用户名: 密码: 验证码:
BZD类和THIQ类非竞争性AMPA受体拮抗剂的合成及修饰
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抑郁症是一种神经系统疾病,与谷氨酸能系统异常有关。谷氨酸能神经信号传递活动是通过两种不同受体参与的,它们是:离子(转移)型谷氨酸受体(iGluRs)和代谢型谷氨酸受体(mGluRs),其中起主要作用的是iGluRs。根据iGluRs对不同激动剂的亲和性不同又可以细分为三个不同亚级受体:N-甲基-D-天冬氨酸(NMDA)受体,卡英酸(KA)受体以及α-氨基-3-羟基-5-甲基-4-异唑丙酸(AMPA)受体。NMDA受体是最早被用于抑郁症治疗研究的受体,但是由于NMDA受体拮抗剂对机体产生不可逆的损伤,目前已经被最新发现的具有更好活性,更安全的AMPA受体拮抗剂代替。2,3-苯并二氮类化合物(2,3-BZD)和四氢异喹啉类化合物(THIQ)是两种具有代表性的AMPA受体拮抗剂,它们对神经系统疾病的广泛活性使它们成为AMPA受体拮抗剂的研究热点。本文针对2,3-BZD类化合物和THIQ类化合物的研究主要包含以下几方面:
     1.选择Friedel-Crafts酰基化反应作为BZD衍生物合成路线的关键步骤;分别以羧酸,酸酐,酰氯为酰化剂,对Lewis酸和质子酸,溶剂,温度,当量做条件筛选;确定优化酰基化条件,合成得到重要中间体1-[2-(4-溴苯甲酰基)-4,5-二甲氧基苯基]-丙酮K-3;K-3在浓硫酸的催化下与水合肼环合得到1-(4-溴苯基)-7,8-二甲氧基-4-甲基-5H-苯并二氮K-Br-BZD。
     2.将卤代芳烃在Pd催化下胺的偶联反应应用于卤代BZD类化合物的结构修饰,得到[4-(7,8-二甲氧基-4-甲基-5H-苯并二氮)-1-苯基]- 4-甲氧基苯胺K-347和[4-(7,8-二甲氧基-4-甲基-5H-苯并二氮)-1-苯基]- 4-硝基苯胺K-353两个衍生物(未见有文献报道)。
     3.本文以芳醛和芳基乙腈为原料合成了不同R1-4,R7取代的苯基酮,以酯为原料与水合肼反应生成不同R5取代的酰肼;以苯基酮与酰肼为原料反应生成芳酰腙,还原得到中间体酰肼;经过条件筛选,确定合环反应条件,以中间体酰肼为底物,TMSCl/NaI催化,通过Pictet-Spengler反应合成了65个THIQ类化合物(包括6个分离得到的异构体),这些化合物均未见有文献报道。
     4.本文通过对化合物A-2的X-ray衍射数据,及化合物B-13 3JHH偶合常数分析,确定化合物trans和cis两种异构体构型。并设计一系列反应考查R1-4,R5,R6,R7不同位置不同结构的取代基对THIQ类化合物空间结构的影响。其中R1-4对合环和构型都有影响;R6,R7对立体选择性有显著的影响;R5(除对甲苯磺酰基)没有明显的立体选择性差异,但是当R5为对甲苯磺酰基时,却表现了专一的立体选择性。
     5.本文得到的BZD衍生物与THIQ衍生物结构与四特征药效团模型吻合,有做抗抑郁或抗惊厥活性筛选的价值。
Depression is one of the most common neurological problems resulted from the disorder of Glutamatergic neurotransmission which is mediated by ionotropic receptors (iGluRs) and metabotropic receptors (mGluRs). The iGluRs are ligand gated ion channels which are further subdivided into three classes based on their affinity for specific agonists: the N-methyl-D-aspartic acid (NMDA), the kainic acid (KA), andα-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subtpypes. NMDA receptor antagonists are the first one being applied for the antidepression therapy, while because of being considered relation with some irreversible damage, they are now replaced by AMPA receptor antagonists, which are found with more active neuromodulating effects and less adverse effects. 2, 3-Benzodiazepine (2, 3-BZD) and tetra- hydroisoquinolines (THIQs) are two representative AMPAR antagonists, and they have received considerable attention due to their diverse activity to neuromodulating effects. This paper focuses on 2, 3-BZDs and THIQs giving following discussion:
     1. The Friedel-Crafts acylation is chosen as the key step during sythesis of BZD derivatives. The synthetic method is considered by trying a series of reaction conditions including screening acylating reagent, catalyst, solvent, reaction temperature and equivalent of the substrates. The key intermediate 1-[2-(4-Bromo-benzoyl)-4, 5-dimethoxy-phenyl]–propan-2-one K-3 which is prepared by applying the optimized condition, then is dehydrated with hydrazine hydrate in the presence of concentrated sulfuric acid to give 1-(4-Bromo-phenyl)-7, 8- dimethoxy-4-methyl-5H-benzodiazepine K-Br-BZD.
     2. The modification of BZD is proceeded by applying the palladium catalyzed amide coupling reaction and provide two BZD derivatives: 7, 8–dimethoxy-1-(4-methoxy-phenyl)-4-methyl-5H-benzodiazepine K- 347 and 7, 8-dimethoxy-1-(4-nitro-phenyl)-4-methyl-5H-benzo- diazepine K-353.
     3. Different R1-4 and R7 substituted phenyl acetones are prepared from benzaldehyde and phenyl cyanide; different hydrazine are prepared from different acid esters; different hydrazones was prepared from the obtained phenyl acetones and hydrazines then undergoing reductive reaction to provide the key intermediate hydrazide, which via Pictet-Spengler reaction give 65 new THIQs.
     4. The configuration of the trans and cis isomers are confirmed by analysis of the X-ray of A-2 and the coupling constant 3JHH of B-13.
     5. Detailed discussion about the effects resulted from R1-4, R5, R6, R7 on the configuration of the THIQs are involved in the paper. R1-4 effect on both coupling reaction and configuration of the products. R6, R7 have distinct effects on the steteoselectivity. R5 does not show clear effects on the products configuration, while when R5 is p-tosyl group, it appears highly stereoselective character.
     6. The structure of the desired BZD derivatives and THIQ derivatives are comparable to the 4-feature pharmacophore model, and they could be valuable for following bioactivity test on antidepression or anticonvulsant.
引文
[1] Morrant, J. C. A., Depression and some newer antidepressants, BC Medical Journal, 1997, 39(12): 636-640
    [2] Angst, J., Mikola, A. D., The definition of depression, J. Psych. Res., 1984, 18(4), 401-406
    [3] Greenberg, P. E., Stiglin, L. E., Finkelstein, S. N., et al, Depression: A Neglected Major Illness. J. Cli. Psychiatry, 1993, 54(11): 419-24
    [4] 李焕德,彭文兴,抑郁症的药物治疗进展,国外医学:精神病学分册,1997,24(3):129-133
    [5] 蔡焯基,抑郁症基础与临床,北京:科学出版社,1997,156-159
    [6] Mark, O., Steven, C. M., Benjamin, D., National trends in the outpatient treatment of depression, J. Am. Med. Assoc., 2002, 287: 203-209
    [7] Xu, J. M., Some issues in the diagnosis of depression in China, Can. J. Psych., 1987, 32(5): 368-370
    [8] Lader, M., The clinical assessment of depression, Br. J. Clin. Pharmacol., 1981, 11(1): 5-14
    [9] Spitzer, R. L., Endicott, .J, Robins, E., Research diagnostic criteria for a selected group of functional disorder (RDC), New York: Guikford Press, 1978, 15-23
    [10] 贾继敏,徐俊冕,抑郁症诊断分类的临床研究,临床精神医学杂志,2001,11(2): 95-96
    [11] 中华医学会精神科学会,中国精神疾病分类方案与诊断标准(第 2版修订版),南京:东南大学出版社,l995:69-73
    [12] Spinhoven, P., Koiman, C. G., Defense style in depressed and anxious psychiatfic outpatients:an explorative study, J.Nerv. Ment. Dis., 1997, 185:87-94
    [13] 郭珊,郭克峰,抑郁症的研究进展,中国临床康复,2005,9(4): 131-133
    [14] Elkin, I., Shea, M. T., Watkins, J. T., et al, National institute Of mental health treatment of depression collaborative research program, Arch. Gen. Psychiatry, 1989, 46(11): 971-82
    [15] Richolson, E., Treatment of acute depression, Psychiatric Clin. North Am., 1993, 16: 461-478
    [16] 李林森,抗抑郁药和抗抑郁治疗的进展,中国民康医学杂志,2003,15(11):685-688
    [17] Stem, R., Behavioral Cognitive Psychotherapy training for psychi- atrists, Psych. Bull, 1993, 17: 1-3
    [18] Fava, G., Grandi, S., Zielezny, M., et al, Four-year outcome for cognitive behavioral treatment of residual symptoms in major depression. Am. J. Psych., 1996, 153: 945-947
    [19] Weissman, M. M., Markowitz, J. C., Interpersonal psychotherapy: Current Status, Arch. Gen. Psychiatry, 1994, 51(8): 599-606
    [20] Sackeim, H. A., Decina, P., Malitz, S., et al, Anticonvulsant and antidepressant properties of electroconvulsive therapy: A proposed Mechanism of Action, Bio. Psychiatry, 1983, 18: 1301-1310
    [21] 辛炳亮,开放式工娱疗法对慢性精神分裂症的疗效分析,中原精神医学学刊,1999,5(3):159-160
    [22] Montgomery, S. A., Long-term treatment of depression, Br. J. Psychiatry, 1994, 165: 31-36
    [23] Edwards J G, Prevention of relapse and recurrence of depression: newer versus older antidepressants, Adv. Psychiatr. Treat., 1997, 3: 52-57
    [24] Ban, T. A., Pharmacotherapy of mental illness a historical analysis, Prog. Neuropsychopharmacol. Biol. Psychiatry 2001, 25(4): 709- 727
    [25] Gelenberg, A. J., Monoamine oxidase inhibitors for depression, Med. Lett. Drugs Ther., 1980, 22(14): 58-60
    [26] Boyce, P., Judd, F., The place for the tricyclic antidepressants in the treatment of depression, Aus. N. Z. J. Psychiatry, 1999, 33(3): 323-327
    [27] Edwards, J. G., Anderson, I., Systematic review and guide to selection of selective serotonin reuptake inhibitors, Drugs, 1999, 57(4): 507-533
    [28] Thase, M. E., Sachs, G. S., Bipolar depression:Pharmacotherapy and Related Therapeutic Stratregic, Biol. Psychiatry, 2000, 48: 558-572
    [29] Chen, G., Hasanat, K. A., Bebchuk, J. M., et al, Regulation of signal transduction pathways and gene expression by mood stabilizers and antidepressants, Psychosomatic Med., 1999, 61(5): 599-617
    [30] Vetulani, J., Nalepa, I., Antidepressants: past, present and future, Eur, J, Pharmacol., 2000, 405(1-3): 351-363
    [31] Chamman, A. G., Hart, G. P., Anticonvulsant drug action and regional neurotransmitter amino acid changes, J. Neural Transm.,1988, 72: 201-202
    [32] Meldrum, B. S., The role of glutamate in epilepsy and Other CNS disorders, Neurology, 1994, 44(8): 14-23
    [33] Dmytro, S. I., Elena, I., Rustem, K., et al, Anticonvulsant action of GABA in the high potassium-low magnesium model of ictogenesis in the neonatal rat hippocampus in vivo and in vitro, J. Neurophysiol., 2005, 94: 2987-2992
    [34] Sotirios, K., John, J. H., Subtype-specific GABA transporter antagonists synergistically modulate phasic and tonic GABAA conductances in rat neocortex, J. Neurophysiol., 2005, 94: 2073-2085
    [35] Serafini, F., Bracamontes, J., Steinbach, J. H., Structural domains of the human GABA(A) receptor 3 subunit involved in the actions of pentobarbital. J. Physiol., 2000, 524(3): 649-676.
    [36] Lu, Y. Q., Yu, R., Synergistic protection of allopregnanolone and phenobarbital against maximal electroshock seizures in mice. Acta Pharmacol. Sinica, 2001, 22: 361-364
    [37] Boris, S. Z., Piotr, D. B., Chloride Channels of Glycine and GABA Receptors with Blockers: Monte Carlo Minimization and Structure-Activity Relationships, Biophysical. J., 2000, 78(4): 1786-1803
    [38] Boue, G. E., Roudbaraki, M., Bascles, L., et al, Expression of GABA receptor rho subunits in rat brain. J. Neurochem., 1998, 70: 899-907.
    [39] Chang, Y., Weiss, D. S., Channel opening locks agonist onto the GABAC receptor. Nature Neurosc., 1999, 2: 219-225
    [40] Feigenspan, A., W?ssl,e H., Bormann, J., Pharmacology of GABA receptor Cl- channels in rat retinal bipolar cells, 1993, Nature, 361: 159-163.
    [41] Doble, A., Excitatory amino acid receptors and neurodegeneration, Therapie, 1995, 50: 319-337
    [42] Muir, K. W. Lees, K. R., Clinical experience with excitatory amino acid antagonist drugs, Stroke, 1995, 26: 503-513
    [43] McEntee, W. C., Crok, T. H., Glutamate, its role in learning, memory, and the aging brain, Psychopharmacology, 1993, 111, 391-401
    [44] Garrattini, S., Glutamic Acid,Twenty Years Later, J. Nutr., 2000, 130: 901-909
    [45] Debler, E. A., Lajtha, A., High affinity transport of γ-aminobutyric acid, glycine, taurine, L-aspritic acid, and L-glutamic acid in synaptonsomal (P2) tissue : a kinetic and substrate specifidity analysis, J. Neurochem., 1987, 48: 1851-1856
    [46] Fletcher, E. J., Logde, D., Excitatory amino acids as neurotransmitters, In : An introduction to neurotransmission in healthy and diseases, New York: Oxford University Press, 1990
    [47] Jum, M. Y., Kiebang, N., Hyong, C. K., et a1, A novel glutamatic acid to aspartic acid mutation near the end of the 2B rod domain in the keratin 1 line in epidermolytic hyperkeratosis, J. Invest. Dermatol., 1999, 112: 376-379
    [48] Magus, W. W., Cristina, R., Bruno, G., Mitochontial membrane potential and glutamate excitotoxicity in cultured cerebellar granule cells, J. Neurosc., 2000, 19: 7208-7219
    [49] Madden, D. R., The structure and function of glutamate receptor ion channels, Nature Rev. Neurosc., 2002, 3: 91-101
    [50] Pellicciari, R., Costantino, G., Metabotropic G-protein-coupled glutamate receptors as therapeutic targets, Curr. Opin. Chem. Biol., 1999, 3: 433-440
    [51] Dingledine, R., Borges, K., Bowie, D., et al, The glutamate receptor ion channels, Pharmacol. Rev., 1999, 51: 7-61
    [52] Chenard, B. L., Menniti, F. S., Antagonists selective for NMDA receptors containing the NR2B subunit, Curr. Pharm. Des., 1999, 5: 381-404.
    [53] Parsons, G. C., Danysz, W., Quack, G., Glutamate in CNS disorders as a target for drug, Drug News Perspect., 1998, 11: 523-569
    [54] Houamed, K. M., Kuijper, J. L., Gilbert, T. L., et al, Cloning, expression, and gene structure of a G protein-coupled glutamate receptor from rat brain, Science, 1991, 252: 1318-1321
    [55] O’Hara, P. J., Sheppard, P. O., Thogersen, H., et al, The ligand- binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins, Neuron, 1993, 11: 41-52
    [56] Paas, Y. The macro- and microarchitectures of the ligand-binding domain of glutamate receptors, Trend. Neurosc., 1998, 21: 117-125
    [57] Rosaria, G., Maria, Z., Giovambattista, D. S., et al, Design and development of 2, 3-benzodiazepine (CFM) noncompetitive AMPA receptor antagonists, II Farmaco, 2002, 57: 129-134
    [58] Kunishima, N., Shimada, Y., Tsuji, Y., et al, Structural basis ofglutamate recognition by a dimeric metabotropic glutamate receptor, Nature, 2000, 407: 971-977
    [59] Armstrong, N., Gouaux, E., Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand binding core, Neuron, 2000, 28: 165-181
    [60] Br?uner, O. H., Egebjerg, J., Nielsen, E. ?., et al, Ligands for glutamate receptors: Design and Therapeutic prospects, J. Med. Chem., 2000, 43: 2609-2645
    [61] Sándor, S., István, T., Non-competitive AMPA antagonists of 2, 3- benzodiazepine type, Curr. Pharm. Des., 2002, 8: 913-939
    [62] Chrimirri, A., Gitto, R., Zappalà, M., AMPA receptor antagonists, Exp. Opin. Ther. Patents, 1999, 9: 557-570
    [63] Nikam, S. S., Kornberg, B. E., AMPA receptor antagonists, Curr. Med. Chem., 2001, 8: 155-170
    [64] Stensbol, T. B., Madsen, U., Krogsgaard, L. P., The AMPA receptor binding sites: Focus on Agonists and Competitive antagonists, Curr. Pharm. Des., 2002, 8: 857-872
    [65] Hogner, A., Greenwood, J. R., Liljefors, T., et al, Competitive antagonism of AMPA receptors by ligands of different classes: crystal structure of ATPO bound to the GluR2 ligand-binding core, in comparison with DNQX, J. Med. Chem., 2003, 46: 214-221
    [66] Kornberg, B. E., Nikam, S. S., Sulfonamide derivatives of substituted quinoxaline 2, 3-diones as glutamate receptor antagonists, United States Patent 6,096,744, 2000
    [67] Auberson, Y. P., Competitive AMPA antagonism: a novel mechanism for antiepileptic drugs? Drugs of the Future, 2001, 26: 463-471
    [68] Bigge, C. F., Malone, T. C., Schelkun, R. M., et al, Glutamate (ampa/kainate) receptor antagonists: N-substituted fused azacyclo- alkylquinoxalinediones. Pfizer Inc. US 6,057,313, 2000
    [69] Stutzmann, J. M., Bohme, G. A., Boireau, A., et al, Synthesis of anticonvulsive AMPA antagonists: 4-oxo-10-substitutedimidazo[1, 2-a]indeno[1, 2-e]pyrazin-2-carboxylic acid derivatives, Bioorg. Med. Chem. Lett., 2001 (11): 1205-1210.
    [70] Mignani, S., Bohme, G. A., Birraux, G., et al, 9-Carboxymethyl-5H, 10H- imidazo[1,2-a]indeno[1,2-e]pyrazin-4-one-2-carbocylic acid (RPR117824): selective anticonvulsive and neuroprotective AMPA antagonist, Bioorg. Med. Chem., 2002, 10: 1627-1637
    [71] Smith, S. E., Meldrum, B. S., Receptor site specificity for the acute effects of β-N-methylamino-alanine in mice, Eur. J. Pharmacol., 1990, 187: 131-134
    [72] Ouardouz, M., Durand, J., GYKI 52466 antagonizes glutamate responses but not NMDA and kainate responses in rat abducens motoneurones, Neurosc. Lett., 1991, 125: 5-8
    [73] Donevan, S. D., Rogawski, M. A., GYKI 52466, a 2,3-benzo- diazepine, is a highly selective, noncompetitive antagonist of AMPA/kainate receptor responses, Neuron, 1993, 10: 51-59
    [74] Zorumski, C. F., Yamada, K. A., benzodiazepine recognition site associated with the non-NMDA glutamate receptor, Neuron, 1993, 10: 61-67
    [75] Chimirri, A., Gitto, R., Zappalà, M., AMPA receptor antagonists, Exp. Opin. Ther. Patents, 1999, 9: 557–570
    [76] Rogawski, M. A., Therapeutic potential of excitatory amino acid antagonists: channel blockers and 2,3-benzodiazepines, Trends Pharmacol. Sci., 1993, 14: 325-331
    [77] Vizi, E. S., Mike, A., Tarnawa, I., 2, 3-Benzodiazepines (GYKI- 52466 and analogs), Negative allosteric modulators of AMPA receptors, CNS Drug Rev. 1996, 2: 91-126
    [78] K?r?si, J., Láng, T., Lomlós, E., 2, 3-benzodiazepine derivatives, Hungarian Patent, 155,572, 1966
    [79] Pet?cz, L., Kos?czky, I., The main pharmacological characteristics of Grandaxin (Tofisopam, EGYT-341), Ther. Hungarica 1975, 23:134-138
    [80] Goldberg, H. L., Finnarty, R. J., Comparative efficacy of tofisopam and placebo, Am. J. Psychiatry, 1979, 136: 196-199
    [81] Martin, W. R., McNicholas, L. F., Cherian, S., Diazepam and pentobarbital dependence in the rat, Life Sci., 1982, 31: 721-730
    [82] Andrási, F., Berzsenyi, P., Borsy, J., et al, Neuropharmacology of a new psychotropic 2, 3-benzodiazepine, Arzneim-Forsch/Drug Res., 1987, 37: 1119-1124
    [83] Horváth, K., Szabá, H., Pátfalusi, M., et al, Pharmacological effects of GYKI 52895 a new selective dopamine uptake inhibitor. Eur. J. Pharmacol., 1990, 183: 1416-1417
    [84] Horváth, K., Andrási, F., P. Berzsenyi, P., A new psychoactive 5H-2, 3-benzodiazepine with a unique spectrum of activity, Arzneim- Forsch/Drug Res., 1989, 39: 894-899
    [85] Tarnawa, I., Engberg, I., Flatman, J. A., Amino acids: Chemistry, Biology and Medicine, Escom Science Publishers, Leiben: 1990
    [86] Donevan, S. D., Rogawski, M. A., GYKI 52466, a 2, 3-benzo- diazepine, is a highly selective, noncompetitive antagonist of AMPA/kainate receptor responses, Neuron, 1993, 10: 51-59
    [87] Szabados, T., Gigler, G., Gacsalyi, I., et al, Comparison of anticonvulsive and acute neuroprotective activity of three 2, 3- benzodiazepine compounds, GYKI 52466, GYKI 53405 and GYKI 53655, Brain Res. Bull., 2001, 55: 387-391
    [88] Ruel, J., Guitton, M. J., Puell, J. L., Negative allosteric modulation of AMPA-preferring receptors by the selective isomer GYKI 53784 (LY303070), a specific non-competitive AMPA antagonist, CNS Drug Rev., 2002, 8: 235-254
    [89] Andrási, F., Talampanel. Antiepileptic, Neuroprotectant, Skeletal muscle relaxant. Drugs Future, 2001, 26: 754-756
    [90] Hamori, T., Solyom, S., Berzsenyi, P., et al, Structural analogues of some highly active non-competitive AMPA antagonists, Bioorg. Med. Chem. Lett., 2000, 10: 899-902
    [91] Gitto, R., Zappalà, M., De Sarro, G., et al, Design and development of 2, 3-benzodiazepine (CFM) noncompetitive AMPA receptor antagonists, Farmaco, 2002, 57: 129-134
    [92] Abraham, G., Solyom, S., Csuzdi, E., et al, New non-competitive AMPA antagonists, Bioorg. Med. Chem., 2000, 8: 2127-2143
    [93] Chimirri, A., De Sarro, G., De Sarro, A., et al, 1-Aryl-3, 5-dihydro-4 H- 2, 3- benzodiazepin-4-ones: novel AMPA receptor antagonists, J. Med. Chem., 1997, 40: 1258-1269
    [94] Solyom, S., Research on new AMPA antagonists of 2, 3- benzodiazepine type, Pharmazie, 2001, 56(1): 62-66
    [95] Gitto, R., Orlando, V., Quartarone, S., Synthesis and evaluation of pharmacological properties of novel annelated 2,3-benzodiazepine derivatives. J. Med. Chem., 2003, 46: 3758-3761
    [96] Pelletier, J. C., Hesson, D. P., Jones, K. A., Substituted 1,2-dihydro- phthalazines: potent, selective, and noncompetitive inhibitors of the AMPA receptor, J. Med. Chem., 1996, 39: 343-346
    [97] Pei, X. F., Sturgess, M. A., Valenzuela, C. F., et al, Allosteric modulators of the AMPA receptor: novel 6-substituted dihydro- phthalazines, Bioorg. Med. Chem. Lett., 1999, 9: 539-542
    [98] Grasso, S., De Sarro, G., De Sarro, A., Synthesis and anticonvulsantactivity of novel and potent 6, 7-methylenedioxyphthalazin-1 (2H)- ones, J. Med. Chem., 2000, 43: 2851-2859
    [99] Chenard, B. L., Welch, W. M., Blake, J. F., et al, Quinazolin-4-one- alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists: structure activity relationship of the C-2 side chain tether, J. Med. Chem., 2001, 44: 1710-1717
    [100] Lazzaro, J. T., Paternain, A. V., Lerma, J., Functional characterization of CP-465,022, a selective, noncompetitive AMPA receptor antagonist, Neuropharmacology, 2002, 42: 143-153
    [101] Yamashita, H., Ohno, K., Amada, Y., et al, Effects of 2-[N-(4- chlorophenyl)-N-methylamino]-4H-pyrido[3.2-e]-1, 3-thiazin-4-one (YM928), an orally active alpha-amino-3-hydroxy-5-methyl-4-iso- xazolepropionic acid receptor antagonist, in models of generalized epileptic seizure in mice and rats, J. Pharmacol. Exp. Ther., 2004, 308: 127-133
    [102] Weiser, T., Brenner, M., Palluk, R., et al, BIIR 561 CL: a novel combined antagonist of alpha-amino-3-hydroxy-5-methyl-4-iso- xazolepropionic acid receptors and voltage-dependent sodium channels with anticonvulsive and neuroprotective properties, J. Pharmacol. Exp. Ther., 1999, 289: 1343-1349
    [103] Gitto, R., Barreca, M. L., De Luca, L., et al, Discovery of a novel and highly potent noncompetitive AMPA receptor antagonist, J. Med. Chem., 2003, 46: 197-200
    [104] Barreca, M. L., Gitto, R., Quartarone, S., et al, Pharmacophore modeling as an efficient tool in the discovery of novel noncompetitive AMPA receptor antagonists, J. Chem. Info. Comp. Sci., 2003, 43: 651-655
    [105] Gitto, R., Caruso, R., Orlando, V., Synthesis and anticonvulsant properties of tetrahydroisoquinoline derivatives, Farmaco, 2004, 59: 7-12
    [106] Collins, R. L., Audiogenic Seizures. In Experimental Models of Epilepsy, Raven Press, New York: 1972
    [107] Litchfield, J. T., Wilcoxon, F., A Simplified Method of Evaluating Dose-Effects Experiments, J. Pharmacol. Exp. Ther., 1949, 96: 99-113
    [108] Chimirri, A., De Sarro, G., De Sarro, A., et al, 1-Aryl-3, 5-dihydro- 4H-2, 3-benzodiazepin-4-ones: Novel AMPA Receptor Antagonists, J. Med. Chem., 1997, 40: 1258-1269
    [109] Chapman, A. G., Croucher, M. J., Meldrum, B. S., Evaluation ofAnticonvulsant Drugs in DBA/2 Mice with Sound-Induced Seizures, Arzneim-Forsch/Drug Res., 1984, 34: 1261-1264
    [110] Láng, T., K?r?si, J., Zólyomi, G., Design and Synthesis of 5H-2, 3- Benzodiazepines, Congress of Hungarian Pharmacological Society Budpast, 1985, 2: 91-97
    [111] Horváth, K., Andrási, F., Berzsenyi, P., A new psychoactive 5H-2, 3- benzodiazepine with a unique spectrum of activity, Drug Res., 1989, 39: 894-899
    [112] Horvát, K., Szabó, H., Pátfalusi, M., Pharmacological effects of GYKI-52895, a new selective dopamine uptake inhibitor, Eur, J, Pharmacol, 1990, 183: 1416-1417
    [113] Rosaria, G., Roberta, C., Benedetta, P., Novel Potent Anticonvulsant Agent Containing a Tetrahydroisoquinoline Skeleton, J. Med. Chem., 2006, 49: 5618-5622
    [114] Zita, Z., Tamás, A. M., László, L., et al, Synthesis and conformational analysis of tetrahydroisoquinoline and piperidine- fused 1, 3, 2, 4-oxadiazephosphinanes, new ring system, Tetrahydron, 2006, 62:2883-2891
    [115] John, H. B., Miwankee, W., Derivatives of N-amino-1, 2, 3, 4-tetrahydroisoquinoline, United States Patent, 3,037,984, 1962
    [116] John, H. B., Miwankee, W., N-amino-nitrogen containing heterocylic compounds, United States Patent, 2,932,646, 1957
    [117] Zappalà, M., Grasso, S., Micale, S., Synthesis and structure-activity relationship of 2, 3-benzodiazepines as AMPA receptor antagonists, Mini Rev. Med. Chem., 2001, 1: 243-253
    [118] Prasun, K. P., Sumit, D. Parasuraman, J., Fe-HCl: An Efficient reagent for deprotection of oximes as well as selective oxidative hydrolysis of nitroalkenes and nitroalkanes to ketones, Syn. Comm., 2005, 35: 913-922
    [119] Beng, T. H., William, M. M., Rong, A. L.et al, Analogs of .alpha.- methylphenethylamine (amphetamine). I. Synthesis and pharmacological activity of some methoxy and/or methyl analogs, J. Med. Chem., 1970, 13(1): 26-30
    [120] Masato, K., Cui, D. W.,Teruyuki, H., Lewis acid-catalyzed Friedel-Crafts acylation reaction using carboxylic acids as acylating agents, Tetrahydron Lett., 2003, 44: 7715-7717
    [121] Shū, K., Ichiro, K., Remarkable effect of lithium salts in Friedel-Crafts acylation of 2-Methoxynaphthalene catalyzed bymetal triflates, Tetrahydron, 2000, 56: 6463-6365
    [122] Kazushi, A., Hideo, N., Friedel-Crafts acylation of toluene catalyzed by solid superacids, Appl. Cat. A: General, 2000, 197: 213-219
    [123] Yadav, G. D., Mujeebur, R., Cation-exchange resin-catalyzed acylations and esterifications in fine chemical and perfumery industry, Org. Process Res. Dev., 2002, 6:706-713
    [124] ábrahám, G., Sólyom, S., Csuzdi, E., New non-competitive AMPA antagonist, Bioorg. Med. Chem., 2000, 8: 2127-2143
    [125] Wolfe, J. P., Tomori, H., Buchwald, S. L., Simple, efficient catalyst system for the palladium-catalyzed amination of aryl chlorides, bromides, and triflates, J. Org. Chem., 2000, 65: 1158-1174
    [126] Driver, M. S., Hartwig, J. F., A second-generation catalyst for aryl halide amination: mixed secondary amine from aryl halides and primary amines catalyzed by (DPPF)PdCl2, J. Am. Chem. Soc., 1996, 118: 7217-7218
    [127] Yang, B. H., Buchwald, S. L., Palladium-catalyzed amination of aryl halides and sulfonates, J. Organometalic Chem., 1999, 576: 125-146
    [128] Hartwig, J. F., Transition metal catalyzed synthesis of arylamines and aryl ethers from aryl halides and triflates: scope and mechanism, Angew. Chem. Int. Ed., 1998, 37: 2046-2067
    [129] Maria, C., Maria, D. R., Asymmetric synthesis of isoquinoline alkaloids, Chem. Rev., 2004, 104: 3341-3370
    [130] Yoshie, H., Hirokazu, K., Masayoshi, N., A Convenient Synthesis of 1, 1-disbustituted 1, 2, 3, 4-tetrahydroisoquinolines via Pictet- Spengler reaction using titanium(IV) isopropoxide and acetic- formic anhydride, Chem. Pharma. Bull., 2002, 50(2): 253-257
    [131] Monalisa, B., Dilip, K., AlCl3·6H2O/KI/H2O/CH3CN: A New alternate system for dehydration of oximes and amides in hydrated media, J. Org. Chem., 2002, 67: 7138-7139
    [132] Michael, W. J., Ronald, B. J., Nobuyoshi, Y., et al, A New general method for preparation of N-methoxy-N-methylamides. Application in direct conversion of an ester to a ketone, Tetrahydron Lett., 1995, 36(31): 5461-5464
    [133] Gordon, A. A., dl-Beta-Phenylisopropylamines, J. Am. Chem. Soc., 1932, 54(1): 271-274
    [134] Silver, R. F., Kerr, K. A., Frandsen, P. D., et al, Synthesis and chemical reactions of some conjugated heteroenoid compounds, Can.J. Chem., 1967, 45: 1001-1006
    [135] Stephen, E. C., Stanley, D. T., The Formation of cis- and trans- perhydrobenzofurans from 2-(2-methoxycyclohexyl) ethanol derivatives. reactions proceeding through methoxyl participation, J. Am. Chem. Soc., 1964, 86(14): 2902-2909
    [136] Shtacher, G., Dayagi, S., Iodophenyl derivatives of .alpha.-methyl alanine and isovaline as potential oral cholecystographic agents, J. Med. Chem., 1972, 15(11): 1174-1177
    [137] Benington, F., Morin, R. D., Clark, L. C., Behavioral and neuron- pharmacological actions of N-aralkylhydroxylamines and their O-methyl ethers, J. Med. Chem., 1965, 8(1): 100-104
    [138] Robert, D. L., Robert, A. R., Edward, G. C., et al, A modified Bischler-Napieralski procedure for the synthesis of 3-aryl-3, 4- dihydroisoquinolines, J. Org. Chem., 1991, 56(21): 6034-6038
    [139] John, H. B., Miwaukee, W., Phenylalkylhydrazine compositions, United States Patent, 3,334,017, 1967
    [140] 尚振华,三价有机碘试剂对芳香醛腙及醛连氮氧化反应的研究,博士论文,天津:天津大学,2002
    [141] Mark, J. B., Jose, P. M, John, E. F., et al, Catalytic asymmetric reductive amination of ketones via highly enantioselective hydrogenation of the C=N double bond, Tetrahydron, 1994, 50:4399-4428
    [142] Ryo, N., Yasuhiro, Y., Yoshinori, O., et al, Synthesis and antimuscarinic properties of qunuclidin-3-yl 1, 2, 3, 4-tetrahydro- isoquinoline-2-carboxylate derivatives as novel muscarinic receptor antagonists, J. Med. Chem., 2005, 48: 6597-6606
    [143] Jayasree, S., Abdul, M. S., Benjanin, L., Catalytic asymmetric Pictet-Spengler reaction, J. Am. Chem. Soc., 2005, 1086-1087
    [144] Spengler, J., Hartmut, S. Joachim, S., Asymmetric Pictet-Spengler reactions: synthesis of 1, 2, 3, 4-tetrahydroisoquinoline carboxylic acid(Tic) chimeras, Synthesis, 2001, 10: 1513-1518
    [145] Marc, B. Cyrille, K., Use of quinolinium salts in parallel synthesis for the preparation of 4-amino-2-alkyl-1, 2, 3, 4-tetrahydro- isoqunoline, J. Combin. Chem., 2005, 7: 302-308
    [146] Hans, A. B., Characterization of tetrahydroisoquinolines produced by Pitet-Spengler reactions of norepinephire with formaldehyde and acetaldehyde, J. Org. Chem., 1983, 48:1932-1934
    [147] Hugo, E. G., Vadim, K., Abraham, M., NMR chmical shifts ofcommon laboratory solvents as trace impurities, J. Org. Chem., 1997, 62: 7512-7515
    [148] Eric, D. C., James, M. C., The Pictet-Spengler condensation: A New direction for an old reaction, Chem. Rev., 1995, 95: 1797-1842
    [149] Jacques, E., Pierre, V. W., Didier, L. N., et al, Controlled synthesis of cis or trans isomers of 1, 3-disubstituted tetrahydroisoquinolines and 2, 5-disubstituted pyrrolidines, J. Org. Chem., 2005, 70: 4043-4053
    [150] Pedrosa, R., Andres, C., Iglesias, J. M., A Novel straightforward synthesis of enantiopure tetrahydroisoquinoline Alkaloids, J. Org. Chem., 2001, 66(1): 243-250
    [151] Franklin, A. D., Pradyumna, K. M., David, M. B., et al, Sulfinimine- mediated synthesis of 1, 3-disubstituted tetrahydroisoquinoines: A Stereoseletive Synthesis of cis- and trans-6, 8-dimethoxy-1, 3- dimethyl-1, 2, 3, 4-tetrahydroisoqunoline, Org. Lett., 2000, 2(24): 3901-3903
    [152] Dvis, F. A., Andemichael, Y. W., Asymmetric Synthesis of 4- hydroxy-3-phenyltetrahydroisoquinoline derivatives using enantio- pure sulfinimines (N-sulfinyl imines), J. Org. Chem., 1999, 64: 8627-8634

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700