Lck激酶在L-选择素信号转导途径中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血液中白细胞被血管内皮细胞捕获、沿着血管内皮细胞滚动、稳定粘附于血管内皮细胞上、跨血管内皮细胞迁移并最终到达炎症部位是一个受严格调控的复杂多步骤的过程。至少有三类粘附分子家族在这一过程中发挥重要作用,其中选择素家族分子主要参与了白细胞捕获和沿血管内皮细胞上的滚动过程。L-选择素是选择素家族成员之一,组成性地表达在白细胞微绒毛顶端,是白细胞与血管内皮细胞相互作用过程中最先行使功能的分子。除了作为粘附分子发挥作用,L-选择素还作为信号分子在白细胞粘附过程中起始信号转导过程。L-选择素与单克隆抗体的结合能够引起肌动蛋白细胞骨架重排、细胞形态改变、氧呼吸爆发以及细胞内TNF-α和IL-8基因表达上调等一系列生理事件。但L-选择素是如何利用胞内蛋白传递信号并引发一系列生理变化的,其具体机制仍不清楚。Lck激酶是非受体蛋白酪氨酸激酶Src家族的成员之一,特异性地在T淋巴细胞中表达,并且在T淋巴细胞的活化及发育过程中发挥着重要作用。L-选择素与其单克隆抗体的交联能够活化Lck激酶,我们推测,Lck激酶不仅参与了L-选择素信号转导,并在其中发挥关键性作用。本文主要探讨了Lck激酶是如何调控sulfatides交联L-选择素后引起的信号转导过程的。
     我们发现,在Jurkat T细胞中,sulfatides与L-选择素的交联能够引起Lck激酶快速强烈的酪氨酸磷酸化,而且Lck激酶的特异性抑制剂PP2不仅阻断了L-选择素交联引起的肌动蛋白细胞骨架重排过程,而且还显著抑制了L-选择素介导的Jurkat T细胞在人脐静脉内皮细胞上的滚动,说明Lck激酶不仅位于L-选择素信号转导通路中,而且对于L-选择素信号的传递起着关键性作用。通过与L-选择素胞浆尾部的直接结合,Lck激酶能够在活化之后快速地磷酸化L-选择素胞浆尾部,增强L-选择素信号。L-选择素胞浆尾部唯一的酪氨酸位点,Tyr372,在L-选择素与Lck激酶的直接结合中发挥重要作用,因为这一位点的突变显著抑制了二者的结合。在sulfatides交联一段时间后,L-选择素与Lck激酶的结合能力减弱,也就是说这个时候的Lck激酶已经开始从L-选择素的胞浆尾部解离。我们认为,正是由于这种蛋白结合的动态性,才使得L-选择素能够通过其只有17个氨基酸的胞浆尾部与多种胞内信号蛋白结合,传递多种信号。
     通过其SH3和SH2结构域与c-Abl激酶和ZAP-70激酶的直接结合,Lck激酶在L-选择素胞浆尾部形成了一个大的信号转导复合体。在L-选择素交联活化后,Lck激酶先于c-Abl激酶活化。Lck激酶的特异性抑制剂PP2能够显著抑制c-Abl激酶的磷酸化水平和激酶活性,同时明显降低ZAP-70激酶的整体和Tyr319酪氨酸磷酸化水平,甚至连本底水平也都受到影响。而c-Abl激酶的特异性抑制剂STI571与ZAP-70激酶的特异性抑制剂Piceatannol则对Lck激酶的磷酸化没有任何作用。这些结果说明,在L-选择素信号转导途径中,Lck激酶是最先被活化的激酶,并通过影响下游c-Abl激酶和ZAP-70激酶的活性而传递L-选择素信号。
     当干涉胞内Lck激酶表达后,L-选择素信号被显著抑制。不仅L-选择素、c-Abl激酶和ZAP-70激酶的酪氨酸磷酸化水平明显降低,细胞在人脐静脉内皮细胞上的滚动也相应地受到影响。转入野生型或激酶永久活化型而非激酶永久失活型鼠Lck表达质粒能够补偿内源Lck激酶干涉造成的蛋白磷酸化水平缺失和细胞滚动减少,说明Lck激酶的激酶活性对于L-选择素信号转导是十分重要的。SH2结构域突变型质粒不能够恢复细胞内蛋白磷酸化的水平,但却部分地补偿细胞滚动减少,而SH3结构域突变型质粒的作用却正好相反,这些结果说明Lck激酶的SH3和SH2结构域行使不同的信号转导功能。
     本文结果表明,在L-选择素交联引起的信号转导事件中,Lck激酶起到了关键性的作用。它不仅通过与L-选择素胞浆尾部的直接结合,接受并增强L-选择素信号,还能通过与行使不同信号转导功能的SH3和SH2结构域与下游c-Abl激酶和ZAP-70激酶直接结合,进而将L-选择素信号快速有效地向下游传递。同时,与Lck激酶的动态结合使得L-选择素胞浆尾部能够在Lck激酶从其胞浆尾部解离下来后结合其他的胞内蛋白,促进L-选择素信号沿其它信号转导途径传递。
Leukocyte recruitment from the bloodstream to a site of inflammation entails a cascade of cellular adhesive events, including tethering, rolling, adhesion and transmigration. This process is controlled strictly by three families of adhesive molecules expressed on leukocytes and endothelial cells, and selectin family is responsible for the initial tethering and rolling of leukocytes. As a member of selectin family, L-selectin constitutively expresses on the top of microvilli and appears to be the first receptor for the early kinetics of leukocyte-endothelial cell interaction. Besides, L-selectin contributes in leukocyte adhesion through its signaling properties. L-selectin engagement with antibody cross-linking could trigger actin cytoskeleton rearrangement, cell shape change, superoxide generation, increased gene expression of cytokine TNF-αand IL-8, and so on. We still do not know how L-selectin orchestrates those cytoplasmic proteins to transduce signals. Lck kinase is a member of the Src family of non-receptor protein tyrosine kinases, which is expressed primarily in T lymphocytes and plays an important role in T cell activation and development. Cross-linking L-selectin with antibody induces the activation of Lck kinase, so we suppose that Lck kinase not only is involved in L-selectin signaling, but also plays a critical role in the process. In this paper, we focus on the Lck kinase function in regulating L-selectin signaling induced by sulfatides engagement.
     In Jurkat T cells, we find that L-selectin ligation with sulfatides induces rapid and robust tyrosine phosphorylation of Lck kinase, while PP2 (Lck specific inhibitor) significantly inhibits actin cytoskeleton rearrangement induced by L-selectin engagement and L-selectin-mediated Jurkat T cell rolling on HUVECs (human umbilical vein endothelial cells). These results suggest Lck kinase is involved in L-selectin signaling and plays an important role. Through the direct interaction with L-selectin cytoplasmic tail, activated Lck kinase could phosphorylate cytoplasmic tail in a minute promoting signal transduction. The only tyrosine, Tyr372, of cytoplasmic tail of L-selectin has an effect on the direct interaction with Lck kinase, for its mutation dramatically inhibits this association. After sulfatides stimulation for 2 min, the interaction between L-selectin and Lck kinase attenuates, suggesting that Lck kinase detaches from L-selectin cytoplasmic tail. For the dynamics of interaction, L-selectin could bind different cytosolic signaling proteins using its cytoplasmic tail composed of 17 amino acids.
     Through the direct interaction with c-Abl and ZAP-70 kinases via its SH3 and SH2 domains, Lck kinase organizes a signaling complex at the cytoplasmic tail of L-selectin. After sulfatides engagement, Lck kinase activated prior to c-Abl kinase. PP2 (Lck specific inhibitor) could dramatically inhibit the phosphorylation and kinase activity of c-Abl kinase, which also nearly completely decreased the phosphorylation of total and Tyr319 of ZAP-70 kinase. STI571 (c-Abl specific inhibitor) and Piceatannol (ZAP-70 specific inhibitor) play no role on the phosphorylation of Lck kinase. These results indicate that Lck kinase is the first kinase to be activated and regulate the kinase activity of both c-Abl and ZAP-70 kinases in L-selectin signaling pathway.
     In the cells with Lck knockdown by siRNA treatment, L-selectin signaling is severely suppressed, as indicated by reduced phosphorylation of L-selectin, c-Abl kinase and ZAP-70 kinase and by decreased number of Jurkat T cell rolling on HUVECs. Re-expression of wild-type or constitutively active but not kinase-dead murine Lck completely rescue the phosphorylation, suggesting the kinase activity of Lck is important for L-selectin signaling. Re-expression of SH2 domain mutant has no effect on protein phosphorylation but partly rescues the cell rolling, while re-expression of SH3 domain mutant has the opposite role, indicating that SH2 and SH3 domains of Lck kinase perform different signaling functions.
     In summary, Lck kinase plays a critical role in L-selectin signaling induced by sulfatides engagement. Through the direct interaction with L-selectin cytoplasmic tail, Lck kinase accepts and amplifies L-selectin signal. On the other hand, Lck kinase transduces signals quickly and efficiently by binding c-Abl and ZAP-70 kinases via its SH3 and SH2 domains. Meanwhile, because of the dynamic interaction with Lck kinase, L-selectin could bind other cytosolic proteins to transducer signals in other signaling pathway.
引文
[1] Kansas G S. Structure and function of L-selectin[J]. AMPIS, 1992, 100: 287-293.
    [2] Bevilacqua M P, Nelson R M, Selectins[J]. J Clin Invest, 1993, 91: 379-387.
    [3] McEver R P, Selectins[J]. Curr Op Immunol, 1994, 6: 75-84.
    [4] Huang K S, Graves B J, Wolitzky B A. (1997) Functional analysis of selectin structure. In The Selectins (M. A. Vadas and J. Harlan, eds.), New York: Harwood, 1–29.
    [5] Geng J G, Heawvener G A, McEver R P, Lectin domain peptides from selectins interact with both cell surface ligands and Ca2+ ions[J]. J Biol Chem, 1992, 267: 19846-19853.
    [6] Kansas G S, Saunders K B, Ley K Z, et al. A role for the epidermal growth factor-like domain of P-selectin in ligand recognition and cell adhesion[J]. J Cell Biol, 1994, 124: 609-618.
    [7] Gibson R M, Kansas G S, Tedder T F, et al. The lectin and EGF domains of P-selectin at physiological density are the recognition unit for leukocyte binding[J]. Blood, 1995, 85: 150-158.
    [8] Watson S R, Imai Y, Geoffrey J, et al. The complement binding-like domain of the murine receptor facilitate lectin activity[J]. J Cell Biol, 1991, 115: 235-243.
    [9] Jutila M A, Watts G, Walcheck B, et al. Characterization of a functionally important and evolutionarily well-conserved epitope mapped to the short consensus repeats of E-selectin and L-selectin[J]. J Exp Med, 1992, 175: 1565-1573.
    [10] Bargayze R F, Kurk S, Watts G, et al. In vivo and in vitro functional examination of a conserved epitope of L- and E-selectin crucial for leukocyte-endothelial cell interactions[J]. J Immunol, 1994, 152: 5814-5825.
    [11] Crockett-Torabi E, Sullenbarger B, Smith C W, et al. Activation of human neutrophils through L-selectin and Mac-1 molecules[J]. J Immunol, 1995, 154: 2291-2302.
    [12] Crockett-Torabi E, Sullenbarger B, Fantone J C. Tyrosine phosphorylation is coupled to L-selectin-mediated signal transduction and superoxide release in human neutrophils[J]. FASEB J, 1995, 9: A226.
    [13] Watson S R, Kingsmore S F, Johnston G I, et al. Genomic organization of the selectin family of leukocyte adhesion molecules on human and mouse chromosome 1[J]. J Exp Med, 1990, 172: 263-272.
    [14] Kishimoto T K, Jutila M A, Butcher E C. Neutrophil Mac-1 and MEL-14 adhesion proteins inversely regulated by chemotactic factors[J]. Science, 1989, 245: 1238-1241.
    [15] Peschon J J, Slack J L, Stocking K L, et al. An essential role for ectodomain shedding in mammalian development[J]. Science, 1998, 282: 1281-1284.
    [16] Jung T M, Dailey M O, Rapid modulation of homing receptors (gp90 mel-14) induced by activators of protein kinase C: receptor shedding due to accelerated proteolytic cleavage at the cell surface[J]. J Immunol,1990, 144: 3130-3136.
    [17] Kishimoto T K, Jutila M A, Butcher E C, Identification of a human peripheral lymph node homing receptor: a rapidly down-regulated adhesion molecule[J]. Proc Natl Acad Sci, 1990, 87 (6): 2244-2248.
    [18] Kahn J, Ingraham R H, Shirley F, et al. Membrane proximal cleavage of L-selectin: identification of the cleavage site and a 6-kD transmembrane peptide fragment of L-selectin[J]. J Cell Biol, 1994, 125 (22): 461-470.
    [19] Chen A, Engel P, Tedder T F, Structural requirements regulate endoproteolytic release of the L-selectin (CD62L) adhesion receptor from the cell surface of leukocytes[J]. J Exp Med, 1995, 182 (22): 519-530.
    [20] Migaki G I, Kahn J, Kishimoto T K, Mutational analysis of the membrane-proximal cleavage site of L-selectin: relaxed sequence specificity surrounding the cleavage site[J]. J Exp Med, 1995, 182 (2): 549-557
    [21] Jr Stoddart J H, Jasuja R R, Sikorski M A, et al. Protease-resistant L-selectin mutants: down-modulation by cross-linking but not cellular activation[J]. J Immunol, 1996, 157 (12): 5653-5659.
    [22] Preece G, Murphy G, Ager A, Metalloproteinase-mediated regulation of L-selectin levels on leukocytes[J]. J Biol Chem, 1996, 271: 11634-11640.
    [23] Feehan C, Darlak K, Kahn J, et al. Shedding of the lymphocyte L-selectin adhesion molecule is inhibited by a hydroxamic acid-based protease inhibitor: identification with an L-selectin-alkaline phosphatase reporter[J]. J Biol Chem, 1996, 271 (12): 7019-7024.
    [24] Bennett T A, Lynam E B, Sklar L A, et al. Hydroxamate-based metalloprotease inhibitor blocks shedding of L-selectin adhesion molecule from leukocytes: functional consequences for neutrophil aggregation[J]. J Immunol, 1996, 156 (9): 3093-3097.
    [25] Dietmar V and James E B, Mechanisms that regulate the function of the selectins and their ligands[J]. Physiol Rev, 1999, 79: 181-213.
    [26] Von Andrian U H, Hasslen S R, Nelson R D, et al. A central role for microvillous receptor presentation in leukocyte adhesion under flow[J]. Cell, 1995, 82: 989-999.
    [27] Simon S I, Cherapanov V, Nadra I, et al. Signaling function of L-selectin in neutrophil: Alterations in the cytoskeleton and colocalization with CD18[J]. J Immunol, 1999, 163: 2891-2901.
    [28] Kansas G S, Selectins and their ligands: current concepts and controversies[J]. Blood, 1996, 88 (9): 3259-3287.
    [29] Bevilacqua M P, Stengelin S, Gimbrone M A, et al. Endothelial leukocyte adhedion molecule 1: An inducible receptor for neutrophils related to complement regulatory proteins and lectins[J]. Science, 1989, 243:1160-1163.
    [30] Hsu-Lin S, Berman C L, Furie B C, et al. A platelet membrane protein expressed during platelet activation and secretion[J]. J Biol Chem, 1984, 259: 9121-9126.
    [31] Green S A, Setiadi R P, McEver R P, et al. The cytoplasmic domain of P-selectin contains a sorting determinant that mediates rapid degradation in lysosomes[J]. J Cell Biol, 1994, 124: 435-448.
    [32] Low J B, The carbohydrate components of selectin ligands. In The Selectin (M. A. Vadas and J. Harlan, eds.), New York: Harwood, 1997, 143-177.
    [33] Foxall C, Watson S R, Dowbenko D, et al. The three members of the selectin receptor family recognize a common carbohydrate epitope, the sialyl Lewis X oligosaccharide[J]. J Cell Biol, 1992, 117: 895-902.
    [34] Berg E L, Magnani J, Warnock R A, et al. Comparison of L-selectin and E-selectin ligand specificities: the L-selectin can bind the E-selectin ligands sialyl Lex and sialyl Lea[J]. Biochem Biophys Res Commun, 1992, 184: 1048-1055.
    [35] Tyrrell D, James P, Rao V, et al. Structural requirements for the carbohydrate ligand of E-selectin[J]. Proc Natl Acad Sci, 1991, 88: 10372-10376.
    [36] Skinner M P, Lucas C M, Burns G F, et al. GMP-140 binding to neutrophils is inhibited by sulfated glycans[J]. J Biol Chem, 1991, 266: 5371-5374.
    [37] Needham L K, Schnaar R L, The HNK-1 reactive sulfoglucuronyl glycolipids are ligands for L-selectin and P-selectin but not E-selectin[J]. Proc Natl Acad Sci, 1993, 90: 1359-1363.
    [38] Lasky L A, Selectins: Interpreters of cell-specific carbohydrate information during inflammation[J]. Science, 1992, 258: 964-969.
    [39] Imai Y, Singer M S, Fennie C, et al. Identification of a carbohydrate-based endothelial ligand for a lymphocyte homing receptor[J]. J Cell Biol, 1991, 113: 1213-1221.
    [40] Young P E, Baumheuter S, Lasky L A, The sialomucin CD34 is expressed on hematopoietic cells and blood vessels during murine development[J]. Blood, 1995, 85: 96-105.
    [41] Tedder T F, Steeber D A, Chen A, et al. The selectins: vascular adhesion molecules[J]. FASEB J, 1995, 9: 866–873.
    [42] Hwang S T, Singer M S, Giblin P A, et al. GlyCAM-1, a physiologic ligand for L-selectin, activates beta 2 integrins on naive peripheral lymphocytes[J]. J Exp Med, 1996, 184: 1343-1348.
    [43] Giblin P A, Hwang S T, Katsumoto T R, et al. Ligation of L-selectin on T lymphocytes activates beta1 integrins and promotes adhesion to fibronectin[J]. J Immunol, 1997, 159: 3498-3507.
    [44] Baumheter S, Singer M S, Henzel W, et al. Binding of L-selectin to the vascular sialomucin CD34[J]. Science, 1993, 262: 436-438.
    [45] Puri K D, Finger E B, Gaudernack G, et al. Sialomucin CD34 is the major L-selectin ligand in human tonsil high endothelial venules[J]. J Cell Biol, 1995, 131: 261-270.
    [46] Berg E L, McEvoy L M, Berlin C, et al. L-selectin-mediated lymphocyte rolling on MAdCAM-1[J]. Nature, 1993, 366: 695-698.
    [47] Berlin C, Bargatze R F, Campbell J J, et al. Alpha 4 integrins mediate lymphocyte attachment and rolling under physiologic flow[J]. Cell, 1995, 80: 413-422.
    [48] Bargatze R F, Jutila M A, Butcher E C, Distinct roles of L-selectin and integrins alpha 4 beta 7 and LFA-1 in lymphocyte homing to Peyer’s patch-HEV in situ: the multistep model confirmed and refined[J]. Immunity, 1995, 3: 99-108.
    [49] Hemmerich S, Butcher E C, Rosen S D, Sulfationdependent recognition of high endothelial venules (HEV)- ligands by L-selectin and MECA 79, and adhesion-blocking monoclonal antibody[J]. J Exp Med, 1994, 180: 2219-2226.
    [50] Spertini O, Cordey A S, Monai N, et al. P-selectin glycoprotein ligand 1 is a ligand for L-selectin on neutrophils, monocytes, and CD34+ hematopoietic progenitor cells[J]. J Cell Biol, 1996, 135: 523-531.
    [51] Walcheck B, Moore K L, McEver R P, et al. Neutrophil–neutrophil interactions under hydrodynamic shear stress involve L-selectin and PSGL-1. A mechanism that amplifies initial leukocyte accumulation of P-selectin in vitro[J]. J Clin Invest, 1996, 98: 1081-1087.
    [52] Moore K L, Stultz N L, Diaz S, et al. Identification of a specific glycoprotein ligand for P-selectin (CD62) on myeloid cells[J]. J Cell Biol, 1992, 118: 445-456.
    [53] Norgard K E, Moore K L, Diaz S, et al. Characterization of a specific ligand for P-selectin on myeloid cells. A minor glycoprotein with sialylated O-linked oligosaccharides[J]. J Biol Chem, 1993, 268: 12764-12774.
    [54] Sako D, Chang X J, Barone K M, et al. Expression cloning of a functional glycoprotein ligand for Pselectin[J]. Cell, 1993, 75: 1179-1186.
    [55] Liu W, Ramachandran V, Kang J, et al. Identification of N-terminal residues on P-selectin glycoprotein ligand- 1 required for binding to P-selectin[J]. J Biol Chem, 1998, 273: 7078-7087.
    [56] Moore K L, Patel K D, Bruehl R E, et al. P-selectin glycoprotein ligand-1 mediates rolling of human neutrophils on P-selectin[J]. J Cell Biol, 1995, 128: 661-671.
    [57] Aigner S, Ramos C L, Hafezi-Moghadam A, et al. CD24 mediates rolling of breast carcinoma cells on P-selectin[J]. Faseb J, 1998, 12: 1241-1251.
    [58] Levinovitz A, Muhloff J, Isenmann S, et al. Identification of glycoprotein ligand for E-selectin on mouse myeloid cells[J]. J Cell Biol, 1993, 121: 449-459.
    [59] Walcheck B, Jutila M A, Bovine g/d T cells bind E-selectin via a novel glycoprotein receptor: first characterization of a lymphocyte/Eselectin interaction in an animal model[J]. J Exp Med, 1993, 178: 853-863.
    [60] Asa D, Raycroft L, Ma L, et al. The P-selectin glycoprotein ligand functions as a common human leukocyte ligand for P- and E-selectins[J]. J Biol Chem, 1995, 270: 11662-11670.
    [61] Zollner O, Lenter M C, Blanks J E, et al. L-selectin from human, but not from mouse neutrophils binds directly to E-selectin[J]. J Cell Biol, 1997, 136: 707-716.
    [62] Kamala D P, Susan L C, Shahina W, Selectins: critical mediators of leukocyte recruitment[J]. seminars in Immunology, 2002, 14: 73-81.
    [63] Ley K, The selectins as rolling receptors. In The Selectins (M. A. Vadas and J. Harlan, eds.) New York: Harwood, 1997, 63–104.
    [64] Von Andrian U H, Hansell P, Chambers J D, et al. L-selectin function is required forβ2-integrin-mediated neutrophil adhesion at physiological shear rates in vivo[J]. Am J Physiol, 1992, 263: H1034–H1044.
    [65] Gopalan P K, Smith C W, Lu H, et al. Neutrophil CD18-dependent arrest on intercellular adhesion molecule 1 (ICAM-1) in shear flow can be activated through L-selectin[J]. J Immunol, 1997, 158: 367-375.
    [66] Strauch U G, Holzmann B, Triggering of L-selectin (gp90 MEL-14) induces homotypic lymphocyte adhesion by a mechanism independent of LFA-1[J]. Int Immunol, 1993, 5: 393-398.
    [67] Waddell T K, Fialkow L, Chen C K, et al. Potentiation of the oxidative burst of human neutrophils: a signaling role for L-selectin[J]. J Biol Chem, 1994, 289: 18485-18491.
    [68] Suzuki M, Inauen W, Kvietys P R, et al. Superoxide mediates reperfusion-induced leukocyte-endothelial interactions[J]. Am J Physiol 1989, 257: H1740-H1745.
    [69] Patel K D, Zimmerman G A, Prescott S M, et al. Novel leukocyte agonists are released by endothelial cells exposed to peroxide[J]. J Biol Chem, 1992, 267: 15168-15175.
    [70] Del Maestro R F, Planker M, Arfors K E, Evidence for the participation of superoxide anion radical in altering the adhesive interaction between granulocytes and endothelium, in vivo[J]. Int J Microcirc Clin Exp ,1982, 1: 105-120.
    [71] Laudanna C, Constantin G, Baron P, et al. Sulfatides trigger increase of cytostolic free calcium and enhanced expression of tumor necrosis factor-alpha and interleukin-8 mRNA in human neutrophils[J]. J Biol Chem, 1994, 269: 4021-4026.
    [72] Gallatin W M, Weissmann I L, Butcher E C, A cell-surface molecule involved in organ-specific homing of lymphocytes[J]. Nature, 1983, 303: 30-34.
    [73] Dore M, Korthuis R J, Granger D N, et al. P-selectin mediates spontaneous leukocyte rolling in vivo[J]. Blood, 1993, 82: 1308-1316.
    [74] Mulligan M S, Varani J, Dame M K, et al. Role of endothelial-leukocyte adhesion molecule 1 (ELAM-1) in neutrophil-mediated lung injury in rats[J]. J Clin Invest, 1991, 88: 1396-1406.
    [75] Olofesson A M, Arfors K E, Ramezani L, et al. E-seelctin mediates leukocyte rolling in interleukin-1-treated rabbit mesentery venules[J]. Blood, 1994, 84: 2749-2758.
    [76] Gamble J R, Skinner M P, Berndt M C, et al. Prevention of activated neutrophil adhesion toendothelium by soluble adhesion protein GMP-140[J]. Science, 1990, 249(4967): 414-417.
    [77] Lo S K, Lee S, Ramos R, et al. Endothelial-leukocyte adhesion molecule-1 stimulates the adhesion activity of leukocyte integrin CR3 (CD11b/CD18, Mac-1,αMβ2) on human neutrophils[J]. J Exp Med, 1991, 173 (6): 1493-1500.
    [78] Kaplanski G, Franarier C, Tissot O, et al. Granulocyte-endothelium initial adhesion: analysis of transient binding events mediated by E-selectin in a laminar shear flow[J]. Biophys J, 1993, 64 (6):1922-1933.
    [79] Lawrence M B, and Springer T A. Neutrophils roll on E-selectin[J]. J Immunol, 1993, 151: 6338-6346.
    [80] Abbassi O, Kishimoto T K, Mcintire L V, et al. E-selectin supports neutrophil rolling in vitro under conditions of flow[J]. J Clin Invest, 1993, 92: 2719-2730.
    [81] Simon S I, Burns A R, Taylor A D, et al. L-selectin (CD62L) crosslinking signals neutrophil adhesivefunctions via the Mac-1 (CD11b/CD18)β2-integrin[J]. J Immunol, 1995, 155: 1502-1514.
    [82] Brenner B, Gulbins E, Schlottmann K, et al. L-selectin activates the Ras pathway via the tyrosine kinase p56lck[J]. Proc Natl Acad Sci, 1996, 93:15376-15381.
    [83] Brenner B, Gulbins E, Busch G L, et al. L-selectin regulates actin polymerisation via activation of the small G-protein Rac2[J]. Biochem Biophys Res Commun, 1997, 231: 802-807.
    [84] Brenner B, Weinmann S, Grassme H, et al. L-selectin activates JNK via src-like tyrosine kinases and the small G-protein Rac[J]. Immunology, 1997, 92: 214-219.
    [85] Su B, Jacinto E, Hibi M, et al. JNK is involved in signal integration during costimulation of T lymphocytes[J]. Cell, 1994, 77: 727-736.
    [86] Brenner B C, Kadel S, Grigorovich S, et al. Mechanisms of L-selectin-induced activation of the nuclear factor of activated T lymphocytes (NFAT) [J]. Biochem Biophys Res Commun, 2002, 291: 237-244.
    [87] Brenner B, Grassme H U, Muller C, et al. L-selectin stimulates the neutral sphingomyelinase and induces release of ceramide[J]. Exp Cell Res, 1998, 243: 123-128.
    [88] Kolesnick R, Golde D W. The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling[J]. Cell, 1994, 77: 325-328.
    [89] Kilian K, Dernedde J, Mueller E C, et al. The interaction of protein kinase C isozymes alpha, iota, and theta with the cytoplasmic domain of L-selectin is modulated by phosphorylation of the receptor[J]. J Biol Chem, 2004, 279: 34472-34480.
    [90] Waddell T K, Fialkow L, Chan C K, et al. Signaling functions of L-selectin. Enhancement of tyrosine phosphorylation and activation of MAP kinase[J]. J Biol Chem, 1995, 270:15403-15411.
    [91] Smolen J E, Petersen T K, Koch C, et al. L-selectin signaling of neutrophil adhesion and degranulation involves p38 mitogen- activated protein kinase[J]. J Biol Chem, 2000, 275: 15876-15884.
    [92] Crockett-Torabi E, Ward P A, The role of leukocyte in tissue injury[J]. Eur J Anaesthesiol, 1996, 13: 235-246.
    [93] Kunkel E J, Jung U, Ley K, TNF-alpha induces selectin mediated lekocyte rolling in mouse cremaster muscle arterioles[J]. Am J Physiol, 1997, 272: H1391-H1400.
    [94] Baggiolini M, Clark-Lewis I, Interleukin-8, a chemotactic and inflammatory cytokine[J]. FEBS Lett, 1992, 307 (1): 97-101.
    [95] Egan S E, Weinbeerg R A W, The pathway to signal achievement[J]. Nature, 1993, 365: 781-783.
    [96] Turutin D V, Kubareva E A, Pushkareva M A, et al. Activation of NF-kappa B transcription factor in human neutrophils by sulphatides and L-selectin cross-linking[J]. FEBS Lett, 2003, 536: 241-524.
    [97] Dutt S, Ermann J, Tseng D, et al. L-selectin and beta7 integrin on donor CD4 T cells are required for the early migration to host mesenteric lymph nodes and acute colitis of graft-versus-host disease[J]. Blood. 2005, 1:106(12): 4009-4015.
    [98] Sikorski M A, Staunton D E, Mier J W, L-selectin-crosslinking induces integrin-dependent adhesion: evidence for a signaling pathway involving PTK but not PKC[J]. Cell Adhesion Commun, 1996, 4:355-367.
    [99] Crockett-Torabi E, Fantone J C, L-selectin stimulation of canine neutrophil initiates calcium signal secondary to tyrosine kinase activation[J]. Am J Physiol, 1997, 272 (3): H1302-H1308.
    [100] Diamond M S, Springer T A, A subpopulation of Mac-1 (CD11b/CD18) molecules mediates neutrophil adhesion to ICAM-1 and fibrinogen[J]. J Cell Biol, 1993, 120: 545-556.
    [101] Landis R C, Bennett R I, Hogg N, A novel LFA-1 activation epitope maps to the I domain[J]. J Cell Biol, 1993, 120: 1519-1527.
    [102] Philips M R, Buyon J P, Winchester R, et al. Up-regulation of the iC3b receptor (CR3) is neither necessary nor sufficient to promote neutrophil aggregation[J]. J Clin Invest, 1988, 82: 495-501.
    [103] Simon S I, Chambers J D, Butcher E, et al. Neutrophil aggregation is beta 2-integrin- and L-selectin-dependent in blood and isolated cells[J]. J Immunol, 1992, 149: 2765-2771.
    [104] Buyon J P, Abramson S B, Philips M R, et al. Dissociation between increased surface expression of gp165/95 and homotypic neutrophil aggregation[J]. J Immunol, 1988, 140: 3156-3160.
    [105] Mattila P E, Green C E, Schaff U, et al. Cytoskeletal interactions regulate inducible L-selectin clustering[J]. Am J Physiol Cell Physiol, 2005, 289 (2): C323-32.
    [106] Dwir O, Kansas G S, Alon R, Cytoplasmic anchorage of L-selectin controls leukocyte capture and tolling by increasing the mechanical stability of the selectin tether[J]. Cell Biol, 2001, 155 (1): 145-156.
    [107] Aleksandra I, Jürgen D, Anne R, et al. The Cytoplasmic Tail of L-selectin Interacts with Members of the Ezrin-Radixin-Moesin (ERM) Family of Proteins[J]. Molecular basis of cell and developmental biology, 2002, 277 (3): 2321-2329.
    [108] Juan M S, Ana U, Jose L, et al. A juxta-membrane amino acid sequence of p-selectin-glycoprotein ligand-1 is involve in moesin binding and ezrin/radixin/moesin-derected targeting at the tailing edge of migrating lymphocytes[J]. J Immunol, 2002, 32: 1560-1566.
    [109] Pavalko F M, Walker D M, Graham L, et al. The cytoplasmic domain of L-selectin interacts with cytoskeletal proteins via alpha-actinin: receptor positioning in microvilli does not require interaction with alpha-actinin[J]. J Cell Biol, 1995, 129 (4):1155-1164.
    [110] Evans S S, Schleider D M, Bowman LA, et al. Dynamic association of L-selectin with the lymphocyte cytoskeletal matrix[J]. J Immunol, 1999, 162: 3615-3624.
    [111] Kahn J, Walcheck B, Migaki G I, et al. Calmodulin regulates L-selectin adhesion molecule expression and function through a protease dependent mechanism[J]. Cell, 1998, 92: 809-818.
    [112] Diaz-Rodriguez E, Esparis-Ogando A, Montero J C, et al. Stimulation of cleavage of membrane proteins by calmodulin inhibitors[J]. Biochem J, 2000, 346 (2): 359-367.
    [113] Ivetic A, Deka J, Ridley A, et al. The cytoplasmic tail of L-selectin interacts with members of the Ezrin-Radixin-Moesin (ERM) family of proteins: cell activation-dependent binding of Moesin but not Ezrin[J]. J Biol Chem, 2002, 277: 2321-2329.
    [114] Ivetic A, Florey O, Deka J, et al. Mutagenesis of the ezrin-radixin-moesin binding domain of L-selectin tail affects shedding, microvillar positioning, and leukocyte tethering[J]. J Biol Chem, 2004, 279:33263-33272.
    [115] Lorenzon P, Vecile E, Nardon E, et al. Endothelial cell E- and P-selectin and vascular cell adhesion molecule-1 function as signaling receptors[J]. J Cell Biol, 1998, 142: 1381-1391.
    [116] Haller H, Kunzendorf U, Sacherer K, et al. T cell adhesion to P-selectin induces tyrosine phosphorylation of pp125 focal adhesion kinase and other substrates. J Immunol, 1997, 158: 1061-1067.
    [117] Modderman P W, von dem Borne A E, Sonnenberg A, Tyrosine phosphorylation of P-selectin in intact platelets and in a disulphide-linked complex with immunoprecipitated pp60c-src[J]. Biochem J, 1994, 299: 613-621.
    [118] Hidari K I, Weyrich A S, Zimmerman G A, et al. Engagement of P-selectin glycoprotein ligand-1 enhances tyrosine phosphorylation and activates mitogenactivated protein kinases in human neutrophils[J]. J Biol Chem, 1997, 272: 28750-28756.
    [119] Piccardoni P, Sideri R, Manarini S, et al. Platelet/polymorphonuclear leukocyte adhesion: a new role for SRC kinases in Mac-1 adhesive function triggered by P-selectin[J]. Blood, 2001, 98: N108-116.
    [120] Evangelista V, Manarini S, Rotondo S, et al. Platelet/polymorphonuclear leukocyte interaction in dy namic conditions: evidence of adhesion cascade and cross talk between P-selectin and the beta 2 integrin CD11b/CD18[J]. Blood, 1996, 88: 4183-4194.
    [121] Nagata K, Tsuji T, Todoroki N, et al. Activated platelets induce superoxide anion release by monocytes and neutrophils through P-selectin (CD62) [J]. J Immunol, 1993, 151: 3267-3273.
    [122] Hu Y, Szente B E, Kiely J M, et al. Molecular events in transmembrane signalling via E-selectin: SHP2 association, adaptor protein complex formation and ERK1/2 activation[J]. J Biol Chem, 2001, 276 (51): 48549-48553.
    [123] Kumar P, Hosaka S, Koch A E, Soluble E-selectin induces monocyte chemotaxis through Src family tyrosine kinases[J]. J Biol Chem, 2001, 276: 21039-21045.
    [124] Weiss A and Littman E R, Signal transduction by lymphocyte antigen receptor[J]. Cell, 1994, 76: 263-274.
    [125] Sicheri F and Kuriyan J, Structures of Src-family tyrosine kinases[J]. Curr Opin Struct Biol, 1997, 7: 777-785.
    [126] Anderson S J and Perlmutter R M, A signaling pathway governing early thymocyte maturation[J]. Immunol Today, 1995, 16: 99-105.
    [127] Weil R and Weillette A, Signal transduction by the lymphocyte-specific tyrosine protein kinase p56lck[J]. Curr Top Microbiol Immunol, 1996, 205: 63-87.
    [128] Xavier R, Brennan T, Qingqin L, et al. Membrane compartmentation is required for efficient T cell activation[J]. Immunity, 1998, 8: 723-732.
    [129] Montixi C, Langlet C, Bernard A M, et al. Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains[J]. EMBO J, 1998, 17: 5334-5348.
    [130] Ostergaard H L, Shackelford D A., Hurley T R, et al. Expression ofCD45 alters phosphorylation of the lck-encoded tyrosine protein kinase in murine lymphoma T-cell lines[J]. Proc Natl Acad Sci USA, 1989,86: 8959-8963.
    [131] Chow L M, Fournel M, Davidson D, et al. Negative regulation of T-cell receptor signalling by tyrosine protein kinase p50csk[J]. Nature, 1993, 365: 156-160.
    [132] Williams J C, Weijland A, Gonfloni S, et al. The 2.35 A crystal structure of the inactivated form of chicken Src: a dynamic molecule with multiple regulatory interactions[J]. J Mol Biol, 1997, 274: 757-775.
    [133] Xu H and Littman D R, A kinase-independent function of Lck in potentiating antigen-specific T cell activation[J]. Cell, 1993, 74: 633-643.
    [134] Sicheri F, Moarefi I, Kuriyan J, Crystal structure of the Src family tyrosine kinase Hck[J]. Nature, 1997, 385: 602-609.
    [135] Sieh M, Bolen J B, Weiss A, CD45 specifically modulates binding of Lck to a phosphopeptide encompassing the negative regulatory tyrosine of Lck[J]. EMBO J, 1993, 12: 315-321.
    [136] Hardwick J S and Sefton B M, Activation of the Lck tyrosine protein kinase by hydrogen peroxide requires the phosphorylation of Tyr-394. Proc[J]. Natl Acad Sci USA, 1995, 92: 4527-4531.
    [137] Gervais F G and Veillette A, The unique amino-terminal domain of p56lck regulates interactions with tyrosine protein phosphatases in T lymphocytes[J]. Mol Cell Biol, 1995, 15: 2393-2401.
    [138] Joung I, Kim T, Stolz L A, et al. Modification of Ser59 in the unique N-terminal region of tyrosine kinase p56lck regulates specificity of its Src homology 2 domain[J]. Proc Natl Acad Sci USA, 1995, 92: 5778-5782.
    [139] Kesavan K P, Isaacson C C, Ashendel C L, et al. Characterization of the in vivo sites of serine phosphorylation on Lck identifying serine 59 as a site of mitotic phosphorylation[J]. J Biol Chem, 2002, 277: 14666-14673.
    [140] Shaw A S, Amrein K E, Hammond C, et al. The lck tyrosine protein kinase interacts with the cytoplasmic tail of the CD4 glycoprotein through its unique aminoterminal domain[J]. Cell, 1989, 59: 627-636.
    [141] Shaw A S, Chalupny J, Whitney J A, et al. Short related sequences in the cytoplasmic domains of CD4 and CD8 mediate binding to the amino-terminal domain of the p56lck tyrosine protein kinase[J]. Mol Cell Biol, 1990, 10: 1853-1862.
    [142] Prasad K V, Kapeller R, Janssen O, et al. Phosphatidylinositol (PI) 3-kinase and PI 4-kinase binding to the CD4-p56lck complex: the p56lck SH3 domain binds to PI 3-kinase but not PI 4-kinase[J]. Mol Cell Biol,1993, 13: 7708-7717.
    [143] Gulbins E, Coggeshall K M, Baier G, et al. Tyrosine kinase-stimulated guanine nucleotide exchange activity of Vav in T cell activation[J]. Science, 1993, 260: 822-825.
    [144] Amrein K E, Flint N, Panholzer B, et al. Ras GTPase activating protein: a substrate and a potential binding protein of the protein-tyrosine kinase p56lck[J]. Proc Natl Acad Sci USA, 1992, 89: 3343-3346.
    [145] Takemoto Y, Furuta M, Li X K, et al. LckBP1, a proline-rich protein expressed in haematopoietic lineage cells, directly associates with the SH3 domain of protein tyrosine kinase p56lck[J]. EMBO J, 1995, 14: 3403-3414.
    [146] Duplay P, Thome M, Herve F, et al. p56lck interacts via its src homology 2 domain with the ZAP-70 kinase[J]. J Exp Med, 1994, 179: 1163-1172.
    [147] Couture C, Deckert M, Williams S, et al. Identification of the site in the Syk protein tyrosine kinase that binds the SH2 domain of Lck[J]. J Biol Chem, 1996, 271: 24294-24299.
    [148] Thomas S M and Brugge J S, Cellular functions regulated by Src family kinases[J]. Annu Rev Cell Dev Biol, 1997, 13: 513-609.
    [149] Abraham N, Miceli M C, Parnes J R, et al. Enhancement of T-cell responsiveness by the lymphocyte-specific tyrosine protein kinase p56lck[J]. Nature, 1991, 350: 62-66.
    [150] Straus D B and Weiss A, Genetic evidence for the involvement of the Lck tyrosine kinse in signal transduction through the T cell antigen receptor[J]. Cell, 1992 70: 585-593.
    [151] Chan A C, Iwashima M, Turck C W, et al. ZAP-70: a 70 kd protein-tyrosine kinase that associateds with the TCRζchain[J]. Cell, 1992, 71: 649-662.
    [152] Hermiston M L, Xu Z, Majeti R, et al. Reciprocal regulation of lymphocyte activation by tyrosine kinases and phosphatases[J]. J Clin Invest, 2002, 109: 9-14.
    [153] Lovatt M, Filby A, Parravicini V, et al. Lck regulates the threshold of activation in primary T cells, while both Lck and Fyn contribute to the magnitude of the extracellular signal-related kinase response[J]. Mol Cell Biol, 2006, 26: 8655-8665.
    [154] Carmo A M, Mason D W, Beyers A D, Physical association of the cytoplasmic domain of CD2 with the tyrosine kinases p56lck and p59fyn[J]. Eur J Immunol, 1993, 23: 2196-2201.
    [155] Bell G M, Fargnoli J, Bolen J B, et al. The SH3 domain of p56lck binds to proline-rich sequences in the cytoplasmic domain of CD2[J]. J Exp Med, 1996,183: 169-178.
    [156] Danielian S, Fagard R, Alcover A, et al. The lymphocyte-specific protein tyrosine kinase p56lck is hyperphosphorylated on serine and tyrosine residues within minutes after activation via T cell receptor or CD2[J]. Eur J Immunol, 1989, 19: 2183-2189.
    [157] Danielian S, Fagard R, Alcover A, et al. The tyrosine kinase activity of p56lck is increased in human T cells activated via CD2[J]. Eur J Immunol, 1991, 21: 1967-1970.
    [158] Danielian S, Alcover A, Polissard L, et al. Both T cell receptor (TcR)-CD3 complex and CD2 increase the tyrosine kinase activity of p56lck. CD2 can mediate TcR-CD3-independent and CD45-dependent activation of p56lck[J]. Eur J Immunol, 1992, 22: 2915-2921.
    [159] Molina T J, Kishihara K, Siderovski D P, et al. Profound block in thymocyte development in mice lacking p56lck[J]. Nature, 1992, 357: 161-164.
    [160] Levin S D, Anderson S J, Forbush K A, et al. A dominant-negative transgene defines a role for p56lck in thymopoiesis[J]. EMBO J, 1993, 12: 1671-1680.
    [161] Rouer E, Dreyfus F, Melle J, et al. Pattern of expression of five alternative transcripts of the lck gene in different hematopoietic malignancies: correlation of the level of lck message RNAⅠB with the immature phenotype of the malignancy[J]. Cell Growth Differ, 1994, 5: 659-666.
    [162] Nakamura K, Chijiiwa Y, Nawata H, Augmented expression of Lck message directed from thedownstream promoter in human colorectal cancer specimens[J]. Eur J Cancer, 1996, 32A: 1401-1407.
    [163] Krystal G W, DeBerry C S, Linnekin D, et al. Lck associates with and is activated by Kit in a small cell lung cancer cell line: inhibition of SCF-mediated growth by the Src family kinase inhibitor PP1[J]. Cancer Res, 1998, 58: 460-4666.
    [164] Majolini M B, D’Elios M M, Galieni P, et al. Expression of the T-cell-specific tyrosine kinase Lck in normal B-1 cells and chronic lymphocytic leukemia B cells[J]. Blood, 1998, 91: 3390-3396.
    [165] Cohen G B, Ren R and Baltimore D, Modular binding domains in signal transduction proteins[J]. Cell, 1995, 80: 237-248.
    [166] Pawson T, SH2 and SH3 domains in signal transduction[J]. Adv Cancer Res, 1994, 64: 87-110.
    [167] Songyang Z, Shoelson S E, McGlade J et al. Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav[J]. Mol Cell Biol, 1994, 14: 2777-2785.
    [168] Kipreos E T and Wang J Y, Cell cycle-regulated binding of c-Abl tyrosine kinase to DNA[J]. Science, 1992, 256: 382-385.
    [169] Ren R, Mayer B J, Cicchetti P, et al. Identification of a ten-amino acid proline-rich SH3 binding site[J]. Science, 1993, 259: 1157-1161.
    [170] Miao J Y and Wang J, Binding of A/T-rich DNA by three high mobility grouplike domains in c-Abl tyrosine kinase[J]. J Biol Chem, 1996, 271: 22823-22830.
    [171] McWhirter J R and Wang J Y, An actin-binding function contributes to transformation by the Bcr-Abl oncoprotein of Philadelphia chromosome-positive human leukemias[J]. EMBO J, 1994, 12: 1533-1546.
    [172] Van Etten R, Jackson P K, Baltimore D, et al. The COOH terminus of the c-Abl tyrosine kinase contains distinct Fand G-actin binding domains with bundling activity[J]. J Cell Biol, 1994, 124: 325-340.
    [173] Lewis J, Baskaran R, Taagepera S, et al. Integrin regulation of c-Abl tyrosine kinase activity and cytoplasmic-nuclear transport[J]. Proc Natl Acad Sci, 1996, 93: 15174-15179.
    [174] Pluk H, Dorey K and Superti-Furga G, Autoinhibition of c-Abl[J]. Cell, 2002, 108: 247-259.
    [175] Smith J M and Mayer B J, Abl: mechanisms of regulation and activation[J]. Front Biosci, 2002, 1: d31-42.
    [176] Tanis K Q, Veach D, Duewel H S, et al. Two distinct phosphorylation pathways have additive effects on abl family kinase activation[J]. Mol Cell Biol, 2003, 23: 3884-3896.
    [177] Dorey K, Engen J R, Kretzschmar J, et al. Phosphorylation and structure-based functional studies reveal a positive and a negative role for the activation loop of the c-Abl tyrosine kinase [J]. Oncogene, 2001, 20 (56): 8075-8084.
    [178] Hantschel O, Nagar B, Guettler S, et al. A myristoyl/phosphotyrosine switch regulates c-Abl[J]. Cell, 2003, 112: 845-857.
    [179] Franz W, Berger P and Wang J Y J, Deletion of an N-terminal regulatory domain of the c-Abl tyrosine kinase activates its oncogenic potential[J]. EMBO J, 1989, 8: 137-147.
    [180] Plattner R, Kadlec L, DeMali K A, et al. c-Abl is activated by growth factors and Src family kinasesand has a role in the cellular response to PDGF[J]. Genes Dev, 1999, 13: 2400-2411.
    [181] BariláD and Superti-Furga G, An intramolecular SH3-domain interaction regulates c-Abl activity[J]. Nat Genet, 1998, 18: 280-282.
    [182] Brasher B and Van Etten R, c-Abl has high intrinsic tyrosine kinase activity that is stimulated by mutation of the Src homology 3 domain and by autophosphorylation at two distinct regulatory tyrosines[J]. J Biol Chem, 2000, 275: 35631-35637.
    [183] Nagar B, Hantschel O, Young M, et al. Structural basis for the auto-inhibition of c-Abl tyrosine kinase[J]. Cell, 2003, 112: 859-871.
    [184] Pendergast A M, Muller A J, Havlik M H, et al. Evidence for regulation of the human Abl tyrosine kinase by a cellular inhibitor[J]. Proc Natl Acad Sci, 1991, 88: 5927-5931.
    [185] Welch P J and Wang J Y J, A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle[J]. Cell, 1993, 75: 779-790.
    [186] Wen S T, Jackson P K and Van Etten R A, The cytostatic function of c-Abl is controlled by multiple nuclear localization signals and requires the p53 and Rb tumor suppressor gene products[J]. EMBO J, 1996, 15: 1583-1595.
    [187] Woodring P J, Hunter T and Wang J Y J, Inhibition of c-Abl tyrosine kinase by filamentous-actin[J]. J Biol Chem, 2001, 276: 27104-27110.
    [188] Zhu J and Shore S K, c-ABL tyrosine kinase activity is regulated by association with a novel SH3-domain-binding protein[J]. Mol Cell Biol, 1996, 16: 7054-7062.
    [189] Zipfel P A, Grove M, Blackburn K, et al. The c-Abl tyrosine kinase is regulated downstream of the B-cell antigen receptor and interacts with CD19[J]. J Immunol, 2000, 165: 6872-6879.
    [190] Sini P, Cannas A, Koleske A J, et al. Abl-dependent tyrosine phosphorylation of Sos-1 mediates growth-factor-induced Rac activation[J]. Nat Cell Biol, 2004, 6: 268-274.
    [191] Ba X, Chen C, Gao Y, et al. Signaling function of PSGL-1 in neutrophil: tyrosine-phosphorylation-dependent and c-Abl-involved alteration in the F-actin-based cytoskeleton[J]. J Cell Biochem, 2005, 94: 365-373.
    [192] Woodring P J, Hunter T and Wang J Y J, Regulation of F-actin-dependent processes by the Abl family of tyrosine kinases[J]. J Cell Sci, 116: 2613-2626.
    [193] Yuan Z M, Huang Y, Ishiko T, et al. Regulation of DNA damage-induced apoptosis by the c-Abl tyrosine kinase[J]. Proc Natl Acad Sci, 1997, 94: 1437-1440.
    [194] Gong J G, Costanzo A, Yang H Q, et al. The tyrosine-kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage[J]. Nature, 1999, 399: 806-809.
    [195] Shi Y, Alin K and Goff S, Abl-interactor-1, a novel SH3-protein binding to the carboxy-terminal portion of the v-Abl protein, suppresses v-abl transforming activity[J]. Genes Dev, 1995, 9: 2583-2597.
    [196] Dai Z and Pendergast A M, Abi-2, a novel SH3-containing protein interacts with the c-Abl tyrosine kinase and modulates c-Abl transforming activity[J]. Genes Dev 1995, 9: 2569-2582.
    [197] Li B, Boast S, de los Santos K, et al. Mice deficient in Abl are osteoporotic and have defects inosteoblast maturation[J]. Nat Genet, 2000, 24: 304-308.
    [198] Schwartzberg P L, Stall A M, Hardin J D, et al. Mice homozygous for the ablm1 mutation show poor viability and depletion of selected B and T cell populations[J]. Cell, 1991, 65: 1165-1175.
    [299] Tybulewicz V L J, Crawford C E, Jackson P K, et al. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene[J]. Cell, 1991, 65: 1153-1163.
    [200] Van Oers N S, Killeen N, Weiss A. ZAP-70 is constitutively associated with tyrosine-phosphorylated TCRεin murine thymocytes and lymph node T cells[J]. Immunity, 1994, 1: 675–685.
    [201] Marie Christine Be′ne′, What Is ZAP-70? Clinical Cytometry (Cytometry Part B), 2006, 70B: 204-208.
    [202] Jin L, Pluskey S, Eugene C, The three-dimensional structure of the ZAP-70 kinase domain in complex with staurosporine: implications for the design of selective inhibitors[J]. J Biol Chem, 2004, 279: 42818-42825
    [203] Van Oers N S, Weiss A. The Syk/ZAP-70 protein tyrosine kinase connection to antigen receptor signalling processes[J]. Semin Immunol, 1995, 7: 227-236.
    [204] Mustelin T, Tasken K. Positive and negative regulation of T-cell activation through kinases and phosphatases[J]. Biochem J, 2003, 371: 15-27.
    [205] Pacini S, Ulivieri C, Di Somma M M, et al. Tyrosine 474 of ZAP-70 is required for association with the Shc adaptor and for T-cell antigen receptordependent gene activation[J]. J Biol Chem, 1998, 273: 20487-20493.
    [206] Wange R L, Guitian R, Isakov N, et al. Activating and inhibitory mutations in adjacent tyrosines in the kinase domain of ZAP-70[J]. J Biol Chem, 1995, 270: 18730-18733.
    [207] Di Bartolo V, Mege D, Germain V, et al. Tyrosine 319, a newly identified phosphorylation site of ZAP-70, plays a critical role in T cell antigen receptor signaling[J]. J Biol Chem, 1999, 274: 6285-6294.
    [208] Di Bartolo V, Malissen M, Dufour E, et al. Tyrosine 315 determines optimal recruitment of ZAP-70 to the T cell antigen receptor[J]. Eur J Immunol, 2002, 32: 568-575.
    [209] Kong G, Dalton M, Wardenburg J B, et al. Distinct tyrosine phosphorylation sites in ZAP-70 mediate activation and negative regulation of antigen receptor function[J]. Mol Cell Biol, 1996, 16: 5026-5035.
    [210] Muljo S A, Schlissel M S, Pre-B and pre-T-cell receptors: Conservation of strategies in regulating early lymphocyte development[J]. Immunol Rev, 2000, 175: 80-93.
    [211] Clements J L, Boerth N J, Lee J R, et al. Integration of T cell receptor-dependent signaling pathways by adapter proteins[J]. Annu Rev Immunol, 1999, 17: 89-108.
    [212] Elder M E, Lin D, Clever J, et al. Human severe combined immunodeficiency due to a defect in ZAP-70, a T cell tyrosine kinase[J]. Science, 1994, 264 (5165): 1596-1599.
    [213] Chen L, Widhopf G, Huynh L, et al. Expression of ZAP-70 is associated with increased B cell receptor signaling in chronic lymphocytic leukemia[J]. Blood, 2002, 100: 4609-4614.
    [214] Durig J, Nuckel H, Cremer M, et al. ZAP-70 expression is a prognostic factor in chronic lymphocytic leukemia[J]. Leukemia, 2003, 17: 2426-2434.
    [215] Orchard J A, Ibbotson R E, Davis Z, et al. ZAP-70 expression and prognosis in chronic lymphocytic leukaemia[J]. Lancet, 2004, 363: 105-111.
    [216] Wiestner A, Rosenwald A, Barry T S, et al. ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile[J]. Blood, 2003, 101: 4944-4951.
    [217] Boyum A, Lovbaug D, Tresland L, et al. Separation of leukocytes: improved cell purity by fine adjustments of gradient medium density and osmolality[J]. Scand J Immunol, 1991, 34: 697-712.
    [218] Jaffe E A, Nachman R L, Becker C G, et al. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria[J]. J Clin Invest, 1973, 52: 2745-2764.
    [219] Methi T, Ngai J, Mahic M, et al. Short-interfering RNA-mediated Lck knockdown results in augmented downstream T cell responses[J]. J Immunol, 2005, 175: 7398-7406.
    [220] Chen C, Shang X, Xu T, et al. c-Abl is required for the signaling transduction induced by L-selectin ligation[J]. Eur J Immunol, 2007, 37: 3246-3258.
    [221] Butcher E C, Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity[J]. Cell, 1991, 67: 1033-1036.
    [222] Springer T A, Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm[J]. Cell, 1994, 76:301-314.
    [223] Blanks J E and Vestwebre D, Mechanisms that regulate the function of the selectins and their ligands[J]. Physiol Rev, 1999, 79: 181-213.
    [224] Spertini O, Luscinskas F W, Kansas C S, et al. Leukocyte adhesion molecule-1 (LAM-1, L-selectin) interacts with an inducible endothelial cell ligand to support leukocyte adhesion[J]. J Immunol, 1991, 147: 2565-2573.
    [225] Ley K, Tedder T F, Kansas C S, L-selectin can mediate leukocyte rolling in untreated mesenteric venules in vivo independent of E- or P-selectin[J]. Blood, 1993, 82: 1632-1638.
    [226] Tedder T F, Steeber D A, Pizcueta P, L-selectin-deficient mice have impaired leukocyte recruitment into inflammatory sites[J]. J Exp Med, 1995, 181: 2259-2264.
    [227] Alon R, Chen S, Puri K D, et al. The kinetics of L-selectin tethers and the mechanics of selectin-mediated rolling[J]. J Cell Biol, 1997, 138: 1169-1180.
    [228] Tsang Y T, Neelamegham S, Hu Y, et al. Synergy between L-selectin signaling and chemotactic activation during neutrophil adhesion and transmigration[J]. J Immunol, 1997, 159: 4566-4577.
    [229] Han J, Das B, Wei W, et al. Lck regulates Vav activation of members of the Rho family of GTPases[J]. Mol Cell Biol, 1997, 17: 1346-1353.
    [230] Kabouridis P S, Selective interaction of LAT (linker of activated T cells) with the open-active form of Lck in lipid rafts reveals a new mechanism for the regulation of Lck in T cells[J]. BioChem J, 2003, 371: 907-915.
    [231] Taagepera S, McDonald D, Loeb J E, et al. Nuclear-cytoplasmic shuttling of c-Abl tyrosine kinase[J]. Proc Natl Acad Sci USA, 1998, 95: 7457-7462.
    [232] Negishi I, Motoyama N, Nakayama K I, et al. Essential role for ZAP-70 in both positive and negativeselection of thymocytes[J]. Nature, 1995, 376: 435-438.
    [233] Williams B L, Schreiber K L, Zhang W, et al. Genetic evidence for differential coupling of Syk family kinases to the T-cell receptor: reconstitution studies in a ZAP-70-deficient Jurkat T-cell line[J]. Mol Cell Biol, 1998, 18:1388-1399.
    [234] Lupher M L J, Songyang Z, Shoelson S E, et al. The Cbl phosphotyrosine-binding domain selects a D(N/D)XpY motif and binds to the Tyr292 negative regulatory phosphorylation site of ZAP-70[J]. J Biol Chem, 1997, 272: 33140-33144.
    [235] Katzav S, Sutherland M, Packham G, et al. The protein tyrosine kinase ZAP-70 can associate with the SH2 domain of proto-Vav[J]. J Biol Chem, 1994, 269: 32579-32585.
    [236] Wu J, Zhao Q, Kurosaki T, et al. The Vav binding site (Y315) in ZAP-70 is critical for antigen receptor-mediated signal transduction[J]. J Exp Med, 1997, 185: 1877-1882.
    [237] Williams B L, Irvin B J, Sutor S L, et al. Phosphorylation of Tyr319 in ZAP-70 is required for T-cell antigen receptor-dependent phospholipase C-γ1 and Ras activation[J]. EMBO J, 1999, 18: 1832-1844.
    [238] Lee-Fruman K K, Collins T L, Burakoff S J, Role of the Lck Src homology 2 and 3 domains in protein tyrosine phosphorylation[J]. J Biol Chem, 1996, 271: 25003-25010.
    [239] Woodring P J, Meisenhelder J, Johnson S A, et al. c-Abl phosphorylates Dok1 to promote filopodia during cell spreading[J]. J Cell Biol, 2004, 165: 493-503.
    [240] Woodring P J, Litwack E D, O'Leary D D, et al. Modulation of the F-actin cytoskeleton by c-Abl tyrosine kinase in cell spreading and neurite extension[J]. J Cell Biol, 2002, 156: 879-892.