混凝土结构内部异常超声成像技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声检测方法具有穿透能力强,检测设备简单,操作方便,检测成本低廉等优点,在工程上已经得到广泛应用,尤其在混凝土大坝、桥梁、道路和房屋等大体积混凝土质量检测中应用更广。
     超声成像技术在现代工业无损检测中具有重要地位,已成为定量检测的重要手段。本文旨在进行混凝土结构内部异常的超声成像技术研究,致力于提高这项技术的成像分辨率,使其更加可靠、实用。在分析超声成像理论的基础上,应用合成孔径技术(SAFT)的一般原理,从多个方面进行了混凝土结构超声成像技术的研究,总结出了一些能够有效提高成像分辨率的方法,文中主要研究工作内容有以下几个方面:
     (1)对本文的研究背景和研究方向进行概述,通过比较各种成像方法,确定了本文的研究方向;
     (2)根据合成孔径聚焦技术思想编写了SAFT成像算法,为了解决低频检测信号在聚焦时出现的波包变形问题和减少成像算法的运算量,引入波包分解技术(WDT),对SAFT成像算法进行改进,能够有效的解决上述问题,并采用数值仿真验证了成像算法的使用效果;
     (3)应用成像算法进行了水浸探测成像实验,通过所建立的超声探测系统对三种超声激励信号的检测效果进行了研究;
     (4)针对超声传感器的窄带频响特性,提出了一种数字补偿滤波方法。通过建立传感器系统模型求得数字补偿滤波器,对探测信号进行矫正和恢复,可以有效提高图像的时空分辨率;
     (5)根据探测要求建立了混凝土超声探测系统,并浇铸了几块混凝土试件供实验系统做实际混凝土探测实验;在实验中,提出了一整套对检测信号进行预处理的方案,能够有效抑制和消除实际B扫描探测信号中的各种噪声和一些干扰信号,从而改善信噪比,提高成像分辨率;
     (6)最后应用上述的各种方法对各混凝土试件进行成像显示,对成像结果逐个进行了分析和解释。通过对成像结果的对比,可以看出改进的SAFT成像算法的实际使用效果最佳,经过使用本文研究的检测数据处理方法后,能够有效提高成像分辨率。
Ultrasonic test method has many advantages, such as strong penetrability, compact devices, low cost, and has been wildly used in engineering test, and especially in quality measurement of large concrete structures, for instance concrete dam, bridge, road and building.
     Ultrasonic imaging technology has significant status in current NDT, and is an important method for quantitative test. This dissertation aim to research on ultrasonic imaging technology for abnormity inside concrete structures and enhance the imaging resolution and reliability and practicability. On the base of analysis of ultrasonic imaging theory and Synthetic Aperture Focusing Technique (SAFT), and several aspects have been studied and some approaches have been concluded to improve imaging resolution effectively. And main contents are as follow:
     (1)Firstly, it has been summarized research background and significance of this dissertation, and research direction has been confirmed by comparison of several imaging methods;
     (2)The algorithm has been programmed according to SAFT. To resolve the wavepacket distortion and decrease calculation, Wavepacket Decomposition Technique (WDT) is introduced here to improve the SAFT algorithm and solve these problems. And the effect of imaging algorithm is verified by numerical simulation.
     (3)Imaging experiment of water- immerging detection has been achieved with the algorithm, and the measurement effects of three excitation waveforms are researched through establishing ultrasonic detecting system;
     (4)A method based on digital compensation filtering is proposed for narrow-band frequency response characteristic of ultrasonic transducers. The digital compensation filter is designed by modeling the transducers system, which can correct and recover the received signals and enhance the spatiotemporal resolution of image effectively.
     (5)The ultrasonic test system for detection of concrete elements is built according to requirement and several concrete specimens is casted for experiment. In experiment, a set of methods are presented for preprocessing the detecting signals, which can restrain and remove the noise and some disturbing signals in B-scan data and improve the signal-to-noise ratio (SNR) and imaging resolution.
     (6)At last, the upper methods are applied to image the concrete specimens, and the results are been analyzed and explained. By comparison of imaging results, it can be found that the effect of SAFT algorithm is the best. After processing test data researched in this dissertation, the imaging resolution is enhanced effectively.
引文
[1]沈建中,李宗津,张之勇,土木工程中的无损检测技术及其应用,无损检测,2000,22(11):497~501。
    [2]林维正,从第15届世界无损检测会议看土木工程无损检测的进展,无损检测,2002,24(3),123~125。
    [3]朱清贵,谈混凝土无损检测技术,山西建筑,2005,31(4):31~32。
    [4] Abid Ali Shah,Yuri Ribakov,Non-destructive measurements of crack assessment and defect detection in concrete structures,Materials and Design,2007,22(5):1~9。
    [5] Faezeh Sh.A.Ghasemi,M.S. Abrishamian,A novel method for FDTD numerical GPR imaging of arbitrary shapes based on Fourier transform,NDT & International,2007,40(1):140~146。
    [6] Laurence J. Jacobs,Richard W. Whitcomb,Laser Generation and Detection of Ultrasound in Concrete,Journal of Nondestructive Evaluation,1997,16(2):57~65。
    [7] Takeshi Watanabe,Takashi Morita,Chikanori Hashimoto,et al,Detecting voids in reinforced concrete slab by SIBIE,Construction and Building Materials,2004, 18(3):225~231。
    [8]彭永恒,宋凤立,混凝土无损检测技术的发展与应用,大连民族学院学报,2003,5(3):52~54。
    [9]卢彭真,葛蔚敏,楼茂森,无损检测技术在道桥中的应用与发展,公路交通技术,2004,6(2):56~59。
    [10] TODA Katsuya,HATANAKA Hiroaki,HAYASHI oshitaka,et al,Diagnosis of concrete deterioration by nondestructive evaluation,IHI Engineering Review,2004,37(3):97~103。
    [11] Th. Voigt,Ch. U. Grosse,Z. Sun,et al,Comparison of ultrasonic wave transmission and reflection measurements with P- and S-waves on early age mortar and concrete,Materials and Sructures,2005,38(2):729~738。
    [12]余红发,混凝土非破损测强技术研究,北京:中国建材工业出版社,1999。
    [13]蔡中民等,混凝土结构试验与检测技术,北京:机械工业出版社,2005。
    [14]李家伟,陈积懋,无损检测手册,北京:机械工业出版社,2002。
    [15] J.M. Ndambi,J.Vantomme,K.Harri,Damage assessment in reinforced concrete beams using eigenfrequencies and mode shape derivatives,Engineering Structures,2002,24(6):501~515。
    [16] Brian Hobbs,Mohamed Tchoketch Kebir,Non-destructive testing techniques for the forensic engineering investigation of reinforced concrete buildings,Forensic Science International,2007,167(2):167~172。
    [17] Won-Bae Na,Tribikram Kundu,Inspection of interfaces between corroded steel bars and concrete using the combination of a piezoelectric zirconate-titanate transducer and an electromagnetic acoustic transducer,Society for Experimental Mechanics,2003,43(1):24~31。
    [18]黄鹏飞,姚燕,包亦望,钢筋混凝土结构服役性能在线无损检测现状和展望,工业建筑,2003,33(12):69~72。
    [19]董清华,混凝土无损检测方法评述,五邑大学学报(自然科学版),2005,19(1):53~57。
    [20]周明华,混凝土非破损检测方法的应用述评,施工技术,2002,31(4):24~25。
    [21]赵波,赵强,浅谈结构混凝土无损检测技术,山西建筑,2004,30(8):22~23。.
    [22] Krause M.,et al,Comparison of pulse-echo methods for testing concrete,ISNDT-CE, Berlin, Germany,1995,23(5):281~296。
    [23]顾轶东,林维正,苏航,冲击回波法在混凝土无损检测中的应用,无损检测,2004,26(9):468~471。
    [24]顾轶东,林维正,苏勇,冲击回波法测量混凝土厚度与缺陷,声学技术,1999,18(2):66~69。
    [25]宁建国,黄新,曲华等,冲击回波法检测混凝土结构,中国矿业大学学报,2004,33(6):703~707。
    [26]苏航,林维正,冲击回波检测方法及其在土木工程中的应用,无损检测,2003,25(2):81~83。
    [27]向阳,史习智,冲击回波信号的波形结构特征提取及分类研究,振动工程学报,2000,13(3):,462~467。
    [28]马民,余海龙,冲击回波信号的小波分析研究,重庆大学学报,1999,22(6):66~70。
    [29]赵国文,向阳,彭勇等,互相关和高阶谱时延估计在混凝土板冲击反射法测量中的应用,无损检测,2003,25(10):524~527。
    [30]罗骐先,傅翔,宋人心等,检测混凝土内部缺陷与厚度的冲击反射法及测试系统,公路,2001,3(6):55~58。
    [31]刘明贵,张杰,柴华友,敲击回波法中传感器影响的LTI系统理论分析,岩石力学与工程学报,2003,22(10):1689~1694。
    [32] Takeshi Watanabe,Takashi Morita,Chikanori Hashimoto,et al.,Detecting voids in reinforced concrete slab by SIBIE,Construction and Building Materials,2004,18(3):225~231。
    [33] Ninel Ata,Shinichi Mihara,Masayasu Ohtsu,Imaging of ungrouted tendon ducts in prestressed concrete by improved SIBIE,2007,40(9):258~264。
    [34]仝秋红,混凝土中超声波传播方式研究,中国公路学报,1998,11(2):16~23。
    [35]林维正,混凝土超声检测的进展,无损检测,2002,24(10):428~431。
    [36]林维正,混凝土超声检测的进展(续),无损检测,2002,24(11):478~483。
    [37]刘其伟,程跃辉,王键等,超声波无损检测的特点分析及其在混凝土缺陷评定中的应用,华东公路,2003,4(1):58~60。
    [38] Sandor Popovics,Johns Popovics,Effect of stresses on the ultrasonic pulse velocity in concrete,Materials and Structures,1991,24(22):15~23。
    [39]董清华,混凝土超声波、声波检测的某些进展,混凝土,2005,11(5):32~35。
    [40] Surgeon M.,Ono K., An evaluation of the performance of acoustic emission systems,Proceedings of 14th WCNDT,New Delhi,India:1996。
    [41]李卓球,方玺,水中和,混凝土检测中雷达和超声波成像效果比较,华中科技大学学报,2005,22(4):1~3。
    [42] Z.M. Sbartai,S. Laurens,J.P. Balayssac,Ability of the direct wave of radar ground-coupled antenna for NDT of concrete structures,NDT&E International,2006,39(3):400~407。
    [43]杨天春,吕绍林,王齐仁,探地雷达检测道路厚度结构的应用现状及进展,物探与化探,2003,1(4):1~4。
    [44]王治国,费元春,李熹,穿墙雷达中的动目标定位新方法,电讯技术应用,2006,6(3):9~11。
    [45]宋华,李禹,超宽带穿墙探测雷达的运动目标检测技术,电讯技术,2004,6(2):133~137。
    [46]胡长青,钢筋检测技术探讨,山西建筑,2005,31(4):36~38。
    [47]刘军,赵晓华,钢筋混凝土板的雷达波无损检测,汕头大学学报,2003,4(5):67~72。
    [48]陈义群,肖柏勋,论探地雷达现状与发展,工程地球物理学报,2005,2(2):149~155。
    [49] R.琼斯.I.费格瓦洛著,李光泽等译,砼非破损试验法,北京:中国建筑出版社,1982。
    [50] Martin Schickert,Ultrasonic NDE of Concrete,2002 IEEE Ultrasonics Symposium,739~747。
    [51]商涛平,童寿兴,混凝土裂缝深度的超声波检测方法研究,无损检测,2002,24(1):6~8。
    [52]严碧歌,袁益民,李泉臻,混凝土材料结构超声检测,西北大学学报,2002,32(1):20~22。
    [53]何柞镛,声学理论基础,北京:国防工业出版社,1981。
    [54]林维正,袁益镛,洪有根等,水泥混凝土路面质量的超声波无损检测,无损检测,1997,19(5):121~123。
    [55]刘卫东,张东芹,非金属材料超声检测的研究与开发,无损检测,1998,20(8):225~238。
    [56]全国锅炉压力容器无损检测人员资格考核委员会组织编写,超声波探伤,武汉:中国锅炉压力容器安全杂志社,1995。
    [57]袁易全,超声换能器,南京:南京大学出版社,1992。
    [58]王务同,蒋危平,超声波探伤换能器的重要性,无损检测,1995,17(1):1~5。
    [59]王务同,超声波探伤换能器及其性能要求,无损检测,1997,19(3):79~82。
    [60] Martin.Schickert , Martin Krause. Ultrasonic Imaging on Concrete Elements Using Reconstruction by Synthetic Aperture Focusing Technique,Journal of Materials in Civil Engineering,ASCE,2003,235~246。
    [61]庞勇,韩焱,超声成像方法综合,华北工学院测试技术学报,2001,15(4):280~284。
    [62]张俊哲,超声成像检测技术评述,无损探伤,1994,2(1):1~5。
    [63]应崇福主编,超声学,北京:科学出版社,1993。
    [64]潘士先,从X射线CT到超声衍射CT,应用声学,1987,6(2):23~27。
    [65]冯若,超声手册,南京:南京大学出版社,1999。
    [66]沈建中,超声成像技术及其在无损检测中的应用,无损检测,1994,16(7):234~238。
    [67]陈彦华,兰从庆,许克克,反射式超声计算机层析成像算法研究,声学学报,1992,17(4):12~16。
    [68]孙宝申,沈建中,合成孔径聚焦超声成像(一),应用声学,1992,12(3):43~48。
    [69]孙宝申,沈建中,合成孔径聚焦超声成像(二),应用声学,1993,12(5):39~44。
    [70]孙宝申,沈建中,合成孔径聚焦超声成像(三),应用声学,1994,12(5):39~44。
    [71]孙宝申,张凡,沈建中,合成孔径聚焦声成像时域算法研究,声学学报,1997,22(1):42~49。
    [72]牟永光,地震勘探资料数字处理方法,北京:石油工业出版社,1981。
    [73]李为杜,混凝土无损检测技术,上海:同济大学出版社,1989。
    [74]黄靓,混凝土超声CT的数值模拟与试验研究,湖南大学硕士学位论文,2003。
    [75]王仲生,万小朋,贺尔铭等,无损检测诊断现场实用技术,北京:机械工业出版社,2002。
    [76]何岷,周荫清,陈杰等,基于星载平台的SAR实时成像处理实现方法,宇航学报,2006,27(5):892~896。
    [77]孙泓波,顾红,苏卫民等,机载合成孔径雷达成像算法研究,系统工程与电子技术,2001,23(9):90~94。
    [78]保铮,邢孟道,王彤,雷达成像技术,北京:电子工业出版社,2005。
    [79]刘纪元,唐劲松,孙宝申等,合成孔径声呐成像自聚焦方法研究,声学学报,2003,28(2):151~154。
    [80] M.Schickert,Ultrasonic NDE of Concrete,Proc. of 2002 IEEE Ultrasonics Symposium,NewYork,Institute of Electrical and Electronics Engineers (IEEE),2002,718~727。
    [81] V. Schmitz,S. Chakhlov,W. Müller,Experiences with Synthetic Aperture Focusing Technique in the Field,Ultrasonics,2000,38(8):739~744。
    [82] Kroggel O.,Schnapp J.,Schickert M.,Statistical Evaluation of Ultrasound Images Of ConcreteStructures,British Institute of Non-Destructive Testing,2002,45(12):853~859。
    [83] Kazys R.,Svilainis L.,Analysis of Adaptive Imaging Algorithms for Ultrasonic Non-destructive Testing,Ultrasonics,1995,33(1):19~30。
    [84] Phanidhar Anugonda,Joshua S. Wiehn,Joseph A.Turner,Diffusion of Ultrasound in Concrete,Ultrasonics,2001,39(6):429~435。
    [85] Jean-Fran?ois Chaix,Vincent Garnier,Gilles Corneloup,Ultrasonic wave propagation in heterogeneous solid media:Theoretical analysis and experimental validation,Ultrasonics,2006,44(2):200~210。
    [86] Pier Paolo Delsanto,Sigrun Hirsekorn,A Unified Treatment of Nonclassical Nonlinear Effects in the Propagation of Ultrasound in Heterogeneous Media,Ultrasonics,2004,42(1):1005~1010。
    [87] Martin Schickert,Progress in ultrasonic imaging of concrete,Materials and Structures,2006,35(3):1~10。
    [88] Mustafa Karaman,Pai Chi Li,Malthew O’Donnell,Synthetic aperture imaging for small scale system,IEEE Transactions on ultrasonics ferroelectrics and frequency control,1995,42(3):429~442。
    [89] P. Acevedo,M. Fuentes,I. Sanchez,Ultrasonic focusing system based on the synthetic aperture focusing technique,Journal of the Mexican society of instrumentation,2001,5(3):152~160。
    [90] S. Mallat,Z. Zhang,Matching Pursuit with Time-frequency Dictionaries,IEEE Trans. Signal Processing,1993,SP-41:3397~3415。
    [91] L.H. Shi,B. Chen,C. Gao,Design and Modeling of Signals by Using Wavelets for the Pulse-echo NDT Approaches,Proc. of 2001 SPIE:The International Society for Optical Engineering,Newport Beach,CA,2001,Washington: SPIE,2001:146~153。
    [92]石立华,徐其威,高成等,小波建模法在混凝土材料介电常数时域测量中的应用研究,解放军理工大学学报(自然科学版),2002,3(6):35~38。
    [93] R. Demirli,J. Saniie,Model-Based Estimation of Ultrasonic Echoes Part I: Analysis and Algorithms,IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2001,48(3):787~802。
    [94] R. Demirli,J. Saniie,Model-Based Estimation of Ultrasonic Echoes Part II: Nondestructive Evaluation Applications,IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2001,48(3):803~811。
    [95] SHI Lihua,IHN J B,Identification of time-domain refletometry measurement results by wavelet modeling,The 3rd International Workshop on Structural Health Monitoring,Stanford,2001,21-26。
    [96] E. kauskas, V. Cicenas, R. Kas, et al,Application of air-coupled ultrasonic technique for sizing of delamination type defect in multilayered materials,ULTRAGARSAS,2005,10(7):1~6。
    [97] H. Gemmeke,N.V. Ruiter,3D ultrasound computer tomography for medical imaging,Nuclear instruments and methods in physics research,2007,580(2):1057~1065。
    [98] Liu R.,Ruiter N.V.,Zapf M.,et al,New assessment system for data compression in ultrasound computer tomography , Proceedings of the Fifth IASTED International Conference on Biomedical Engineering,14-16 Feb. 2007,Innsbruck,Austria:203~208。
    [99] Yoshikazu Ohara,Koichiro Kawashima,Detection of Internal Micro Defects by Nonlinear Resonant Ultrasonic Method Using Water Immersion,Japanese Journal of Applied Physics,2004,43(5):3119~3120。
    [100] Hak-joon Kim1,Sung-Jin Song,Lester W.Schmerr,Modeling Ultrasonic Pulse-Echo Signals from a Flat-Bottom Hole in Immersion Testing Using a Multi-Gaussian Beam,Journal of Nondestructive Evaluation,2004,23(1):11~19。
    [101] Jiang Zhihong,Huang Fukan,Wan Jianwei,et al,Modified Frequency Scaling Algorithm for FMCW SAR Data Processing,Chinese Journal of Aeronautics,2007,20(1):341~347。
    [102]刘贵喜,凌文杰,杨万海,线性调频连续波雷达多目标分辨的新方法,电波科学学报,2006,21(1):79~83。
    [103]李海英,杨汝良,去斜率线性调频合成孔径雷达成像研究,现代雷达,2003,25(3):8~11。
    [104]张永红,张继贤,林宗坚,合成孔径雷达成像处理的数学原理,理论研究,2000,4(1):13~15。
    [105]纪慧波,王一丁,洪峻等,合成孔径雷达线性调频信号的线性度约束研究,测试技术学报,2003,17(3):59~62。
    [106] John C,Curlander,Robert N. McDonoughm,Synthetic Aperture Radar Systems and Signal Processing,NY:John Wiley &Sons,1991。
    [107]刘永坦,雷达成像技术,哈尔滨:哈尔滨工业大学出版社,1999。
    [108]陈桂生,超声换能器设计,北京:海洋出版社,1984。
    [109] J.布利茨,李东林译,超声技术及其应用,北京:海洋出版社,1992。
    [110]周光平,龙飞,邱志宇,低频超声检测探头的研制,南昌航空工业学院学报,1994,2(2):78~82。
    [111] Hueter T.F.,Bolt R.H.,Sonics,NY:Wiley/LONDON:Chapman & Hall,1955。
    [112]颜忠余,林仲茂,夹心压电换能器的优化设计-分析各参数对换能器性能的影响,声学学报,1995,20(1):18~25。
    [113] Parks T W,Burrus C S,Digital filter design,NY:John wiley and sons,1987。
    [114]胡广书,数字信号处理理论、算法与实现(第二版),北京:清华大学出版社,2003。
    [115] Ljung L.,System Identification:Theory for the User(2nd),NJ:Prentice-Hall,1999。
    [116]汤俊,统计信号处理算法,北京:清华大学出版社,2006。
    [117]柳重堪,信号处理的数学方法,南京:东南大学出版社,1992。
    [118] Young P.C.,Recursive estimation and time series analysis,NJ:Prentice-Hall,1984。
    [119]张重雄,任继舜,线性系统传递函数的阶数辨识,南京理工大学学报,1997,21(2):106~109。
    [120]徐南荣,系统辨识,南京:东南大学出版社,1991。
    [121] Roman Kue.,Introduction to Digital Signal Processing,New York:McGraw-Hill,1988。
    [122] Dong Xingjian,Guang Meng,Vibration Control of Piezoelectric Smart Structures Based on System Identification Technique:Numerical Simulation and Experimental Study,Journal of Sound and Vibration,2006,297(3-5):680~693。
    [123]石立华,基于幅-频曲线的系统时域响应特性评价方法,电波科学学报,2000,15(4):467~471。
    [124]童寿兴,混凝土强度超声波平测法检测技术,无损检测,2004,26(1):24~27。
    [125]马少军,姚汝方,用超声波平测法检测混凝土梁的裂缝,水利水运工程学报,2004,2(1):72~74。
    [126]林维正,夏启清,超声反射法测量混凝土厚度,无损检测,1993,15(4):91~94。
    [127]余红发,张敏,原仑等,用超声平测法测定大体积钢筋混凝土结构施工缝的内部缺陷,青海大学学报,1995,13(3):12~18。
    [128] D.J.Daniels,Surface Penetrating Radar,London\United Kingdom:The Institution of Electrical Engineers,1996。
    [129] Kraig Wamemuende,Hwai-Chung Wu,Actively modulated acoustic nondestructive evaluation of concrete,Cement and Concrete Research,2004,34(3):563~570。
    [130]向阳,史习智,混凝土结构超声检测信号的时频分析研究,数据采集与处理,2001,16(2):150~154。
    [131]李为杜,童寿兴,马修麟,混凝土超声检测信号频谱分析,无损检测,1992,14(4):98~101。
    [132]朱明武,李永新,卜雄洙,测试信号处理与分析,北京:北京航空航天大学出版社,2006。
    [133]周伟,Matlab小波分析高级技术,陕西:西安电子科技大学出版社,2006。
    [134]金元,靳海水,小波分析方法在混凝土检测中的应用,无损检测,2003,25(12):616~619。
    [135]杨旭升,林维正,混凝土厚度的超声反射信号小波分析,无损检测,1997,19(8):211~213。
    [136]高少武,周兴元,蔡希玲等,互相关特征参数分析法——一种叠前地震数据处理中有效的分析工具,石油物探,2003,42(1):9~15。
    [137]吉李满,张海军,基于互相关的信号检测研究与实现,吉林工程技术师范学院学报(工程技术版),2004,20(6):39~41。
    [138]郭焕银,相关函数及其谱在数字信号处理系统中的应用,宿州学院学报,2005,20(5):76~79。