials Science: Materials in Medicine, Volume 14, Number 12 / December, 2003,12(14):1073-1078
    [200] QIANG ZHAO, GUOXIANG CHENG, Preparation of biodegradable poly(3-hydroxybutyrate) and poly(ethylene glycol) multiblock copolymers, Journal of materials science, 2004,39:3829-3831
    [201] Couchman DR. Compositional Variation of Glass-Tansition Temperature: 2. Application of the Thermodynamic Theory to Compatible Polymer Blend. Macromolecules, 1978, 11:1156-1161
    [202] Avella M, Martuscelli E, Poly-D(-)(3-hydroxybutyrate)/poly(rthylene oxide) blends: phase diagram, thermal and crystallization behavior. Polymer, 1988, 29: 1731-1737
    [203] Jeffery H, Davis SS and Hagan DT. The preparation and characterization of poly(lactide-co-glycolide)microsperes. II. The entrapment of a model protein using a (water-in-oil)-in-water emulsion solvent evaporation technique. Pharmacy Research, 1993,10:362-368
    [204] Mehta RC, Thanoo BC and Deluca PP. Peptide containing microspheres from low molecular weight and hydrophilic poly(DL-lactide-co-glycolide). Journal of Controlled Release, 1996,41:249-257
    [205] Meng FT, Ma GH, Liu YD, et al. Microencapsulation of bovine hemoglobin with high bio-activity and high entrapment efficiency using a W/O/W double emulsion technique. Colloids and Surfaces B: Biointerfaces, 2004, 33:177-183
    [206] Freiberg S and Zhu XX. Polymer microspheres for controlled drug release. International Journal of Pharmaceutics, 2004, 282:1-18
    [207] Freitas S, Merkle HP, Gander B. Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. Journal of Controlled Release, 2005, 102:313-332
    [208] Yan C, Resau JH, Heweston J, et al. Characterization and morphological analysis of protein loaded poly(lactide-co-glycolide) microparticles prepared by water-in-oil-in-water emulsion technique. J. Control. Release, 1994 ,32:231-241
    [209] Rafati H, Coombes AGA, Adler J, et al. Protein-loaded poly(DL-lactide-co-glycolide) microparticles for oral administration: formulation, structural and release characteristics, Journal of Controlled Release, 1997,43:89-102
    [210] Mehta RC, Thanoo BC, Deluca PP. Peptide containing microspheres from low molecular weight and hydrophilic poly(DL-lactide-co-glycolide). Journal of controlled release, 1996, 41:49-257
    [211] 常 津 ,魏 民 ,姚 康 德 , 聚 原 酸 酯 抗 癌 药 物 毫 微 囊 的 制 备 及 体 外 释 药研究, 中国生物医学工程学报, 1996, 18(2):216-221
    [212] 西尼尔 J, 拉多米斯基 M 主编 , 郑俊民 , 等译 , 可注射缓释制剂 , 化学工业出版社, 2005.104
    [213] 蔡 志 江 , 聚 羟 基 丁 酸 酯 的 改 性 及 其 作 为 组 织 工 程 支 架 材 料 的 研究:[博士学位论文], 天津: 天津大学, 2002
    [214] Yokouchi M, Chatani Y, Tadokoro H, et al. Structual studies of polyesters: 5. Molecular and crystal structure of optical active and racemic poly(-hydroxybutyrate). Polymer, 1973, 14: 267-274

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700