用户名: 密码: 验证码:
稳态视觉诱发电位在脑机接口及认知过程中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稳态视觉诱发电位(Steady-state visual evoked potential,SSVEP)的产生机理到目前还没有统一的解释,主要有反馈网络理论、行波理论等。SSVEP的应用主要有两个方面,一是在脑机接口(Brain-Computer Interface,BCI)上的应用,另一个是在认知过程研究方面的应用。本文将就SSVEP的基本理论以及它的应用展开讨论,主要由以下一些内容组成。
     1.通过研究在频率一定(10Hz),而具有不同的占空比的闪光刺激下所产生的SSVEP的幅度,发现当占空比为0.4左右时,产生的SSVEP的幅度明显大于其它占空比时的幅度。
     2.通过用同样强度和频率的红、绿、蓝三种单色光分别刺激被试,结果显示不同单色光产生的SSVEP的分布基本一样,但强度不一样,蓝光对应的SSVEP最强,红光次之,绿光最弱。
     3.用位于不同频段的闪光单独和同时刺激被试,通过研究两种情况下所得的不同频率SSVEP的幅度和分布,发现当不同的SSVEP网络被同时激活时,彼此之间并没有明显的相互作用,这说明它们基本上是独立的。
     4.由于不同类型刺激器的发光原理不同,所产生的闪光的频谱结构就不一样。在同样刺激频率和亮度的情况下,所产生的SSVEP的强度将不一样。通过用位于不同频段的三种不同类型的闪光分别刺激被试,发现LED产生的SSVEP最强,而CRT和LCD所产生的SSVEP基波并无明显差别,但谐波差异很大。
     5.在常规的功率谱方法中,所获得的SSVEP是在一定长度时间段内的平均值,当选取的时间段足够长时(一般长于3—4秒),将会在一定程度上消除或削弱自发脑电的影响,获得较高的准确性和稳定性,但传输率比较低。在本工作中,通过对SSVEP进行小波分析,引入了一个新的参数---稳定系数,该系数在短的时间段内也具有较高的抗干扰性,这使得对目标识别的准确性提高,从而也提高了系统的传输率。
     6.为了比较同一个认知任务对不同频率SSVEP的影响是否相同,用位于不同频段的刺激分别诱发SSVEP,同时让被试执行同样的记忆任务。通过对两种情况的比较,发现同样的认知任务对不同频率SSVEP的影响基本是一样的,而对低频SSVEP的影响更为明显且稳定。
     7.通过研究注意与不注意两种情况下的SSVEP幅度,发现注意时诱发的SSVEP显著增强,而在低频时注意对SSVEP的作用比在高频时注意对SSVEP的作用更明显。该实验结果支持了注意的早期选择机制。
     8.首先让被试反复执行同一个记忆任务,通过传统的叠加平均方法得出该任务的ERP。再让被试在一个与任务无关的闪光刺激下执行同样的记忆任务,并用稳态检测地形图方法(Steady-State Probe Topography,SSPT)来提取SSVEP的变化过程。通过比较ERP和SSVEP的波形,发现ERP能对SSVEP进行幅度调制,在ERP和SSVEP都较强的区域,这种调制作用越明显。
The genesis of SSVEP isn't clear till now, and often explained by loop-loop feedback or wave theories. SSVEP is used mainly in two hands, one is in studying of cognitive task, the other is in Brain-Computer Interface (BCI). In this paper, we'll discuss the fundamental theory about SSVEP and its application, and there include the contents below.
     1). From studying the SSVEP evoked by a pulse stimulus of 10 Hz with different duty-cycle, we found that the amplitude of SSVEP was the biggest one when the duty-cycle was about 0.4.
     2). From using the red, green or blue flicker to stimulate the eyes of subjects separately under the same luninance, we found that the distribution of SSVEP was similar under each situation, while the intensities of them were different, the SSVEP evoked by the blue flicker was the biggest one, that evoked by the red flicker was smaller than that evoked by the blue flicker, while that evoked by the green flicker was the smallest one.
     3). We use the flickers in different frequency band to evoke the SSVEP separately or simultaneously, from studying the SSVEP amplitude and distribution under these situations, it is found that there is no clear interaction between these networks when activated simultaneously, in other word, these networks are independent from each other.
     4). Because of the different lighting theory for different type stimulator, the spectum of the flickers are different too. Although the stimulating frequency and luminance are the same, the evoked SSVEPs are different from each other. From using different type stimulators in different frequency band, it is found that the SSVEP evoked by the LED flicker is the strongest one, while the fundamental frequency in SSVEP evoked by the CRT and LCD flicker is similar to each other, although the difference of the harmonics is significant.
     5). When using power spectrum (PS) method to extract SSVEP within a relative long time period, the influence by the potential mental activity can be eliminated to some extent, and a relative high accuracy but low transfer rate can be obtained. When using the stability coefficient (SC) method introduced here, which was obtained by Wavelet Analysis, the influence in a relative short time period by the noise can be eliminated greatly, which could further result in a relative high accuracy and transfer rate in a SSVEP-based BCI system.
     6). In order to compare the influence on the different frequency SSVEP by a same cognitive task, we use two frequencies in different band to evoke SSVEP, and make the subject execute the same memory task. From comparing the SSVEP under two situations, it is found that the influence on the different frequency SSVEP by the same task is similar to each other, while that on the low frequency is more clear and stable than that on the high frequency.
     7). From studying the SSVEP amplitudes with attention or without attention, it is found that the SSVEP amplitude is improved with attention, while this influence is clearer for the low frequency than for the high frequency. This result supports the theory of selection early about attention.
     8). The subject was asked to finish a same memory task repetitively, and the ERP of this task was obtained by the traditional average method. Then the subject was asked to execute the same memory task repetitively under the flicker stimulus, and a method named Steady-State Probe Topography (SSPT) was used to extract the SSVEP. From comparing the ERP and SSVEP, it is found that the ERP can modulate the amplitude of SSVEP, and this modulation is clear in the regions where two kinds of signals are both strong.
引文
[1] Muller M M, Teder W, and Hillyard S A. Magentoencephalographic recording of steady-state visual evoked cortical activity. Brain Topography, 1997,9:163-168.
    
    [2] Regan D. Human brain electrophysiology: Evoked potential and evoked magnetic fields in science and medicine. New York: Elsevier Pubs, 1989.
    [3] Galambos R, Makeig S., and Talmachoff P. A 40-Hz auditory potential recorded from the human scalp. Proc. Natl. Acad. Sci. USA, 1981,78:2643-2647.
    [4] Makeig S. Changes in auditory steady-state responses during neuroleptic treatment.Schizophrenia Research, 1989, 84:135-142.
    [5] Snyder A Z. Steady-state vibration evoked potential: description of technique and characterization of responses. Electroenceph. Clin. Neurophysiol., 1992,84:257-268.
    [6] Otavio O G, and Picton T W. Auditory steady-state response to multiple simultaneous stimuli. Electroencphalography and Clinical Neurophysiology, 1995, 96:420-432.
    [7] Herrmann C S. Human EEG responses to 1-100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenome. Exp Brain Res., 2001, 137:346-353.
    [8] Silberstein R B. Steady-state visually evoked potentials, brain resonances, and cognitive processes. Oxford University Press. 1995: 591-627.
    [9] Burkitt G R, Silberstein R B, Cadusch P J, et al. Steady-state visual evoked potentials and travelling waves. Clinical Neurophysiology, 2000,111:246-258.
    [10] Heinrich S P, and Bach M. Adaptation dynamics in pattern-reversal visual evoked potentials. Documenta Opthalmologica, 2001,102:141-156.
    
    [11] Patrick D S, Giri P K, Jenifer L V, et al. The effect of cannabis use and gender on the visual steady state evoked potential. Clinical Neurophysiology, 2006, 117:144-156.
    
    [12] Birca A, Carmant L, Lortie A, et al. Interaction between the flash evoked SSVEPs and the spontaneous EEG activity in children and adults. Clinical Neurophysiology, 2006, 117:279-288.
    
    [13] Morgan S T, Hansen J C, and Hillyard S A. Selective attention to stimulus location modulates the steady state visual evoked potential. PNAS, 1996,93:4770-4778.
    [14]Tobimatsu S,Tomoda H,and Kato M.Normal variability of the amplitude and phase of steady-state VEPs.Electroenceph.clin.Neurophysio,1996,100:171-178.
    [15]Rooy V,Stough C,Pinpingas A,et al.Spatial working memory and intelligence Biological correlates.Intelligence,2001,29:275-285.
    [16]Silberstein R B,Ciorciari J,and Pipingas A.Steady-state visually evoked potential topography during the Wisconsin card sorting test.Eleetroenceph.clin.Neurophysiol.,1995,96:24-35.
    [17]Line P,Silberstein R B,Wright J J,et al.Steady State Visually Evoked Potential Correlates of Auditory Hallucinations in Schizophrenia.NeuroImage,1998,8:370-376.
    [18]Thompson J C,Tzambazis K,Stough C,et al.The effects of nicotine on the 13 Hz steady-state visual evoked potential.Clirtical Neurophysiology,2000,111:1589-1595.
    [19]Tommaso M D,Scimicchio V,Guido M,et al.Steady-state visual-evoked potentials in headache:diagnostic value in migraine and tension-type headache patients.Cephalalgia,1999,19:23-26.
    [20]Silberstein R B,Line P,Pipingas A,et al.Steady-state visual evoked potential topography during the continuous performance task in normal controls and schizophrenia.Clinical Neurophysiology,2000,111:850-857.
    [21]Wu Z H,and Yao D Z The influence on the steady-state visual evoked potential by the pulse duty cycle.2008 International Conference on Bioinformatics and Biomedical Engineering (iCBBE).
    [22]吴正华,尧德中.不同颜色单色光产生的稳态视觉诱发电位的比较.生物医学工程学杂志,2007年1月录用.
    [23]吴正华,尧德中.稳态视觉诱发电位神经网络间的相互作用.生物物理学报,2007,23(2):123-128.
    [24]Gao X R,Xu D F,Cheng M,et al.A BCI based Environmental Controller for the Motion-Disabled.IEEE Trans.Rehab.Eng.,2003,11(No.2):137-140.
    [25]Cheng M,Gao X R,Gao S K,et al.Design and Implementation of a Brain-Computer Interface with High Transfer Rates.IEEE Trans BME,2002,49(No.10):1181-1186.
    [26]Wu Z H,Lai Y X,Xia Y,et al.Stimulator selection in SSVEP-based BCIs.Medicial Engineering &Physics,accepted on Jan.2008.
    [27]Kelly S P,Edmund C L,Richard B R,et al.Visual Spatial Attention Tracking Using High-Density SSVEP Data for Independent Brain-Computer Communication.IEEE Transactions Neural systems and rehabilitation engineering,2005,13(No.2):172-178.
    [28]Cabrera A F,and Nielsen K D.Brain Computer Interface based on Steady-state Visual Evoked Potentials.The second International Brain Computer Interface Workshop and Training Course 2004,Graz University of Technology,Austria September 2004.
    [29]Cheng M,and Gao S K.An EEG-based Cursor Control System.Proceedings of The First Joint BMES/EMBS Conference Serving Humanity,Advancing Technology Oct.13-16,1999,Atlanta,GA,USA.
    [30]Middendorf M,Mcmillan G,Calhoun G,et al.Brain-Computer Interfaces Based on the Steady-state Visual-Evoked Response.IEEE Transactions on Rehabilitation Engineering,2000,8(No.2):211-214.
    [31]Wu Z H,and Yao D Z.Frequency Detection With Stability Coefficient for SSVEP-based BCIs.Journal of Neural Engineering,2008,5:36-43.
    [32]Muller M M,and Hillyard S A.Concurrent recording of steady-state and transient event-related potentials as indices of visual-spatial selective attention.Clinical Nenrophysiology,2000,111:1544-1552.
    [33]Naatanen R.The role of attention in auditory information processing as revealed by event-related potentials and other bran measures of cognitive function.Behav.Brain Sci.,1990,13,201-288.
    [34]Wu Z H,and Yao D Z.The Influence of Cognitive Tasks on Different Frequencies Steady-state Visual Evoked Potentials.Brain Topography,2007,20(2):97-104.
    [35]Silberstein R B,Schier M A,Pipingas A,et al.Steady-state visual evoked potential topography associated with a visual vigilance task.Brain Topography,1990,3:337-347.
    [36]魏景汉,罗跃嘉.认知事件相关电位教程.北京经济日报出版社.2002:54-66.
    [37]Forster B,and Eimer M.The attention selection of spatial and non-spatial attributes in touch:ERP evidence for parallel and independent processes.Biological Psychology,2004,66,1-20.
    [38]吴正华,尧德中.用稳态视觉诱发电位研究注意的选择机制.生物物理学报,2006,22(6):455-460.
    [39]Wu Z H,and Yao DZ.The amplitude modulation on SSVEP by ERP in a working memory task.
    [40]Silberstein R B,Nunez P L,Pipingas A,et al.Steady-state visual evoked potential SSVEP topography in a graded working memory task.International Journal of Psychophysiology,2001,42:219-232.
    [41]Gray M A, Kemp K H, Silberstein R B, et al. Cortical neurophysiology of anticipatory anxiety: an investigation utilizing steady state probe topography (SSPT). Neurolmage, 2003,20:975-986.
    [42] Tucker D M, Liotti M, Potts G F, et al. Spatiotemporal analysis of brain electrical fields. Human Brain Mapping, 1994,1:134-142.
    [43] Regan D. An effect of stimulus colour on average steady-state potentials evoked in man. Nature,1966,210:1056-1078.
    [44] Wilson G F, and Odonnell R D. Steady-state evoked responses: Correlations with human cognition. Psychophysiology, 1986,23: 57-65.
    [45] William M P, Michael A, Colea M L, et al. Steady-state visual evoked potentials reveal frontally-mediated working memory activity in humans. Neuroscience Letters, 2003,342:191-195.
    [46] Kathryn A E, Silberstein R B, and Pradeep J N. Exploring the temporal dynamics of the spatial working memory n-back task using steady state visual evoked potentials(SSVEP). Neurolmage,2006,31:1741-1751.
    [47] Mackay A M, Bradnam M S, and Hamilton R. Rapid detection of threshold VEPs. Clinical Neurophysiology, 2003, 114:1009-1020.
    [48] Lyskov E, Ponomarev V, Sandstrom M, et al. Steady-state visual evoked potential to computer monitor flicker. International Journal of Psychophysiology, 1998,28: 285-290.
    [49] Wang Y J, Wang R P, Gao X R, et al. Brain-Computer interface based on the high frequency steady-state visual evoked potential. 2005 First International Conference on Neural Interface and Control Proceeding, 26-28 May 2005, Wuhan, China.
    [50] Muller-Putz G R, Scherer R, Brauneis C, et al. Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components. Journal of Neural Engineering, 2005,2: 123-130.
    [51] Kemp A H, Gray M A., Silberstein R B, et al. Augmentation of serotonin enhances pleasant and suppresses unpleasant cortical electrophysiological responses to visual emotional stimuli in humans. Neurolmage, 2004, 22: 1084-1096.
    [52] Mast J, and Victor J D. Fluctuations of steady-state VEPs: interaction of driven evoked potentials and the EEG. Electroencephalography and clinical Neurophysiology, 1991, 78:389-401.
    [53]Ellis K A,Silberstein R B,and Nathan P J.Exploring the temporal dynamics of the spatial working memory n-back task using steady state visual evoked potentials(SSVEP).Neurolmage,2006,31:1741-1751.
    [54]Kemp A H,Gray M A,Eide P,et al.Steady-state Visual Evoked Potential Topography during Processing of Emotional Valence in Healthy Subjects.NeuroImage,2002,17:1684-1692.
    [55]Liao X,Yao D Z,Wu D,et al.Combining Spatial Filters for the Classification of Single-Trial EEG in a Finger Movement Task.IEEE Trans.BME,2007,54(5):821-831.
    [56]Shanon C E,and Weaver W.The mathematical theory of communication,Urbana,IL:University of Illinois Press,1964.
    [57]Wang Y J,Zhang Z G,Gao X R,et al.Lead selection for SSVEP-based brain-computer interface.Proceeding of the 26th Annual International Conference of the IEEE EMBS,San Francisco,CA,USA,September 1-5,2004,4507-4510.
    [58]Xin D,Seiple W,Holopigian K,et al.Visual evoked potentials following abrupt contrast changes.Vision Res.,1994,34:2813-2821.
    [59]Peachey N S,DeMarco P J,Ubilluz R,et al.Short-term changes in the response characteristics of the human visual evoked potential.Vision Res.,1994,34:2823-2831.
    [60]Ridder W H,McCulloch D,and Herbert A M.Stimulus duration,neural adaptation,and sweep visual evoked potential acuity estimates.Invest Ophthalmol.Vis.Sci.,1998,39:2759-2768.
    [61]Wolpaw J R,Birbaumer N,McFarland D J,et al.Brain-computer interfaces for communication and control.Clinical Neurophysiology,2002,113:767-791.
    [62]Allison B Z,Wolpaw E W,and Wolpaw J R.Brain-computer interface systems:progress and prospects.Expert Review of Medical Devices,2007,4(No.4):463-474.
    [63]Birbaumer N,and Cohen L G.Brain-computer interfaces:communication and restoration of movement in paralysis.The Journal of Physiology,2007,579:621-636.
    [64]Allison B Z,McFarland D J,Wolpaw J R,et al.SSVEP Brain-Computer Interface Research at the GSU BrainLab,Third International Brain-Computer Interface Meeting,Rensslaerville,NY,June 14-19,2005.
    [65]Piccione F,Giorgi F,Tonin P,et al.P300-based brain computer interface:Reliability and performance in healthy and paralysed participants.Clinical Neurophysiology,2006,117:531-537.
    [66]Cheng M,Gao X R,Gao S K,et al.Stimulation frequency extraction in SSVEP-based brain-computer interface.2005 First international conference on neural interface and control proceeding;26-28 May 2005,Wuhan,China,64-67.
    [67]Davila C E,Abaye A,and Khotanzad A.Estimation of single sweep steady-state visual evoked potential by adaptive line enhancement.IEEE Trans.BME,1994,41(No.2):197-200.
    [68]Ghaleb I,Davila C E,and Srebro R.Detection of Near Threshold Contrast Visual Evoked Potentials Using Coherent Detection Techniques.Biomedical Engineering Coference,1996,Proceedings of the 1996 Firteenth Southern.29-31 March 1996,121-124.
    [69]Lin Z L,Zhang C S,Wu W,et al.Frequency Recognition Based on Canonical Correlation Analysis for SSVEP-Based BCIs.IEEE Trans.BME,2007,54(No.6):1172-1176.
    [70]Friman O,Volosyak I,and Graser A.Multiple Channel Detection of Steady-State Visual Evoked Potentials for Brain-Computer Interfaces.IEEE Trans.BME,2007,54(No.4):742-750.
    [71]Gevins A S,Yeager C L,Zeitlin G M,et al.On-line computer rejection of EEG artifact.Electroencephalogr.Clin.Neurophysiol.,1977,42:267-274.
    [72]Silberstein R B,Harris P G,Nield G A,et al.Frontal steady-state potential changes predict long-term recognition memory performance.International Journal of Psychophysiology,2000,39:79-85.
    [73]Gevins A S,Smith M E,Maevoy L,et al.High-resolution mapping of cortical activation related to working memory:effects of task difficulty,type of processing,and practice.Cereb Cortex,1997,7:374-385.
    [74]Goldman-Rakic P S.Regional and cellular fractionation of working memory.Proc.Nal.Acad.Sci.,1996,93:13473-13480.
    [75]Muller M M,Picton T W,Sosa P V,et al.Effects of spatial selective attention on the steady-state visual evoked potential in the 20-28 Hz range.Cognitive Brain Research,1998,6:249-261.
    [76]Tomoda Y,Tobimatsu S,and Mitsudome A.Visual evoked potentials in school children:A comparative study of transient ant steady-state methods with pattern reversal and flash stimulation.Clinical Neurophysiology,1999,110:97-102.
    [77]Johansson B,and Jakobsson P.Fourier analysis of steady-state visual evoked potentials in subjects with normal and defective stereo vision.Documenta Ophthalmologica,2000,101:233-246.
    [78] Krishnan G P, Vohs J L, Hetrick W P, et al. Steady state visual evoked potential abnormalities in schizophrenia. Clinical Neurophysiology, 2005,116:614-624.
    [79] Perlstein W M, Cole M A, Larson M, et al. Steady-state visual evoked potentials reveal frontally-mediated working memory activity in humans. Neuroscience Letters, 2003,342:191-195.
    [80] Stephen J M, Aine C J, Christner R, et al. Visual areas identified in the frequency following response to alternating circular sinusoids. Biomag., 2000,23: 149-153.
    [81] Anderson S J, Holliday I E, Singh K D, et al. Localization and functional analysis of human cortical area V5 using magnetoencephalography. Proc. R. Soc. Lond. B. 1996,263: 423-431.
    [82] Derrington A M, and Lennie P. Spatial and temporal contrast sensitivities of neurons in lateral geniculate nucleus of macaque. J. Physiol., 1984, 357: 219-240.
    [83] Merigan W H. P and M pathway specialization in the macaque. Pigments to perception Plenum Press, New York, 1991,117-125.
    [84] Robinson D L, and Petersen S. The pulvinar and visual salience. Trends Neurosci. , 1992, 15:127-132.
    [85] Yee J K, et al. Attention induces synchronization-based response gain in Steady-State Visual Evoked Potentials. Nature Neuroscience, 2007,10(1):117-125.
    [86] Yao D. High-resolution EEG mappings: a spherical harmonic spectra theory and simulation results. Clin Neurophysiol, 2000,111:81-92.
    [87] Brandt M. Thinking nonlinearly about brain dynamics: a neurocommentary. Proceeding of the IEEE2nd International Symposium on Bioinformatics and Bioengineering Conference, 2001,112-118.
    [88] Barrie J M, Freeman W J, and Lenhart M. Modulation by discriminative training of spatial patterns of gamma EEG amplitude and phase in neocortex of rabbits. J. Neurophysiol., 1996,76:520-539.
    [89] Freeman W J, and Viana D P G. Relation of olfactory EEG to behavior: time series analysis.Behav. Neurosci., 1986,100: 753-763.
    [90] Ohl F W, Scheich H, and Freeman W J. Change in pattern of ongoing cortical activity with auditory category learning. Nature, 2001,412: 733-736.
    [91] Sanders L D, and Neville H J. An ERP study of continuous speech processing I. Segmentation,semantics, and syntax in native speakers. Cognitive Brain Research, 2003,15: 228-240.
    [92]Matthias M M,Terence W P,Pedro V S,et al.Effects of spatial selective attention on the steady-state visual evoked potential in the 20-28 Hz range.Cognitive Brain Research,1998,6,249-261.
    [93]Sammer G,Blecker C,Gebhardt H,et al.Acquisition of typical EEG waveforms during fMRI:SSVEP,LRP,and frontal theta.NeuroImage,2005,24:1012-1024.
    [94]Goto Y,Taniwaki T,Kinukawa N,et al.Interhemispheric functional synchronization at the fast step of visual information processing in humans.Clinical Neurophysiology,2004,115:1409-1416.
    [95]Momose K,Kimura Y,Kiyosawa M,et al.Measurement of Temporal Frequency Characteristics of VEP using Pseudorandom Binary Sequence and Their Correlation with Cerebral Blood Flow in Human Visual Cortex.Proceedings-19~(th) International Conference-IEEE/EMBS Oct.30-Nov.2,1997 Chicago,IL.USA.
    [96]Kasahara S,and Momose K.Nonlinear Characteristics of Visual Evoked Potential and Their Correlation with the Visual Response on Magnocellular and Parvocellular Pathways.Proceedings of the 25~(th) Annual International Conference of the IEEE EMBS Cancun,Mexico,September 17-21,2003.
    [97]Joachim H,Michael F,and Jorg H.Effects of attention and time-pressure on P300subcomponents and implications for mental workload research.Biological Psychology,1995,40,73-81.
    [98]Nunez P L,Wingeier B M,and Silberstein R B.Spatial-Temporal Structures of Human Alpha Rhythms:Theory,Microcurrent sources,Multiscale Measurements,and Global Binding of Local Networks.Human Brain Mapping,2001,13:125-164.
    [99]Pfurtscheller G,Stancak J A,and Neuper C.Event-related synchronization(ERS) in the alpha band--an electrophysiological correlate of cortical idling:a review.Intl.J.Psyehophysiol,1996,24:39-46.
    [100]Tommaso M D,Scimicchio V,Guido M,et al.EEG spectral analysis in migraine without aura attacks.Documenta Ophthalmologica,2001,102:141-156.
    [101]Fawcett I P,Barnes G R,Hillebrand A,et al.The temporal frequency tuning of human visual cortex investigated using synthetic aperture magnetometry.NeuroImage,2004,21:1542-1553.
    [102]Tobimatsu S.Transient and steady-state VEPs--reappraisal.International Congress Series,2002,1232:207-211.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700