用户名: 密码: 验证码:
2K-H型摆线针轮行星传动性能理论的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋转手柄式座椅调角器为一齿差2K-H针摆行星传动机构,它将调角功能和自锁功能集于一体,结构紧凑、操作方便、调节力矩小、调节精度高,且较利于改为电机驱动,广泛用于各型轿车、面包车座椅椅背角度的无级调节。
     由于该机构使用要求为低的调节力矩和高的自锁力矩,而调节力矩和自锁力矩是相互制约的,因而必须在传动性和自锁性之间建立一个平衡。本论文的工作就是要建立符合实际工况的正、逆传动输出力矩与运动学参数间关系的精确的数学模型,以期在理论指导下进行产品的优化设计,使其在满足自锁性能的基础上最大限度地增强调节功能。
     提出以实际齿廓公法线方向的距离为齿侧间隙的新定义,据此提出移距修形摆轮和数控加工摆轮在传动中的齿侧间隙和几何转角的精确计算方法,计算调角器实际啮合参数,啮合状态仿真有效说明方法的正确性。进一步研究修形量、修形方式、加工步长对啮合特性的影响,得出有价值的结论。
     对2K-H针摆行星传动机构进行力学分析,建立考虑齿廓间摩擦、轴承摩擦、齿廓弹性变形及部件重量的有隙啮合状态的力学模型,修改齿廓间作用力和变形的线性关系,建立输出力矩与输入力矩和运动学参数间的关系。通过调角器静力学实验,验证计算模型的正确性。
     对2K-H针摆行星轮系的转化机构建立效率计算的数学模型,计算调角器机构正逆传动效率,在效率测试仪上进行调角器转化机构的效率测试,试验结果证明效率模型的正确性。
     利用所建立的力学模型和效率模型,分析影响传动性能的相关因素,提出提高自锁力矩降低驱动力矩的有效方法。提出根据拟定的啮合位置进行齿廓修形的新方法。并用该方法对汽车座椅调角器自锁性能进行改进。
     上述研究成果集中于用Matlab编制的2K-H针摆行星传动设计软件,可供用户在设计中,根据结构参数进行齿侧间隙、空回转角及驱动力矩和自锁力矩的计算,为进一步参数优化与齿形优化提供计算基础。
The one-tooth-difference 2K-H cycloid-needle planetary transmission mechanism is used extensively for continuous adjustment of the seat back angle on various automobiles. The mechanism provides both the angle-adjusting function and the self-locking function. It also features a compact structure, ease of operation, a small adjusting moment, a high precision of adjustment, and the adaptability to being motor-driven.
     For the purpose of seat back angle adjustment, the transmission mechanism must have both properties of a small adjusting moment and a large self-locking moment. The two requirements, however, in general conflict with each other and a balance between the driving or adjusting performance and the self-locking performance has to be carefully achieved. The dissertation is devoted to build an accurate mathematical model that describes the dependence of the positive and the negative output moments on the kinematic parameters of the transmission mechanism. Such a model provides a theoretical basis to design optimization in order to maximize the adjusting performance while maintaining self-locking performance.
     A new definition of the backlash between gear teeth is proposed for the first time. The backlash is defined as the minimum distance between the teeth of a pair of gears in the direction of their common normal. Based on this definition, a method is presented for calculating the backlashes and the geometrical angles for theoretically modified tooth profiles and for tooth profiles fabricated by CNC machines. It is used for calculating actual the number of teeth at meshing. The method is tested with simulations of meshing states and is used to investigate the effects of tooth profile modifications and machining steps on the performance meshing.
     Based on the mechanical analysis of the 2K-H cycloid-needle planetary transmission mechanism, a model for the meshing state with backlash is proposed. The model, which takes into account of the friction between tooth profiles and the friction at bearings and elastic deformation of meshing teeth profile and the weights of accessories, corrects the linear relationship of force and deformation between meshing teeth profile, relates the output moment with input moment and kinematic parameters. The model is verified by comparing with static measurements on the angle-adjusting mechanism.
     A mathematical model of the instantaneous and average efficiencies of the conversion mechanism of the original 2K-H epicycle gear train is proposed, and is used for calculating the mechanical efficiency of both the positive and the negative transmissions. The calculated efficiencies of the conversion mechanism of the angle adjustor are in good agreement with experimental measurements. The output moments inferred from the efficiency model are consistent with the direct calculations using the method proposed in 2.
     The effects of various factors on the performances of the transmission mechanism are analyzed using the models proposed in 2 and 3. Effective measures to increase the self-locking moment and/or to reduce the adjusting moment are presented. A new method of tooth profile modification, i.e., modifying teeth according to the meshing position, is proposed and is used to improve the self-locking performance of a rotary-handle angle-adjusting mechanism for automobile seat backs.
     A MATLAB software package that integrates all work mentioned above is developed. The package is used for the design of the 2K-H cycloid-needle planetary transmission mechanism. It calculates the adjusting moment, the self-locking moment, tooth backlashes, and void angles from known kinematic parameters. The package provides a basis for further design optimization such as the optimization of kinematic parameters and the optimization of the tooth profile modification.
引文
[1] R.H.Macmillan. Epicyclic gear efficiencies. The Engineer ,1949,23:727-728
    [2] R.H.Macmillan. Power flow and loss in differential mechanisms. Journal of Mechanical Engineering Sciences, 1961,3: 37~41
    [3] E.I.Razimovsky. A simplified approach for determining power losses and efficiencies of planetary gear drive. Machine Design,1956,9:101~110
    [4] E.I.Radzimovsk. How to find efficiency, speed and power losses in planetary gear drives. Machine Design, 1959, 11: 144~153
    [5] H.J.Glover. Efficiency and speed-ratio formulas for planetary gear system. Product Engineering, 1965, 27:72~79
    [6] .H.Macmillan, P.BDavies. Analytical study of systems for bifurcated power transmission. Journal of Mechanical Engineering Sciences, 1965,1: 40~47
    [7] D.J.Sanger. The Determination of power flow in multiple-path transmission systems. Mechanism and Machine Theory. 1972(1): 103~109
    [8] H.W.Müller, Epicyclic drive trains:analysis, synthesis and applications.Wayne State University Press,1982.
    [9] D.Yu, N.Beachley. On the mechanical efficiency of differential gearing. Transactions of the ASME, Journal of Mechanisms, Transmissions, and Automation in Design, 1985,1: 61~67
    [10] J.Looman. Analyse der planet engetriebe, Verein Deutscher Ingenieure, Bericht, 1988,No672: 1~14.
    [11] A.Hedman. Mechanical transmission systems—A general computer based method of analysis. Chalmers University of Technology, Division of Machine Elements, Goteborg , 1988
    [12] Blanche J G..Design and application guidelines for cycloid drives with machining tolerances[J].Mechanism and Machine Theory,1990,25(5):487-501.
    [13] L.Saggere, D.G..Olson. A simplified approach for force and power-flow analysis of compound epicyclic spur-gear trains. Transactions of the ASME, Journal of Advances in Design Automation. 1992,2: 83~89
    [14] E.Pennestri, On the Automatic Design Analysis of Gear Trains. Doctoral Dissertation,Columbia University, Available from U.M.I., Order n.9127952.
    [15] E.Pennestri, F.Freudenstein. A System approach to power-flow and static force analysis in epicyclic spur gear trains. Transactions of the ASME, Journal of Mechanical Design. 1993,3: 639~644
    [16] E.Pennestri, F.Freudenstein. The mechanical efficiency of epicyclic gear trains. Transactions of the ASME, Journal of Mechanical Design. 1993,3: 645~651
    [17] A.Hedman, Transmission analysis: automatic derivation of relationships, ASME Journal of Mechanical Design, 1993,115:1031-1037.
    [18] H.I.Hsieh, L.W.Tsai. Kinematic analysis of epicyclic type transmission mechanisms using the concept of fundamental geared entities. Transactions of the ASME, Journal of Mechanical Design. 1996,2: 294~299
    [19] H.I.Hsieh, L.W.Tsai. The selection of a most efficient clutching sequence associated with automatic transmission mechanisms. Transactions of the ASME, Journal of Mechanical Design. 1998(4): 514~519
    [20] Litvin F L.Computerized design and generation of cycloid gearings.Mechanism and Machine Theory,1996,31:891-911
    [21] L.Tian,L.Li-qiao, Matrix system for the analysis of planetary transmissions, ASME Journal of Mechanical Design,1997,119:333-337
    [22] R.Mathis, Y.Remond, A new approach to solving the inverse problem for compound gear trains, ASME Journal of Mechanical Design ,1999, 121: 98-106.
    [23] J.M. Del Castillo, Symbolic computation of planetary gear train efficiency.in: European Congress on Computational Methods in Applies Sciences and Engineering CIMNE, Barcelona, 2000.
    [24] J.M. Del Castillo, The analytical expression of the efficiency of planetary gear trains, Mechanism and Machine Theory ,2002, 37:197~214.
    [25] BH.Кудряцев,Планетарныепередачи,Машиностроение(Russian),1966
    [26] B.H.柯特略者夫.行星齿轮传动.陈德键等译.上海:上海科学技术出版社,1972年
    [27] B.H.库德洛甫采夫等著.江耕华,顾永寿译.齿轮减速器的结构与计算.上海:上海科学技术出版社.1982
    [28]东北工学院机械零件设计手册编写组.机械零件设计手册(中册).北京:冶金工业出版社, 1982年
    [29]罗名佑著.行星齿轮机构.北京:高等教育出版社,1984年.
    [30] BH.库德里亚夫采夫, IO.H基尔佳舍夫等著.行星齿轮传动手册.陈启松译.北京:冶金工业出版社,1986年12月第一版.
    [31]成大先.机械设计手册(第二卷).北京:化学工业出版社,1993年.
    [32]饶振纲.行星传动机构设计(第二版)[M].北京:国防工业出版社,1994.
    [33]贾宝贤.计算2K-H型行星轮系效率的简便公式.机械设计,1992(1): 35~36
    [34]杨照山、陈明. 2K-H型中内啮合齿轮的啮合效率计算.中国纺织大学学报,1997(2): 82~87
    [35] Yang Zhaoshan, Chen Ming. The Mesh Efficiency of the Planetary Mechanism of 2K-H Style. Journal of China Textlle University(Eng.Ed.).1998,Vo1.15,No.3: 85~67
    [36]杨慧香.闭式行星传动效率计算公式的研究.机械传动,1998第22卷第2期: 6~8
    [37]杨慧香.闭式行星传动效率的计算.现代机械,2004(1): 30~31
    [38]周欣. 2K-H型封闭式周转轮系的效率计算.机械设计,1998(3): 39~41
    [39] Zhou xin etc. How to Judge the Power-Flow Type of H Closed Epicyclic Gear train. Proceedings of the Second China/Japan International Symposium on Machine Elements. Beijing: International Academic Publishers. 1996(5): 230~233
    [40]贾宝贤等. 2K-H差动轮系的功率流向与啮合效率.机械设计,1999(5): 33~36
    [41]段钦华,杨实如.2K-H型轮系效率公式的推导及应用.机械设计,2001(1), No.l:33~35
    [42]杨实如.2K-H型轮系效率公式的研究.成都大学学报(自然科学版), 2001(3), Vol.20, No.1: 20~23
    [43]杨平.卫星齿轮传动的分析与设计[J].机械科学与技术,1996( 6):892- 896.
    [44]段钦华,杨实如.复杂周转轮系的单元求解法.机械设计与研究. 2001(1): 55~ 56
    [45]杨实如.卫星齿轮传动的单元分析法.机械设计,2003(8),Vol.20, No.8:46~47
    [46]杨实如,段钦华.周转轮系的离散分析法.机械科学与技术, 2004(5), Vol. 23, No.5: 562~564
    [47]杨实如,段钦华.封闭式周转轮系的结构与功率流研究.煤矿机械,2003(11): 42~44
    [48]那荣华.行星轮效率计算的偏导数法.现代机械,1989(3)
    [49]王述彦.行星轮系效率及自锁分析.机械科学与技术,2000(1): 60~63
    [50]韩继光,白立群,周欣.差动轮系的传动比与自锁问题的研究.机械设计,2002(11),No.11: 17~20
    [51]韩继光,董广强.差动轮系自锁条件的研究.徐州师范大学学报(自然科学版),2003(6),Vol.21,No.2: 26~28
    [52]杨实如.周转轮系的内力与自锁.成都大学学报(自然科学版), 2002(3), Vol. 21, No. 1:31~35
    [53]杨实如,段钦华.周转轮系的内力矩、功率流与自锁.机械科学与技术, 2004(2), Vo1.23, No.2:189~192
    [54]沈阳机电学院机械设计基础教研室编译.摆线针轮行星传动(译文).北京:科学出版社,1977年8月第一版。
    [55]郑州工学院.摆线针轮行星传动.北京:科学出版社,1978年2月第一版。
    [56] Chandrupatla T. R, Belegundu A. D. (1991) Introduction to FEM in engineering. Prentice Hall, London.
    [57] Chmurawa M. Distribution of loads in cycloidal planetary gear:International Conference" Mechanics'99, Kaunas University,Lithuania,1999
    [58] Chmurawa M, John A, Kokot G. (1999) The influence of numerical model on distribution of loads and stress in cycloidal planetary gear. Proc. International Scientific Colloquium Cax Techniques, Bielefeld, Germany.
    [59] Kuen-Bao TSHheu, Chen-Fu TCHhang, TSHhen-TarngH TChiou, THTa-ShiTH Lai. Kinetostatic analysis of cycloid drives. Journal of the Chinese Society of Mechanical Engineers, Transactions of the Chinese Institute of Engineers, Series C , v 24, n 6, December, 2003, p 571~581
    [60] Chang. S L, Studies on epitrochoid gear for cycloid drives, Chinese Journal of Mechanics, Series A. Vol. 19, no. 2, pp. 271-278. June 2003
    [61] D.W. Botsiber, L. Kingston, Design and performance of the cycloid speed reducer, Machine Design ,1956, 28 : 65~69
    [62] S.K. Malhotra, M.A. Parameswaran, Analysis of a cycloid speed reducer, Mechanism and Machine Theory,1983,18 (6): 491–499.
    [63] Lehmann M. Berechnung and Messung der Krafte in einen Zykloiden -Kurvenschieben Getriebe. Dissertation.Technische Universtaet Muenchen, 1976.
    [64] Lehmann M.摆线传动论文集.精密工程技术与测量技术,1980 (7): 1~88.
    [65] Birkholz.H. Drehzahlpruefung von Cycloid-Getrieben. IMW-Institutsmitteilung Nr. 2002(27):67~70
    [66] J.G. Blanche, D.C.H. Yang, Cycloid drives with machining tolerances, ASME Journal of Mechanisms,Transmissions, and Automation in Design,1989,111: 337–344
    [67] D.C.H.Yang, J.G. Blanche. Design and application guidelines for cycloid drives with machining tolerances. Mechanism and Machine Theory ,1990, 25 (5): 487–501
    [68] F.L.Litvin. Theory of gearing. Second ed., Nauka, Moscow, 1968(in Russian).
    [69] F.L.Litvin. Gear Geometry and Applied Theory, PTR Prentice Hall, Englewood Cliffs, 1994
    [70] F.L.Litvin, P.H. Feng. Computerize design and generation of cycloidal gearing, Mechanism and Machine Theory ,1996, 31 (7): 891~911
    [71] V.Daniele, D.Alberto, A. John, F.L.Litvin. Geometry of a cycloidal pump, Computer Methods in Applied Mechanics and Engineering .2001,190(18-19): 2309~2330
    [72] D.Alberto, V.Daniele, F.L.Litvin, N.Nicola, M.Salvatore. Design and simulation of meshing of a cycloidal pump. Mechanism and Machine Theory. 2002, 37(3): 311~332
    [73] H.S.Yan, T.S. Lai. Geometry design an elementary planetary gear train with cylindrical tooth-profiles, Mechanism and Machine Theory, 2002, 37 (8):757~767.
    [74] X. Li, W. He, L. Li, L.C. Schmidt, A new cycloid drive with high-load capacity and high efficiency, ASME Journal of Mechanical Design,2004,126:683–686
    [75] J.H.Shin, S.M.Kwon. On the lobe profile design in a cycloid reducer using instant velocity center,Mechanism and Machine Theory, 2006, 41:596~616
    [76]李力行.摆线针轮行星传动的齿形修正及受力分析.机械工程学报, 1986,Vol.22(1):P40~P49
    [77] Li Lixing Guan Tianrnin etc. The computer aided design of cycloid drive. CHINESE JOURNAL OF MECHANICAL ENGINEERING. 1990. 3(2): 221~231.
    [78]关天民,赵岩.摆线针轮行星传动的齿面接触力的精确分析方法.面向21世纪的工程设计,人民交通出版社,1998: 225~228
    [79]赵岩,关天民.针摆传动转角组合修形下的受力分析新方法.机械设计与制造, 1999, No. 3 : 45~46
    [80]关天民,万朝燕.三片摆线轮新型针摆传动理论及其受力分析.大连铁道学院学报,1999(3): 48~51
    [81]关天民.摆线针轮行星传动销孔式输出机构受力的准确计算方法[J].机械传动,2000,24(3):4~11
    [82]孙英时,关天民,王国顺,刘莉.多齿差摆线针齿行星传动受力分析. 2001(6), Vo1.22,No.2:23~26
    [83]关天民,孙英时.超小型摆线针轮行星传动及其受力分析.机械设计与制造,2001(3):
    [84]关天民等.二齿差摆线针轮行星传动的受力分析.机械工程学报,2002,Vol.38(3):59~63
    [85] T M Guan. Force analysis considering manufacture error of pin-hole-output mechanism in cycloid drive. Chinese Journal of Mechanical Engineering (English Edition). 2002,Vol.15, No.2:142~144
    [86]关大民,张东生,雷蕾. FA新型摆线针轮行星传动受力分析方法与齿面接触状态有限元分析.机械设计,2005(3),Vol.22,No.3:31~34
    [87]王文藻.摆线行星齿轮传动的受力分析.研究开发,2001(8): 29~31
    [88]段钦华,杨实如.摆线针轮行星减速器的变形计算.成都大学学报(自然科学版) ,2000(6), Vol. 19 No. 2:34~40
    [89]王保民.关于摆线特性的研究.机械科学与技术,2002(1): 61~62
    [90]李祖踏等.封闭差动式传动啮合效率的敏感性分析.机械科学与技术,1999(2): 265~266
    [91]关天民.针摆传动理论啮合效率公式的推导[J].机械设计与制造,2001,7(3):48~49.
    [92]李力行,关天民,王子孚.大型摆线针轮行星传动的合理结构和齿形.机械工程学报,1988(3):24~28, 32
    [93]李力行,洪淳赫.摆线针轮行星传动中摆线轮齿形通用方程式的研究.大连铁道学院学报,1992(1): 7~12
    [94]关天民.摆线针轮行星传动中摆线轮最佳修形量的确定方法.中国机械工程,2002(10): 811~814
    [95]张世安.摆线针轮行星传动中摆线轮最佳修形量的分析与计算.机械科学与技术,2002(6): 906~908
    [96]赵岩,关天民.各种修形方式下摆线针轮行星传动的齿侧间隙.面向21世纪的工程设计,人民交通出版社,1998: 221~224
    [97]姚文席,梁哲.摆线针轮减速机的齿廓啮合间隙分布.机械设计,2001(5): 22~25
    [98]于影.修正摆线轮啮合初始间隙分布规律的研究.机械设计与研究,2005,Vol.21(5):98~100
    [99]吴永宽,郑剑云等.摆线针轮行星传动的几何回差分析计算.大连铁道学院学报,1999(6): 28~32
    [100]关天民.摆线针轮行星传动中修形所产生的回转误差计算与分析.组合机床与自动化加工技术,2001(10): 15~18
    [101]关天民,张东生. FA针摆传动回转精度分析.机械设计与制造, 2004(6), No.3:90~91
    [102]单丽君,关天民.摆线针轮行星传动动态理论回转误差计算与分析.机械传动,2002,26(2): 29-32
    [103]林菁,张钰.摆线针轮传动输出转角滞后分析.东北大学学报(自然科学学报),1996, 17(1):110~113
    [104]姚文席.摆线针轮行星减速机的传动误差分析.机械传动,1998, 22(4): 14~18.
    [105] Li Lixing, Guan Tianmin etc. The new optimum tooth profile of the cycloid gear and the CAD of cycloid drive. Ninth world congress on the theory of machines and mechanisms(IFTOMM), August 29,September2, 1995, Millano, Italy: 355~359.
    [106]何卫东.机器人用高精度RV减速器中摆线轮的优化新齿形.机械工程学报,2000(3).
    [107]万朝燕,李力行.摆线针轮行星传动的参数优化.大连铁道学院学报.1992(1): 42~47
    [108]万朝燕,兆文忠,李力行.一齿差摆线针轮减速器针齿壳内曲线参数优化.机械工程学报, 2003(6):28~32
    [109]王述彦,马鹏飞. 2K-H型行星齿轮系传动的优化设计.设计研究,2002(5): 36~38
    [110]裘建新.长幅外摆线行星传动学研究及齿廓圆弧优化替代上海交通大学学报,2004,38(6):727~931.
    [111]曲继方,安子军.密珠摆线球齿传动研究[[J].机械工程学报,1994, 7(1): 17~22
    [112]安子军,曲志刚,张荣贤。摆线钢球传动的齿形综合研究[[J].机械工程学报,1996, 9(5):33~38
    [113]周建军,陈子辰.摆线钢球行星传动接触疲劳强度研究[A]. The 4th International Conference Frontiers of Design and Manufacturing [C],2000: 51~ 58
    [114] Jianjun Zhou, Zichen Chen. Performance of a Full Complement Ball cycloid Drive [C]. ICME' 2000 Shanghai, 2001:436~437
    [115] Jianjun Zhou, Zichen Chen. Computerized Design of Cycloidal Gear Drive with Improved Gear Tooth Modification [C]. ICMT' 2001, Chongqing 2001:167170
    [116] Jianjun Zhou, Zichen Chen. Study and Performance Test of Full Complement Cycloidal Ball Reducer with Ceramic Balls as its Gear Teeth. CHINESE JOURNAL OF AERONAUTICS, 14(4), 2001:245~251.
    [117]李力行,何卫东等.机器人用高精度RV传动的研究.大连铁道学院学报,1999, 20(2): 1~11.
    [118] Weidong He, Lixing Li, Xin Li, Linda Schmidt. A New Drive with High-Load Capacity and High Transmission EfFciency. Proceedings of DETC'00 ASME 2000 Design Engineering Technical Conferences Computers and Information in Engineering Conference, Baltimore, Maryland, September 10~13, 2000.
    [119]谢存禧,唐剑刚,涂帼芳.双摆线滚子行星减速器CAD系统.中国机械工程1994,,Vol.5, No.3:26~28
    [120]李海涛,魏文军.摆线齿锥齿轮齿面接触区的计算机辅助分析.中国农业大学学报,2004, 9(5): 45~50.
    [121]国家客车质量监督检测中心.汽车座椅调角器基本性能要求及检测方法.客车技术与研究,1999(4): 43~45
    [122] TJL11捷达座椅调角器.机电新产品导报,2000(9-10): 136
    [123]关天民,FA型摆线针轮行星传动齿形优化方法与相关理论的研究。大连交通大学,博士论文,2005年6月
    [124]齿轮传动设计手册.化学工业出版社, 2002:766~820
    [125]成大先.机械设计手册(第二卷).北京:化学工业出版社,1993
    [126]费迪南得P.比尔,E.罗素约翰斯顿Jr.等编.北京:机械工业出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700