乙酰半胱氨酸对糖尿病大鼠心肌缺血再灌注损伤的保护作用及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分糖尿病大鼠模型的建立
     目的观察不同剂量链脲佐菌素(streptozotocin, STZ)对糖尿病(diabetes mellitus, DM)大鼠成模率及4周存活率的影响。方法SD大鼠60只,随机分出12只作为对照组(N组),其余48只大鼠随机分为4组,分别腹腔注射STZ 50 ( A组)、55 ( B组)、60 ( C组)、65mg·kg-1 ( D组)诱发DM模型,比较各组1周后成模率和4周后存活率。结果以STZ 55mg·kg-1剂量腹腔注射复制DM大鼠模型的成模率高于50 mg·kg-1组(83.33% vs33.33%,P<0.05),随STZ剂量的增加(STZ 60-65mg·kg-1)DM大鼠成模率增高,但存活率降低(83.33% vs 41.67%,P<0.05)。结论综合考虑,STZ-DM大鼠造模宜选取STZ的最佳剂量为55mg·kg-1。
     第二部分乙酰半胱氨酸对糖尿病大鼠心肌缺血/再灌注后心功能的影响
     目的观察乙酰半胱氨酸对糖尿病大鼠心肌缺血/再灌注后心律失常和心功能的影响,探讨乙酰半胱氨酸对糖尿病大鼠心肌缺血/再灌注损伤的防治效果。方法72只大鼠先随机分为糖尿病组(36只,链尿佐菌素55mg·kg-1腹腔注射诱导)和非糖尿病对照组(36只)。动物分为正常假手术组(CS组, n=12)、正常缺血/再灌注组(CI/R组,n=12)、正缺血/再灌注+NAC(CN组, n=12)、糖尿病假手术组(DS组, n=12)、糖尿病缺血/再灌注组(DI/R组,n=12)、糖尿病缺血/再灌注+NAC组(DN组, n=12)。建模成功后,NAC处理组灌胃补充NAC(100mg·kg-1),每天2次,手术前1h再给NAC 150mg·kg-1腹腔注射。8周后,采用冠脉结扎及放松的方法复制心肌缺血/再灌注模型。观察标准肢体导联(Ⅱ)心电图、左心室发展压(LVDP)、收缩期和舒张期左心室内压的最大变化速率(±dp/dtmax),采血测肌酸激酶同工酶(CK-MB)活性、肿瘤坏死因子-α(TNF-α)和白介素-8(IL-8)含量,心肌组织匀浆检测丙二醛(MDA)含量。结果(1)基础状态下,糖尿病组与正常组相比,心功能降低(P<0.05);TNF-α和IL-8含量高于正常组(P<0.05)。(2)缺血/再灌注后, CN组和DN组LVDP值和±dp/dtmax高于对应的CI/R组和DI/R组,而上述指标DN组低于CN组(P<0.05);心律失常评分、CK-MB、MDA、TNF-α和IL-8低于对应的CI/R组和DI/R组(P<0.05),而上述指标DN组高于CN组(P<0.05)。DI/R组LVDP值和±dp/dtmax低于CI/R组,而心律失常评分、CK-MB、MDA、TNF-α和IL-8高于CI/R组(P<0.05)。结论8周病程糖尿病大鼠基础心功能降低,炎症反应明显,而且缺血/再灌注后心功能受损程度比非糖尿病组严重;补充NAC既可以改善糖尿病大鼠基础心功能,减轻炎症反应,也可减轻心肌缺血/再灌注损伤的严重程度,改善心功能;但与正常大鼠补充NAC组相比,疗效降低。
     第三部分乙酰半胱氨酸对糖尿病大鼠心肌缺血/再灌注后细胞凋亡的影响
     目的本实验拟观察乙酰半胱氨酸对糖尿病大鼠心肌缺血/再灌注后导致的细胞凋亡的影响。方法72只大鼠先随机分为糖尿病组(36只,链尿佐菌素55mg·kg-1腹腔注射诱导)和非糖尿病对照组(36只)。两组大鼠再分别随机分为假手术组、缺血/再灌注组和缺血/再灌注+乙酰半胱氨酸治疗组(乙酰半胱氨酸100mg·kg-1,2次/d,手术前1h再给NAC 150mg·kg-1腹腔注射),每组12只。给予乙酰半胱氨酸8周后进行实验。以穿线结扎及放松左冠脉制备心肌缺血/再灌注模型,组织匀浆检测心肌组织还原型谷胱甘肽(GSH)、氧化型谷胱甘肽(GSSG)含量和半胱氨酸天冬氨酸蛋白酶-3(Caspase-3)的活性;脱氧核糖核苷酸末端转移酶介导的缺口末端标记(TUNEL)和琼脂糖凝胶电泳检测DNA片段化两种方法检测心肌细胞凋亡并计算凋亡指数。结果(1)正常假手术组未见明显的凋亡,糖尿病假手术组出现少量的凋亡细胞,同时伴有GSH含量降低,GSSG含量和Caspase-3的活性升高(P<0.05);(2)缺血/再灌注后,糖尿病和非糖尿病组均出现明显的心肌细胞凋亡,同时伴有GSH含量降低,GSSG含量和Caspase-3的活性升高,上述变化糖尿病组比非糖尿病组更明显(P<0.05);(3)乙酰半胱氨酸干预的糖尿病和非糖尿病大鼠的心肌细胞凋亡均减轻,同时伴有GSH含量上升,GSSG含量和Caspase-3的活性下降,上述变化非糖尿病组比糖尿病组更明显(P<0.05)。结论乙酰半胱氨酸干预可以通过提高心肌GSH含量、降低Caspase-3的活性减轻糖尿病和非糖尿病大鼠缺血/再灌注引起的心肌细胞凋亡,对缺血/再灌注心肌有保护作用,但糖尿病组的疗效低于非糖尿病组。
     第四部分乙酰半胱氨酸对糖尿病大鼠心肌缺血/再灌注后低氧诱导因子-1α和血红素加氧酶-1表达的影响
     目的观察乙酰半胱氨酸对糖尿病大鼠心肌缺血/再灌注后低氧诱导因子-1α(HIF-1α)和血红素加氧酶-1 (HO-1)表达的变化。方法利用链脲佐菌素复制糖尿病大鼠模型,建模成功后,灌胃补充NAC(100mg·kg-1),每天2次,手术前1h再给NAC 150mg·kg-1腹腔注射。动物分为正常假手术组(CS组)、正常缺血/再灌注组(CI/R组)、正常缺血/再灌注+NAC组(CN组)、糖尿病假手术组(DS组)、糖尿病缺血/再灌注组(DI/R组)、糖尿病缺血/再灌注+NAC组(DN组),每组12只,共72只,8周后进行实验。采用冠脉结扎及放松的方法复制心肌缺血/再灌注模型,检测各组心肌梗死范围、HIF-1α和HO-1的mRAN和蛋白表达变化。结果非糖尿病假手术组检测不到HIF-1α和HO-1的mRAN和蛋白表达,糖尿病假手术组检测到少量HIF-1α和HO-1的mRAN和蛋白表达;但是糖尿病组心肌缺血/再灌注后HIF-1α、HO-1mRAN和蛋白表达低于非糖尿病组(P<0.05),心肌梗死范围大于非糖尿病组(P<0.05)。乙酰半胱氨酸干预可以部分恢复糖尿病大鼠心肌缺血/再灌注后HIF-1α和HO-1的mRAN和蛋白的表达,同时减少心肌缺血/再灌注引起的心肌坏死,但是疗效降低(P<0.05)。结论糖尿病加重心肌缺血/再灌注损伤,其机制与糖尿病心肌缺血/再灌注后HIF-1α和HO-1mRAN和蛋白表达相对降低有关。补充NAC可以部分恢复糖尿病大鼠心肌缺血/再灌注后HIF-1α和HO-1mRAN和蛋白表达,有一定的治疗效果。
Part 1 The Establishment of Diabetic Model in S-D Rats
     Objective To investigate the effect of the dosage of streptozotocin (STZ) on the incidence and the survival rate of diabetic rats. Methods Sixty SD rats were randomly divided into two groups:normal control group (N group,n=12)and experimental group (n=48), and then the rats in the experimental group were randomly reassigned into four groups(A, B, C, D). The rats in A, B, C, D groups were seperately given STZ 50, 55, 60, 65 mg·kg-1 intraperitoneally (ip). The same citric acid buffer was given in N group. The incidence and the survival rate of diabetic rats were compared with each other. Results The incidence and survival rate of rats in B group were significantly higher than those of rats in A group(P<0.05) and there were no significant difference among B, C, D groups as to the above index(P>0.05). Conclusion The dosage of STZ 55 mg·kg-1 was selected to establish experimental diabetic rats.
     Part 2 Effects of N-acetylcysteine on ischemia/reperfusion-induced ventricular arrhythmia and cardiac dysfunction in diabetic rats
     Objective To evaluate the effects of N-acetylcysteine on I/R-induced ventricular arrhythmia and cardiac dysfunction in diabetic rats. Methods 72 rats were randomly divided into six groups: non-diabetic sham operation group(CS, n=12), non-diabetic I/R group(CI/R, n=12), non-diabetic rats treated with NAC group (CN, n=12), diabetic sham operation group(DS, n=12), diabetic I/R group(DI/R, n=12), diabetic rats treated with NAC group (DN, n=12) .Diabetes mellitus was induced by intraperitoneal injection of streptozotocin(STZ) 55mg·kg-1. 1 week after STZ injection the animals in group CN and group DN were treated with NAC 100mg·kg-1 by intragastric administration(two times per day) for 8 weeks. The I/R heart model was made by ligation of the left anterior descending coronary artery (LAD) close to its origin. The LAD was occluded for 30 min followed by removal of ligation to allow reperfusion for 3 h except the sham-operated rats.The severity of arrhythmia was quantified by arrhythmia score(AS). Left ventricular developed pressure(LVDP) and±dp/dtmax were measured and recorded using computerized data acquisition system throughout the experiment. TNF-αand IL-8 determined by enzyme-linked immunosorbent assay (ELISA).Creatine kinase isoenzyme-MB(CK-MB) and myocardial Malondialdehyde (MDA) were measured after the experiment finished. Results (1) After I/R, the values of TNF-α, IL-8, AS, CK-MB and MDA were significantly higher in CN group than those in CS group but lower than those in CI/R group(P<0.05), while LVDP and±dp/dtmax were significantly lower than those in CS but higher than those in CI/R group(P<0.05).(2) LVDP and±dp/dtmax in DN group were significantly higher than those in DI/R group but lower than those in CN group(P<0.05), while the TNF-α, IL-8, AS, CK-MB and MDA were significantly lower in DN group than those in DI/R group but higher than those in CN group(P<0.05). Conclusions: Diabetic rat hearts are more susceptible to I/R-induced arrhythmia and cardiac dysfunction. NAC can improve the recovery of cardiac function and reduce the severity of I/R- induced arrhythmia in both non-diabetic rats and diabetic rats, but the therapeutic effects are less effective in diabetic rats than those in non-diabetic rats.
     Part 3 Effect of N-acetylcysteine on ischemia/reperfusion-induced cardiocyte apoptosis in diabetic rats
     Objective To study the effect of N-acetylcysteine (NAC) on ischemia/ reperfusion (I/R)-induced cardiocyte apoptosis, the content of GSH and GSSG, and the activity of Caspase-3 in diabetic rat hearts. Methods 72 rats were randomly divided into two groups: non-diabetic group and diabetic group with 36 rats in each group. Diabetes mellitus was induced by intraperitoneal injection of streptozotocin(STZ) 55mg·kg-1 and rats serving as controls were given the same volume of sodium citrate. Diabetes mellitus was defined as persistent blood glucose level≥16.7mmol·L-1.The animals in the two groups were randomly reassigned into sham-operated group , I/R group and I/R + treated with NAC group respectively with 12 rats in each group. 1 week after STZ injection, the rats in the two treated with NAC groups were treated with NAC 100mg·kg-1by intragastric administration(two times per day) for 8 weeks. NAC (150mg·kg-1) was injected into peritoneal cavity before operation. The I/R heart model was made by ligation of the left anterior descending coronary artery (LAD) close to its origin. The LAD was occluded for 30 min followed by removal of ligation to allow reperfusion for 3 h except the sham-operated rats. The content of GSH and GSSG, and the activity of Caspase-3 were measured. The apoptosis index (AI) by TUNEL staining was caculated. In addition, the apoptosis of Cardiomyocyte was also confirmed by DNA Ladder. Results (1) After I/R, the activity of Caspase-3, the content of GSSG, the values of AI were higher in diabetic group than those in non-diabetic group, and the content of GSH was lower in diabetic group than that in non-diabetic group(P<0.05). (2) Treatment with NAC decreased the activity of Caspase-3, the content of GSSG, the values of AI but increased the content of GSH in both non-diabetic and diabetic rats(P<0.05), but there were still significant difference about the values of above parameters between diabetic rats and non-diabetic rats(P<0.05). Conclusions:NAC can attenuated cardiomyocyte apoptosis by decreasing the activity of Caspase-3 and increasing the content of GSH, which has protective effect on ischemic/reperfused myocardium injury in both non-diabetic and diabetic rats, but the cardioprotective effect was less effective in diabetic rats than that in non-diabetic rats.
     Part 4 Effect of N-acetylcysteine on hypoxia-inducible factor-1αand Heme Oxygenase-1 mRNA expression induced by myocardial ischemia-reperfusion in diabetic rat hearts
     Objective To study the Effect of N-acetylcysteine on hypoxia-inducible factor-1α(HIF-1α) and Heme Oxygenase-1(HO-1) mRNA and protain expression induced by myocardial ischemia-reperfusion in diabetic rat hearts. Methods 72 rats were randomly divided into two groups: non-diabetic group and diabetic group with 36 rats in each group. Diabetes mellitus was induced by intraperitoneal injection of streptozotocin(STZ) 55mg·kg-1 and rats serving as controls were given the same volume of sodium citrate. Diabetes mellitus was defined as persistent blood glucose level≥16.7mmol·L-1.The animals in the two groups were randomly reassigned into sham-operated group , I/R group and I/R + treated with NAC group respectively with 12 rats in each group. 1 week after STZ injection, the rats in the two treated with NAC groups were treated with NAC 100mg·kg-1by intragastric administration(two times per day) for 8 weeks. NAC (150mg·kg-1) was injected into peritoneal cavity before operation. The I/R heart model was made by ligation of the left anterior descending coronary artery (LAD) close to its origin. The LAD was occluded for 30 min followed by removal of ligation to allow reperfusion for 3 h except the sham-operated rats.Myocardial infarct size, the expression of HIF-1α, HO-1 mRNA and protain were detected by RT-PCR and Western blotting in each group. Results (1)The expression of HIF-1αmRNA and protain were not appreciable in group CS, but significantly increased in group CI/R after ischaemia-reperfusion.In group DS, the expression of HIF-1αcould be detected; however, as compared with group CI/R, the expression of HIF-1αwas decreased in group DI/R (P<0.05). The changes in myocardial HO-1 mRNA expression paralleled those of HIF-1α. Myocardial infarct size was greater in diabetic rats than that in non-diabetic rats (P<0.05).(2) The expression of HIF-1αmRNA and protain were higher in DN group than those in DI/R group; The changes in myocardial HO-1 mRNA expression paralleled those of HIF-1α. Conclusions Diabetes increased basal HIF-1αand HO-1 expression, suggesting a state of pseudohypoxia. These findings show that diabetes aggravated myocardial injury induced by ischemia-reperfusion, which is associated with a relatively reduced expression of the HIF-1αand HO-1gene. Treatment with NAC can protective diabetic rat hearts from I/R injury and partly restore The expression of HIF-1αand HO-1.
引文
1. Robertson RP. Chronic Oxidative Stress as a Central Mechanism for Glucose Toxicity in Pancreatic Islet Beta Cells in Diabetes[J]. J Biol Chem., 2004, 279 (41): 42351-42354.
    2. Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling[J] . Am J Physiol Lung Cell Mol Physiol, 2000, 279(6): L1005-L1028.
    3. Kevin LG, Novalija E, Stowe DF. Reactive Oxygen Species as Mediators of Cardiac Injury and Protection: The Relevance to Anesthesia Practice[J]. Anesth. Analg, 2005; 101(5): 1275 - 1287.
    4. Maritim AC, Sanders RA, Watkins JB, et al. Diabetes, oxidativestress, and antioxidants: a review[J].J Biochem Mol Toxicol, 2003,17(1):24-38.
    5. Evans JL,Goldfind ID, Maddux BA, et al. Are oxidative stress activated signaling pathways mediators of insulin resistan and beta2 cell dysfunction?[J]. Diabetes, 2003,52(1):1-8.
    6. Robertson RP, Harmon J, Tran PO, et al. Glucose toxicity in beta -cells: type 2 diabetes, good radicals gone bad, and the glutathione connection[J]. Diabetes, 2003, 52(3):581-587.
    7. Kajimoto T, Kaneto H. Role of oxidative stress in pancreat beta 2 cell dysfunction [J]. Ann N Y Acad Sci,2004,1011:168-176.
    8. Maiese K, Morhan SD, Chong ZZ. Oxidative stress biology and cell injury during type 1 and type 2 diabetes mellitus[J]. Curr Neurovasc Res. 2007;4(1):63-71.
    9. Pessler-Cohen D, Pekala PH, Kovsan J, et al. GLUT4 repression in response to oxidative stress is associated with reciprocal alterations in C/EBP alpha and delta isoforms in 3T3-L1 adipocytes[J]. Arch Physiol Biochem, 2006,112(1):3-12.
    10. Di Filippo C, Cuzzocrea S, Rossi F, et al. Oxidative stress as the leading cause of acute myocardial infarction in diabetics[J]. Cardiovasc Drug Rev, 2006,24(2):77-87.
    11. Haidara MA, Yassin HZ, Rateb M, et al. Role of oxidative stress in development of cardiovascular complications in diabetes mellitus[J]. Curr Vasc Pharmacol. 2006 ,4(3):215-227.
    12. Mehta JL, Rasouli N, Sinha AK, et al. Oxidative stress in diabetes: a mechanisticoverview of its effects on atherogenesis and myocardial dysfunction[J]. Int J Biochem Cell Biol. 2006,38(5-6):794-803.
    13. Taniyama Y, Griendling KK. Reactive oxygen species in the vasculature molecular and cellular mechanisms[J].Hypertension,2003,42(6):1075-1081.
    14. Jialal I, Devaraj S. Low-densitylipoprote in oxidation antioxidants, and atherosclerosis:a clinical biochemistry prospective[J].ClinChem,1996,42(4):498-506.
    15. Albertini R, Moratti R, De Luca G. Oxidation of low-density lipoprotein in atherosclerosis from basic biochemistry to clinical studies[J]. Curr Mol Med. 2002 ,2(6):579-592.
    16. Orem A, Yandi YE, Vanizor B, et al. The evaluation of autoantibodies against oxidatively modified low-density lipoprotein (LDL), susceptibility of LDL to oxidation, serum lipids and lipid hydroperoxide levels, total antioxidant status, antioxidant enzyme activities, and endothelial dysfunction in patients with Behcet's disease[J]. Clin Biochem. 2002 ,35(3):217-224.
    17. Eckel RH, Wassef M, Chait A, et al. Prevention conferenceVI:diabetes and cardiovascular disease: writing groupII:pathogenesis of atherosclerosis in diabetes[J]. Circulation, 2002, 105( 18):e138-e143.
    18. Way KJ, Katai N, King GL. Protein kinase C and the development of diabetic vascular complications[J]. Diabet Med. 2001 ,18(12):945-59.
    19. Soldatos G, Cooper ME. Advanced glycation end products and vascular structure and function[J]. Curr Hypertens Rep. 2006 ,8(6):472-478.
    20. Koka V, Wang W, Huang XR, et al. Advanced glycation end products activate a chymase-dependent angiotensin II-generating pathway in diabetic complications[J]. Circulation. 2006 ,113(10):1353-1360.
    21. Goldin A, Beckman JA, Schmidt AM, et al. Advanced glycation end products: sparking the development of diabetic vascular injury[J]. Circulation. 2006 , 114(6): 597-605.
    22. Hori O, Yan SD, Ogawa S, et al. The receptor for advanced glycation end-products has a central role in mediating the effects of advanced glycation end-products on the development of vascular disease in diabetes mellitus[J]. Nephrol Dial Transplant. 1996,11 Suppl 5:13-6.
    23. Aronson D. Potential role of advanced glycosylation end products in promoting restenosis in diabetes and renal failure[J]. Med Hypotheses. 2002 ,59(3):297-301.
    24. Hofmann MA, Schiekofer S, Isermann B, et al. Peripheral blood mononuclear cells isolated from patients with diabetic nephropathy show increased activation of the oxidative stress sensitive transcription factor NF-κB [J].Diabetologia, 1999, 42(2): 222-232.
    25. Naamane N, van Helden J, Eizirik DL. In silico identification of NF-kappaB-regulated genes in pancreatic beta-cells[J]. BMC Bioinformatics. 2007 , 15 (8):55.
    26. Ortis F, Cardozo AK, Crispim D, et al. Cytokine-induced proapoptotic gene expression in insulin-producing cells is related to rapid, sustained, and nonoscillatory nuclear factor-kappaB activation[J]. Mol Endocrinol. 2006 ,20(8):1867-1879.
    27. Azevedo-Martins AK, Lortz S, Lenzen S, et al. Improvement of the mitochondrial antioxidant defense status prevents cytokine-induced nuclear factor-kappaB activation in insulin-producing cells[J]. Diabetes. 2003 ,52(1):93-101.
    28. Evans JL,Goldfine ID, Maddux BA, et al. Oxidative stress and stress-activated signaling pathways:A unifying hypothesis of type 2 diabetes[J]. Endocr Rev, 2002, 23(5):599-622.
    29. Spitaler MM,Graier WF.Vascular targets of redox signalling in diabetes mellitus[J]. Diabetologia, 2002,45(4):476-494.
    30. Hink U, Tsilimingas N, Wendt M, et al. Mechanisms underlying endothelial dysfunction in diabetes mellitus: therapeutic implications[J]. Treat Endocrinol. 2003, 2(5):293-304.
    31. Guzik TJ, Mussa S, Gastaldi D, et al.Mechanisms of increased vascular superoxide production in human diabetes mellitus:role of NAD(P)H oxidase and endothelial nitricoxide synthase[J].Circulation,2002,105(14):1656-1662.
    32. Zou MH. Peroxynitrite and protein tyrosine nitration of prostacyclin synthase[J]. Prostaglandins Other Lipid Mediat. 2007 ,82(1-4):119-27.
    33. Zou MH, Shi C,Cohen RA. Oxidation of the zinc-thiolate complex and uncoupling of endothelial nitricoxide synthase by peroxynitrite[J].J Clin Invest, 2002, 109(6): 817-826.
    34. Zou MH, Cohen R, Ullrich V. Peroxynitrite and vascular endothelial dysfunction in diabetes mellitus[J]. Endothelium. 2004,11(2):89-97.
    35. Ceriello A, Quagliaro LD, Amico M, et al. Acute hyperglycemia induces nitrotyrosine formation and apoptosis in perfused heart from rat[J].Diabetes, 2002,51(4):1076-1082.
    36. Arrick DM, Sharpe GM, Sun H, et al. Diabetes-induced cerebrovascular dysfunction: role of poly(ADP-ribose) polymerase[J].Microvasc Res. 2007 ,73(1):1-6.
    37. Pacher P, Szabo C. Role of poly(ADP-ribose) polymerase-1 activation in the pathogenesis of diabetic complications: endothelial dysfunction, as a common underlying theme[J].Antioxid Redox Signal. 2005 ,7(11-12):1568-1580.
    38. Garcia Soriano F,Virag L, Jagtap P, et al.Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation[J].Nat Med,2001,7(1):108-113.
    39. van Damps.Oxidative stress and diabetic neuropathy : pathophysiological mechanisms and treatment perspectives[J].Diabetes Metab Res Rev,2002, 18(3): 176-184.
    40. Feldmanel.Oxidative stress and diabetic neuropathy:an understanding of an old problem[J].J Clin Invest,2003,111(4),431-433.
    41. El-Missiry MA, Fayed TA, El-Sawy MR, et al. Ameliorative effect of melatonin against gamma-irradiation-induced oxidative stress and tissue injury[J]. Ecotoxicol Environ Saf. 2007 ,66(2):278-286.
    42. Abdel-Wahab MH, Abd-Allah AR. Possible protective effect of melatonin and/or desferrioxamine against streptozotocin-induced hyperglycaemia in mice[J]. Pharmacol Res. 2000 ,41(5):533-537.
    43. Baydas G, Canatan H, Turkoglu A. Comparative analysis of the protective effects of melatonin and vitamin E on streptozocin-induced diabetes mellitus[J]. J Pineal Res. 2002 ,32(4):225-230.
    44. Montilla PL, Vargas JF, Tunez IF, et al. Oxidative stress in diabetic rats induced by streptozotocin: protective effects of melatonin. J Pineal Res[J]. 1998,25(2):94-100.
    45. Fang YZ,Yang S,Wu G. Free radicals, antioxidants, and nutrition [J]. Nutrition, 2002,18(10):872-879.
    46.舒毅,钟历勇.氧化应激与糖尿病[J].东南大学学报(医学版).2005,24(1):64-67.
    47. Maritim AC, Sanders RA, Watkins JB. Effects of alpha-lipoic acid on biomarkers of oxidative stress in streptozotocin-induced diabetic rats[J].J Nutr Biochem, 2003, 14(5): 288-294.
    1.赵铁耘,李秀钧.糖尿病诊治研究新理念[J].中国实用内科杂志,2005, 25(4):302-304.
    2. Gu WD, Pagel PS, Warltier DC, et al. Modifying Cardiovascular Risk in Diabetes Mellitus[J]. Anesthesiology 2003; 98:774–779.
    3. Zimmet P, Alberti KG, Shaw J, et al. Global and societal implications of the diabetes epidemic[J]. Nature 2001,414: 782–787.
    4. Clement S, Braithwaite SS, Magee MF, et al. Management of Diabetes and Hyperglycemia in Hospitals[J].Diabetes Care, February 1, 2004; 27(2): 553 - 591.
    5. Ceriello A. Acute hyperglycaemia: a 'new' risk factor during myocardial infarction[J]. Eur. Heart J, 2005; 26(4): 328 - 331.
    6. Capes SE, Hunt D, Malmberg K, et al.Stress hyperglycaemia and increased risk of death after myocardial infarction in patients with and without diabetes: a systematic overview[J]. Lancet.2000,355 :773–778.
    7. Trost S, LeWinter M. Diabetic cardiomyopathy[J]. Curr Treat Options Cardiovasc Med 2001,3: 481–492.
    8. Francis GS. Diabetic cardiomyopathy: fact or fiction? [J]. Heart, 2001,85: 247–248.
    9. Cai L, Kang YJ. Oxidative stress and diabetic cardiomyopathy[J]. Cardiovasc Toxicol, 2001,1: 181–193.
    10. Taylor JH, Beilman GJ. Hyperglycemia in the intensive care unit: no longer just a marker of illness severity[J]. Surg Infect (Larchmt). 2005;6(2):233-245.
    11. Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group: Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus [J]. JAMA, 2002, 287 :2563–2569.
    12. UK Prospective Diabetes Study (UKPDS) Group: Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33) [J]. Lancet,1998,352 :837–853.
    13. Di Filippo C, Cuzzocrea S, Rossil F, et al. Oxidative Stress as the Leading Cause of Acute Myocardial Infarction in Diabetics[J]. Cardiovascular Drug Reviews, 2006, 24(2) :77-87.
    14. Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage[J]. Nature. 2000;404: 787–790.
    15. Brownlee M. Biochemistry and molecular cell biology of diabetic complications[J]. Nature. 2001;414:813–820.
    16. Crow MT, Mani K, Nam YJ, et al. The Mitochondrial Death Pathway and Cardiac Myocyte Apoptosis[J]. Circulation Research. 2004;95:957-970.
    17. Cai L, Li W, Wang G, et al. Hyperglycemia-Induced Apoptosis in Mouse Myocardium : Mitochondrial Cytochrome c–Mediated Caspase-3 Activation Pathway[J]. Diabetes 2002, 51:1938-1948.
    18. Yaoita H, Ogawa K, Maehara K, et al. Apoptosis in relevant clinical situations: contribution of apoptosis in myocardial infarction[J]. Cardiovasc Res. 2000; 45(3): 630-641.
    19. McCully JD, Wakiyama H, HsiehYJ et al. Differential contribution of necrosis and apoptosis in myocardial ischemia-reperfusion injury[J]. Am J Physiol Heart Circ Physiol. 2004;286: H1923-1935.
    20. Tas S, Sarandol E, Ayvalik S, et al. Vanadyl sulfate, taurine, and combined vanadyl sulfate and taurine treatments in diabetic rats: effects on the oxidative and antioxidative systems[J]. Arch Med Res. 2007;38(3):276-283.
    21. Obrosova IG, Fathallah L, Stevens MJ. Taurine counteracts oxidative stress and nerve growth factor deficit in early experimental diabetic neuropathy[J].Exp Neurol. 2001;172(1):211-219.
    22. Oktem F, Ozguner F, Yilmaz HR, et al. Melatonin reduces urinary excretion of N-acetyl-beta-D-glucosaminidase, albumin and renal oxidative markers in diabetic rats[J]. Clin Exp Pharmacol Physiol. 2006;33(1-2):95-101.
    23. Yilmaz HR, Uz E, Yucel N, et al. Protective effect of caffeic acid phenethyl ester (CAPE) on lipid peroxidation and antioxidant enzymes in diabetic rat liver[J].J Biochem Mol Toxicol. 2004;18(4):234-238.
    24. Skyrme-Jones RA, O'Brien RC, Berry KL, et al. Vitamin E supplementation improves endothelial function in type I diabetes mellitus: a randomized, placebo-controlled study[J]. J Am Coll Cardiol. 2000;36:94–102.
    25. Beckman JA, Goldfine AB, Gordon MB, et al. Oral antioxidant therapy improves endothelial function in Type 1 but not Type 2 diabetes mellitus[J]. Am J Physiol. 2003;285:H2392–2398.
    26. Gaede P, Poulsen HE, Parving HH, et al. Double-blind, randomised study of the effect of combined treatment with vitamin C and E on albuminuria in Type 2 diabetic patients[J]. Diabet Med. 2001;18:756–760.
    27. Yusuf S, Dagenais G, Pogue J, et al. Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators[J]. N Engl J Med. 2000;342:154–160.
    28. Boaz M, Smetana S, Weinstein T, Matas Z, Gafter U, Iaina A, Knecht A, Weissgarten Y, Brunner D, Fainaru M, et al. Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): randomised placebo-controlled trial[J]. Lancet. 2000;356:1213–1218.
    29. Gaede P, Vedel P, Larsen N, et al. Multifactorial intervention and cardiovascular disease in patients with Type 2 diabetes[J]. N Engl J Med. 2003;348:383–393.
    30. Lonn EM, Yusuf S, Dzavik V, et al. Effects of ramipril and vitamin E on atherosclerosis : The study to evaluate carotid ultrasound changes in patients treated with ramipril and vitamin E (SECURE) [J]. Circulation. 2001;103:919–925.
    31. Lonn E, Yusuf S, Hoogwerf B, et al. Effects of vitamin E on cardiovascular and microvascular outcomes in high-risk patients with diabetes: Results of the HOPE study and MICRO-HOPE substudy[J]. Diabetes Care. 2002;25:1919–1927.
    32. Heart Protection Study Collaborative Group.MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20,536 high-risk individuals : a randomised placebo-controlled trial[J].Lancet,2002,360(9326):23-33.
    33. Cuzzocrea S, Riley DP, Caputi AP,et al.Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury[J].Pharmacol Rev,2001,53(1):135-159.
    34. Young IS,Woodside JV. Antioxidants in health and disease[J]. JClinPathol, 2001, 54(3):176-186.
    35. Ceriello A. New insights on oxidative stress and diabetic complications may lead to a“causal”antioxidant therapy [J].Diabetes Care,2003,26(5):1589-1596.
    36. Kojima M, Sun L, Hata I, et al. Efficacy of alpha-Lipoic Acid Against Diabetic Cataract in Rat[J]. Jpn J Ophthalmol. 2007;51(1):10-13.
    37. Foster TS. Efficacy and safety of alpha-lipoic acid supplementation in the treatment of symptomatic diabetic neuropathy[J]. Diabetes Educ. 2007;33(1):111-117.
    38. Ametov AS, Barinov A, Dyck PJ, et al. The sensory symptoms of diabetic polyneuropathy are improved with {alpha}-Lipoic Acid: The SYDNEY Trial[J]. Diabetes Care. 2003;26:770–776.
    39. Guo Z, Zhao Z. Effect of N-acetylcysteine on plasma adiponectin and renal adiponectin receptors in streptozotocin-induced diabetic rats[J]. Eur J Pharmacol. 2007;558 (1-3): 208-213.
    40. Cheng X, Xia Z, Leo JM, et al. The effect of N-acetylcysteine on cardiac contractility to dobutamine in rats with streptozotocin-induced diabetes[J]. Eur J Pharmacol. 2005; 519(1-2):118-126.
    41. Xia Z, Kuo KH, Nagareddy PR, et al. N-acetylcysteine attenuates PKC beta(2) overexpression and myocardial hypertrophy in streptozotocin-induced diabetic rats[J]. Cardiovasc Res. 2007;73(4):770-782.
    42. Nagareddy PR, Xia Z, MacLeod KM, et al. N-acetylcysteine prevents nitrosative stress-associated depression of blood pressure and heart rate in streptozotocin diabetic rats[J]. J Cardiovasc Pharmacol. 2006;47(4):513-520.
    43. Haber CA , Lam TKT, Yu Z, et al. N-acetylcysteine and taurine prevent hyperglycemia-induced insulin resistance in vivo: possible role of oxidative stress[J]. Am J Physiol Endocrinol Metab2003, 285: E744-E753 .
    44. Aasum E, Hafstad AD, Severson DL, et al. Age-Dependent Changes in Metabolism, Contractile Function, and Ischemic Sensitivity in Hearts From db/db Mice[J]. Diabetes 2003, 52:434-441.
    45. Ravingerova T, Stetka R, Pancza D, et al. Susceptibility to Ischemia-Induced Arrhythmias and the Effect of Preconditioning in the Diabetic Rat Heart[J]. Physiol Res.2000,49: 607-616.
    46. Ghosh S, Pulinilkunnil T, Yuen G, et al. Cardiomyocyte apoptosis induced by short-term diabetes requires mitochondrial GSH depletion[J]. Am J Physiol Heart Circ Physiol 2005, 289: H768-H776.
    47. Marfella R, D’Amico M, Di Filippo C, et al. Myocardial infarction in diabetic rats: role of hyperglycaemia on infarct size and early expression of hypoxia-inducible factor 1[J]. Diabetologia 2002 ; 45:1172–1181.
    48. Turkseven S, Kruger A, Mingone CJ. et al. Antioxidant mechanism of heme oxygenase-1 involves an increase in superoxide dismutase and catalase in experimental diabetes[J]. Am J Physiol Heart Circ Physiol. 2005;289(2):H701- H707.
    49. Di Filippo C, Marfella R, Cuzzocrea S, et al. Hyperglycemia in Streptozotocin-Induced Diabetic Rat Increases Infarct Size Associated With Low Levels of Myocardial HO-1 During Ischemia/Reperfusion[J]. Diabetes 2005; 54:803-810.
    1张均田.现代药理实验方法[M].北京医科大学中国协和医科大学联合出版社,1998.982.
    2金钟一,赵进军,毕亚艳,等.联合STZ和ALX制备大鼠糖尿病模型的心肌病理学观察[J].哈尔滨医科大学学报;2005,39(1):58-60.
    3 Xiao C-Y, Chen M, Zsengellér Z,et al. Poly(ADP-Ribose) Polymerase Contributes to the Development of Myocardial Infarction in Diabetic Rats and Regulates the Nuclear Translocation of Apoptosis-Inducing Factor[J]. Journal of Pharmacology And Experimental Therapeutics; 2004;310:498-504.
    4 Di Filippo C, Marfella, R, Cuzzocrea, S, et al. Hyperglycemia in Streptozotocin- Induced Diabetic Rat Increases Infarct Size Associated With Low Levels of Myocardial HO-1 During Ischemia/Reperfusion[J]. Diabetes .2005;54:803-810.
    5 Hokama JY, Ritter LS, Davis-Gorman G, et al. Diabetes enhances leukocyte accumulation in the coronary microcirculation early in reperfusion following ischemia[J]. J Diabetes Complications. 2000;14(2):96-107.
    1 Robertson RP: Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes [J]. J Biol Chem, 2004, 279 :42351–42354.
    2舒毅,钟历勇.氧化应激与糖尿病[J].东南大学学报(医学版).2005,24(1):64-67.
    3 Kersten JR, Toller WG, Gross ER et al. Diabetes abolishes ischemic preconditioning: role of glucose, insulin, and osmolality [J]. Am J Physiol Heart Circ Physiol 2000; 278: H1218-1224.
    4 Tanaka K, Kehl F, Gu W et al. Isoflurane-induced preconditioning is attenuated by diabetes [J]. Am J Physiol Heart Circ Physiol 2002; 282: H2018-2023.
    5 Lazar HL. Alterations in myocardial metabolism in the diabetic myocardium[J]. Semin Thorac Cardiovasc Surg. 2006;18(4):289-292.
    6 Christen U. Chemokines as drug targets in type 1 diabetes[J]. Endocr Metab Immune Disord Drug Targets. 2007;7(1):7-12.
    7 Vinten-Johansen J, Jiang R, Reeves JG, et al .Inflammation, proinflammatory mediators and myocardial ischemia-reperfusion Injury[J]. Hematol Oncol Clin North Am. 2007;21(1):123-145.
    8 Saeed SA, Waqar MA, Zubairi AJ, et al. Myocardial ischaemia and reperfusion injury: reactive oxygen species and the role of neutrophil[J]. J Coll Physicians Surg Pak. 2005;15(8):507-514.
    9 Sun M, Chen M, Dawood F, et al.Tumor necrosis factor-alpha mediates cardiac remodeling and ventricular dysfunction after pressure overload state[J]. Circulation. 2007;115(11):1398-1407.
    10 Kaur K, Sharma AK, Dhingra S, et al. Interplay of TNF-alpha and IL-10 in regulating oxidative stress in isolated adult cardiac myocytes[J].J Mol Cell Cardiol. 2006 ;41(6):1023-1030.
    11 Ustunsoy H, Sivrikoz MC, Tarakcioglu M, et al. The effects of pentoxifylline on themyocardial inflammation and ischemia-reperfusion injury during cardiopulmonary bypass[J]. J Card Surg. 2006;21(1):57-61.
    12 Kohtani T, Abe Y, Sato M, et al. Protective effects of anti-neutrophil antibody against myocardial ischemia/reperfusion injury in rats[J]. Eur Surg Res. 2002 ;34(4):313-320.
    13李伟,李颖则,邱兆昆.电子自旋共振检测N-乙酰半胱氨酸对大鼠缺血/再灌注心肌中氧自由基的消除作用[J].复旦学报(医学版). 2005,32 (3):316-320.
    14肖颖彬,杨素娟,任建平,等。附加N-乙酰半胱氨酸心麻痹液对低温缺血再灌注大鼠心脏高能磷酸化合物代谢的保护作用.第三军医大学学报,2003;(25):316-318。
    15 Bourraindeloup M, Adamy C, Candiani G, et al. N-Acetylcysteine Treatment Normalizes Serum Tumor Necrosis Factor-{alpha} Level and Hinders the Progression of Cardiac Injury in Hypertensive Rats[J]. Circulation, October 5, 2004; 110(14): 2003 - 2009.
    16 Curtis MJ, Walker MJ. Quantification of arrhythmias using scoring systems: an examination of seven scores in an in vivo model of regional myocardial ischemia[J]. Cardiovasc Res, 1988,22:656-665.
    17 Ravingerova T, Narcis T, Slezak J et al. Brief, intermediate and prolonged ischemia in the isolated crystalloid perfused rat heart: relation between susceptibility to arrhythmias and degree of ultrastructural injury[J]. J Mol Cell Cardiol,1995,27(9): 1937-1951.
    18 Feuvray D and Lopaschuk GD. Controversies on the sensitivity of the diabetic heart to ischemic injury: the sensitivity of the diabetic heart to ischemic injury is decreased[J]. Cardiovasc Res 1997;34: 113–120.
    19 Paulson DJ. The diabetic heart is more sensitive to ischemic injury[J]. Cardiovasc Res 1997;34: 104–112.
    20 Gu WD, Pagel PS, Warltier DC, et al. Modifying Cardiovascular Risk in Diabetes Mellitus[J]. Anesthesiology 2003; 98:774–779.
    21 Guo Z, Xia Z, Jiang J, et al. Down-regulation of NADPH oxidase, antioxidant enzymes and inflammatory markers in the heart of streptozotocin-induced diabetic rats byN-acetylcysteine[J]. Am J Physiol Heart Circ Physiol.2007; 292: H1728-H1736.
    22 Cheng X, Xia Z,Leo JM, et al. The effect of N-acetylcysteine on cardiac contractility to dobutamine in rats with streptozotocin-induced diabetes[J]. Eur J Pharmacol. 2005 5;519(1-2):118-126.
    23 Nagareddy PR, Xia Z,MacLeod KM, et al. N-acetylcysteine prevents nitrosative stress-associated depression of blood pressure and heart rate in streptozotocin diabetic rats[J]. J Cardiovasc Pharmacol. 2006;47(4):513-20.
    24 Xiao CY, Chen M, Zsengeller Z, et al. Poly(ADP-ribose) polymerase contributes to the development of myocardial infarction in diabetic rats and regulates the nuclear translocation of apoptosis-inducing factor[J].J Pharmacol Exp Ther. 2004, 310(2): 498-504.
    25 Di Filippo C, Marfella R, Cuzzocrea S, et al. Hyperglycemia in streptozotocin-induced diabetic rat increases infarct size associated with low levels of myocardial HO-1 during ischemia/reperfusion[J].Diabetes. 2005,54(3):803-810.
    26 Meldrum DR. Tumor necrosis factor in the heart[J]. Am J Physiol Regul Integr Comp Physiol 1998;274: R577-R595.
    27 Kapadia SJ, Lee G, Tarre A, et al.Tumor necrosis factor-αgene and protein expression in adult feline myocardium after endotoxin administration[J]. J Clin Invest .1995; 96: 1042-1052.
    28 Wang M, Tsai BM, Kher A, et al.Role of endogenous testosterone in myocardial proinflammatory and proapoptotic signaling after acute ischemia-reperfusion[J]. Am J Physiol Heart Circ Physiol. 2005;288(1):H221-226.
    29 Nossuli TO, Frangogiannis NG, Knuefermann P. Brief murine myocardial I/R induces chemokines in a TNF-alpha-independent manner: role of oxygen radicals[J].Am J Physiol Heart Circ Physiol. 2001;281(6):H2549-2558.
    30 Ehsan Y. Davani, Delbert R, et al.Novel regulatory mechanism of cardiomyocyte contractility involving ICAM-1 and the cytoskeleton[J]. Am J Physiol Heart CircPhysiol 2004, 287(3): H1013-H1022.
    31 Kulkielka GL,Youker KA, Michael LH, et al. Role of early reperfusion in the induction of adhesion molecules and cytokines in previously ischemic myocardium[J]. Mol Cell Biochem.1995;147:5-12.
    32 .Ma XL,Lefer DJ, Lefer AM. Coronary endothelial and cardiac protective effects of a monoclonal antibody to intercellular adhesion molecule-1 in myocardial ischemia and reperfusion[J]. Circulation;1992;86:937-946.
    33 Sochman J. N-acetylcysteine in acute cardiology: 10 years later: What do we know and what would we like to know?[J]. J Am Coll Cardiol., 2002; 39 (9): 1422 - 1428.
    34 Cailleret M, Amadou A, Andrieu-Abadie N, et al. N-Acetylcysteine Prevents the Deleterious Effect of Tumor Necrosis Factor-{alpha} on Calcium Transients and Contraction in Adult Rat Cardio myocytes [J].Circulation, 2004; 109(3): 406 - 411.
    1 Gu WD, Pagel PS, Warltier DC, et al. Modifying Cardiovascular Risk in Diabetes Mellitus [J]. Anesthesiology. 2003,98:774–779.
    2 McCully JD, Wakiyama H, Hsieh YJ, et al. Differential contribution of necrosis and apoptosis in myocardial ischemia-reperfusion injury[J]. Am J Physiol Heart Circ Physiol 2004;286: H1923-1935.
    3 Di Filippo C, Cuzzocrea S, Rossi F, et al. Oxidative stress as the leading cause of acute myocardial infarction in diabetics[J]. Cardiovasc Drug Rev. 2006;24(2):77-87.
    4 Kevin LG, Novalija E, Stowe DF. Reactive Oxygen Species as Mediators of Cardiac Injury and Protection: The Relevance to Anesthesia Practice[J]. Anesth. Analg 2005; 101(5): 1275 - 1287.
    5 Ghosh S,Ting S, Lau H, et al.Increased efflux of glutathione conjugate in acutely diabetic caidiomyocytes[J]. Can J Physiol Pharmacol.2004;82:879-887.
    6 Fiordaliso F, Bianchi R, Staszewsky L et al. Antioxidant treatment attenuates hyperglycemia-induced cardiomyocyte death in rats[J]. J Mol Cell Cardiol. 2004;37 (5): 959-968.
    7 Vohra HA, Galinanes M. Effect of the degree of ischaemic injury and reoxygenation time on the type of myocardial cell death in man: role of caspases[J]. BMC Physiol 2005; 5:14.
    8 Crow MT, Mani K, Nam YJ, et al. The Mitochondrial Death Pathway and Cardiac Myocyte Apoptosis[J]. Circulation Research. 2004;95:957.
    9 Cai1 L, Li W, Wang G, et al. Hyperglycemia-Induced Apoptosis in Mouse Myocardium Mitochondrial Cytochrome c–Mediated Caspase-3 Activation Pathway[J]. Diabetes 2002,51:1938-1948.
    10马彩云,张立克,杜凤和,等.细胞外信号调节的蛋白激酶对糖尿病大鼠心肌缺血预处理的影响[J].中国病理生理杂志,2005,21(1):68-71.
    11 Tanaka K, Kehl F, Gu W, et al. Isoflurane-induced preconditioning is attenuated bydiabetes [J]. Am J Physiol Heart Circ Physiol 2002,282: H2018-2023.
    12李伟,李颖则,邱兆昆.电子自旋共振检测N-乙酰半胱氨酸对大鼠缺血-再灌注心肌中氧自由基的消除作用[J].复旦学报(医学版), 2005, 32 (3):316-320.
    13 Fischer UM, Cox CS, Allen SJ, et al. The antioxidant N-acetylcysteine preserves myocardial function and diminishes oxidative stress after cardioplegic arrest[J].J Thorac Cardiovasc Surg. 2003; 126(5): 1483 - 1488.
    14 Robertson RP. Chronic Oxidative Stress as a Central Mechanism for Glucose Toxicity in Pancreatic Islet Beta Cells in Diabetes[J]. J Biol Chem 2004;279(41), 42351-42354.
    15 Filippo CD, Marfella R, Cuzzocrea S, et al. Hyperglycemia in Streptozotocin-Induced Diabetic Rat Increases Infarct Size Associated With Low Levels of Myocardial HO-1 During Ischemia/Reperfusion[J]. Diabetes, 2005; 54(3): 803 - 810.
    16 Xiao CY, Chen M., ZsengellerZ, et al. Poly(ADP-Ribose) Polymerase Contributes to the Development of Myocardial Infarction in Diabetic Rats and Regulates the Nuclear Translocation of Apoptosis-Inducing Factor[J].J Pharmacol Exp Ther , 2004; 310(2): 498 - 504.
    17 Okuno S, Sato H, Kuriyama M ,et al. Role of cystine transport in intracellular glutathione level and cisplatin resistance in human ovarian cancer cell lines [J]. B r J Cancer,2003: 88 (6): 951-956.
    18 Zafarullah M ,L iWQ , Sylvester J, et al Molecular mechanisms of N-acetylcysteine actions[J]. Cell Mol Life Sci, 2003, 60 (1): 6-20.
    19巫国谊,赵有蓉. N -乙酰半胱氨酸的药理作用机制研究进展[J].现代医药卫生2004 ; 20 (19 ):2001-2002.
    1 Gu WD, Pagel PS, Warltier DC, et al. Modifying Cardiovascular Risk in Diabetes Mellitus[J]. Anesthesiology 2003; 98:774–779.
    2 Dawn B, Bolli R. HO-1 induction by HIF-1: a new mechanism for delayed cardioprotection? [J].Am J Physiol Heart Circ Physiol 2005; 289: H522-524.
    3 Ockaili R, Natarajan R, Salloum F, et al. HIF-1 activation attenuates postischemic myocardial injury: role for heme oxygenase-1 in modulating microvascular chemokine generation[J]. Am J Physiol Heart Circ Physiol 2005; 289: H542-548.
    4 Xiao CY, Chen M, Zsengellér Z, et al. Poly(ADP-Ribose) Polymerase Contributes to the Development of Myocardial Infarction in Diabetic Rats and Regulates the Nuclear Translocation of Apoptosis-Inducing Factor[J]. Journal of Pharmacology and Experimental Therapeutics 2004; 310:498-504.
    5 Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation[J].Mol Cell Biol. 1992;12(12):5447-5454.
    6 Hickey MM, Simon MC. Regulation of angiogenesis by hypoxia and hypoxia-inducible factors[J]. Curr Top Dev Biol. 2006;76:217-257.
    7 Semenza GL. HIF-1 and human disease: one highly involved factor[J]. Genes Dev 2000,14: 1983–1991.
    8 Semenza GL, Jiang BH, Leung SW, et al. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1[J]. J Biol Chem,1996 ,271: 32529–32537.
    9 Natarajan R, Salloum FN, Fisher BJ, et al. Hypoxia Inducible Factor-1 Activation by Prolyl 4-Hydroxylase-2 Gene Silencing Attenuates Myocardial Ischemia Reperfusion Injury[J].Circ Res, 2006; 98(1): 133 - 140.
    10 Lefer D J. Induction of HIF-1{alpha} and iNOS With siRNA: A Novel Mechanism for Myocardial Protection[J]. Circ Res, 2006; 98(1): 10 - 11.
    11 Kido M, Du L, Sullivan CC, et al.Hypoxia-Inducible Factor 1-Alpha Reduces Infarction and Attenuates Progression of Cardiac Dysfunction After Myocardial Infarction in the Mouse[J].J Am Coll Cardiol , 2005; 46(11): 2116 - 2124.
    12 Jancso G, Cserepes B, Gasz B, et al. Expression and protective role of heme oxygenase-1 in delayed myocardial preconditioning[J]. Ann N Y Acad Sci. 2007;1095: 251-61.
    13 Ozono R. New biotechnological methods to reduce oxidative stress in the cardiovascular system: focusing on the Bach1/heme oxygenase-1 pathway[J]. Curr Pharm Biotechnol. 2006;7(2):87-93.
    14 Nath KA. Heme oxygenase-1: a provenance for cytoprotective pathways in the kidney and other tissues[J]. Kidney Int. 2006;70(3):432-43.
    15 Kruger AL, Peterson SJ, Schwartzman ML, et al. Up-regulation of heme oxygenase provides vascular protection in an animal model of diabetes through its antioxidant and antiapoptotic effects[J]. J Pharmacol Exp Ther. 2006;319(3):1144-52.
    16 Ryter SW, Morse D, Choi AM. Carbon monoxide and bilirubin: potential therapies for pulmonary/vascular injury and disease[J].Am J Respir Cell Mol Biol. 2007 Feb;36(2): 175-82.
    17 Farombi EO, Surh YJ. Heme oxygenase-1 as a potential therapeutic target for hepatoprotection[J]. J Biochem Mol Biol. 2006;39(5):479-91.
    18 Di Filippo C, Cuzzocrea S, Rossi F, et al. Oxidative stress as the leading cause of acute myocardial infarction in diabetics[J]. Cardiovasc Drug Rev. 2006;24(2):77-87.
    19 Renard C, Van Obberghen E. Role of diabetes in atherosclerotic pathogenesis. What have we learned from animal models[J]? Diabetes Metab. 2006;32(1):15-29.
    20 Marfella R, D’Amico M, Di Filippo C, et al. Myocardial infarction in diabetic rats: role of hyperglycaemia on infarct size and early expression of hypoxia-inducible factor 1[J]. Diabetologia 2002 ; 45:1172–1181.
    21 Di Filippo C, Marfella R, Cuzzocrea S, et al. Hyperglycemia in Streptozotocin-InducedDiabetic Rat Increases Infarct Size Associated With Low Levels of Myocardial HO-1 During Ischemia/Reperfusion[J]. Diabetes 2005; 54:803-810.
    1. Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation[J]. Mol Cell Biol. 1992;12(12):5447–5454.
    2. Wang GL, Jiang BH, Rue EA, et al. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension[J]. Proc Natl Acad Sci U S A. 1995;92(12):5510-5514.
    3. Mahon PC, Hirota K, Semenza GL. FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity[J]. Genes Dev. 2001 15;15(20):2675-2686.
    4. Jiang C, Lu H, Vincent KA, et al .Gene expression profiles in human cardiac cells subjected to hypoxia or expressing a hybrid form of HIF-1 alpha[J]. Physiol Genomics. 2002;8(1):23-32.
    5. Chandel NS, McClintock DS, Feliciano CE, et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing[J].J Biol Chem. 2000;275(33):25130-25138.
    6. Lando D, Peet DJ, Whelan DA, et al. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch[J]. Science. 2002;295(5556):858-861.
    7. Lando D, Peet DJ, Gorman JJ, et al. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor[J]. Genes Dev. 2002;16(12):1466-1471.
    8. Min JH, Yang H, Ivan M, et al. Structure of an HIF-1alpha -pVHL complex: hydroxyproline recognition in signaling[J]. Science. 2002;296(5574):1886-1889.
    9. Hon WC, Wilson MI, Harlos K, et al. Structural basis for the recognition of hydroxyproline in HIF-1 alpha by pVHL[J]. Nature. 2002;417(6892):975-978.
    10. Miller F, Kentsis A, Osman R, et al. Inactivation of VHL by tumorigenic mutations that disrupt dynamic coupling of the pVHL.hypoxia-inducible transcriptionfactor-1alpha complex[J]. J Biol Chem. 2005;280(9):7985-7896.
    11. Wang GL, Jiang BH, Semenza GL. Effect of protein kinase and phosphatase inhibitors on expression of hypoxia-inducible factor 1.Biochem Biophys Res Commun[J]. 1995 13;216(2):669-675.
    12. Richard DE, Berra E, Gothie E, et al. p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1alpha (HIF-1alpha) and enhance the transcriptional activity of HIF-1[J].J Biol Chem. 1999 Nov 12;274(46):32631-32637.
    13. Simon MC. Mitochondrial reactive oxygen species are required for hypoxic HIF alpha stabilization[J]. Adv Exp Med Biol. 2006;588:165-170.
    14. Rezvani HR, Dedieu S, North S, et al. HIF-1alpha : a key factor in the keratinocyte response to UVB exposure[J]. J Biol Chem. 2007 Mar 30; [Epub ahead of print].
    15. Emerling BM, Platanias LC, Black E, et al. Mitochondrial reactive oxygen species activation of p38 mitogen-activated protein kinase is required for hypoxia signaling[J]. Mol Cell Biol. 2005;25(12):4853-4862.
    16. Schroedl C, McClintock DS, Budinger GR, et al. Hypoxic but not anoxic stabilization of HIF-1alpha requires mitochondrial reactive oxygen species[J]. Am J Physiol Lung Cell Mol Physiol. 2002;283(5):L922-931.
    17. Chandel NS, McClintock DS, Feliciano CE, et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing[J].J Biol Chem. 2000 Aug 18;275(33):25130-25138.
    18. Freedman SJ, Sun ZY, Poy F, et al. Structural basis for recruitment of CBP/p300 by hypoxia-inducible factor-1 alpha[J]. Proc Natl Acad Sci U S A. 2002;99 (8):5367-5372.
    19. Lando D, Peet DJ, Gorman JJ, et al. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor[J].Genes Dev. 2002;16 (12):1466-1471.
    20. Alfranca A, Gutierrez MD, Vara A, et al. c-Jun and hypoxia-inducible factor 1 functionally cooperate in hypoxia-induced gene transcription[J]. Mol Cell Biol. 2002;22(1):12-22.
    21. Kim SH, Jeong JW, Park JA, et al. Regulation of the HIF-1alpha stability by histone deacetylases[J]. Oncol Rep. 2007;17(3):647-651.
    22. Bae MK, Ahn MY, Jeong JW, et al. Jab1 interacts directly with HIF-1alpha and regulates its stability[J].J Biol Chem. 2002;277(1):9-12.
    23. Kotch LE, Iyer NV, Laughner E, et al . Defective vascularization of HIF-1α-null embryos is not associated with VEGF deficiency but with mesenchymal cell death[J]. Dev Biol,1999, 209 (2) : 254-267.
    24. Yu AY, Shimoda LA, Iyer NV, et al. Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1 alpha[J]. J Clin Invest. 1999;103(5):691-696.
    25. Schultz A. Lavie L, Hochberg I, et al. Interindividual Heterogeneity in the Hypoxic Regulation of VEGF : Significance for the Development of the Coronary Artery Collateral Circulation[J]. Circulation 1999 100(5): 547– 552.
    26. Lee SH, Wolf PL, Escudero R, et al. Early expression of angiogenesis factors in acute myocardial ischemia and infarction[J].N Engl J Med. 2000;342(9):626-633.
    27. Parisi Q, Biondi-Zoccai GG, Abbate A, et al. Hypoxia inducible factor-1 expression mediates myocardial response to ischemia late after acute myocardial infarction[J]. Int J Cardiol. 2005 Mar 18;99(2):337-339.
    28. Marfella R, D’Amico M, Di Filippo C, et al. Myocardial infarction in diabetic rats: role of hyperglycaemia on infarct size and early expression of hypoxia-inducible factor 1[J]. Diabetologia 2002 ; 45:1172–1181.
    29. Kido M, Du L, Sullivan CC, et al. Hypoxia-inducible factor 1-alpha reduces infarction and attenuates progression of cardiac dysfunction after myocardial infarction in the mouse[J]. J Am Coll Cardiol. 2005;46(11):2116-2124.
    30. Shyu KG, Wang MT, Wang BW, et al. Intramyocardial injection of naked DNA encoding HIF-1alpha/VP16 hybrid to enhance angiogenesis in an acute myocardialinfarction model in the rat[J]. Cardiovasc Res. 2002;54(3):576-583.
    31. Shyu KG, Liou JY, Wang BW, et al. Carvedilol prevents cardiac hypertrophy and overexpression of hypoxia-inducible factor-1alpha and vascular endothelial growth factor in pressure-overloaded rat heart[J]. J Biomed Sci. 2005;12(2):409-420.
    32. Shyu KG, Lu MJ, Chang H, et al. Carvedilol modulates the expression of hypoxia-inducible factor-1alpha and vascular endothelial growth factor in a rat model of volume-overload heart failure[J]. J Card Fail. 2005;11(2):152-159.
    33. Vincent KA, Shyu KG, Luo Y, et al. Angiogenesis is induced in a rabbit model of hindlimb ischemia by naked DNA encoding an HIF-1alpha/VP16 hybrid transcription factor[J]. Circulation. 2000;102(18):2255-2261.
    34. Pajusola K, Kunnapuu J, Vuorikoski S, et al. Stabilized HIF-1alpha is superior to VEGF for angiogenesis in skeletal muscle via adeno-associated virus gene transfer[J]. FASEB J. 2005;19(10):1365-1367.
    35. Sharp FR, Ran R, Lu A, et al. Hypoxic Preconditioning Protects against Ischemic Brain Injury[J]. NeuroRx. 2004;1(1):26-35.
    36. Ran R, Xu H, Lu A, et al. Hypoxia preconditioning in the brain[J]. Dev Neurosci. 2005; 27(2-4):87-92.
    37. Bergeron M, Yu AY, Solway KE, et al. Induction of hypoxia-inducible factor-1 (HIF-1) and its target genes following focal ischaemia in rat brain[J]. Eur J Neurosci. 1999; 11(12):4159-4170.
    38. Bergeron M, Gidday JM, Yu AY, et al. Role of hypoxia-inducible factor-1 in hypoxia-induced ischemic tolerance in neonatal rat brain[J]. Ann Neurol. 2000;48 (3):285-296.
    39.王娟,严宏力,倪永兵,等.缺氧诱导因子1表达抑制使缺氧-复氧的PC-12细胞氧自由基生成增加[J].医学研究生报,2004,17(1)1-4.
    40. Riess ML, Stowe DF, Warltier DC.Cardiac pharmacological preconditioning with volatile anesthetics: from bench to bedside? Am J Physiol Heart Circ Physiol .2004,286:H1603-1607.
    41. Kawata H, Yoshida K-i, Kawamoto A, et al. Ischemic Preconditioning Upregulates Vascular Endothelial Growth Factor mRNA Expression and Neovascularization via Nuclear Translocation of Protein Kinase C {epsilon} in the Rat Ischemic Myocardium[J]. Circulation Research, 2001; 88(7): 696 - 704.
    42.谢艾妮,张凯伦.心肌缺血预适应延迟相研究进展[J].《国外医学》麻醉学与复苏分册,2004, 25(3):131-134.
    43. Jung F, Palmer LA, Zhou N, et al. Hypoxic Regulation of Inducible Nitric Oxide Synthase via Hypoxia Inducible Factor-1 in Cardiac Myocytes[J]. Circ Res 2000, 86(3): 319 - 325.
    44. Ockaili R, Natarajan R, Salloum F, et al. HIF-1 activation attenuates postischemic myocardial injury: role for heme oxygenase-1 in modulating microvascular chemokine generation[J]. Am J Physiol Heart Circ Physiol 2005,289: H542–H548.
    45.刘秀华,武旭东,蔡莉荣,等.缺氧诱导因子-1在缺氧预处理心肌保护中的作用及其机制研究[J].中国病理生理杂志,2004,20(3):343-346.
    46. Natarajan R, Salloum FN, Fisher BJ, et al. Hypoxia Inducible Factor-1 Activation by Prolyl 4-Hydroxylase-2 Gene Silencing Attenuates Myocardial Ischemia Reperfusion Injury[J]. Circulation Research. 2006;98(1):133-140.
    1. Solaini G, David A. Harris. Biochemical dysfunction in heart mitochondria exposed to ischaemia and reperfusion[J]. Biochem J. 2005; 390(2): 377–394.
    2. McCully JD, Wakiyama H, Hsieh YJ, et al. Differential contribution of necrosis and apoptosis in myocardial ischemia-reperfusion injury[J]. Am J Physiol Heart Circ Physiol 2004;286: H1923-1935.
    3. B·艾伯茨,D·布雷,J·刘易斯,等(著).赵寿元(译).细胞分子生物学[M].北京:科学出版社,1990,227.
    4. Quintero M, Colombo SL, Godfrey A, et al. Mitochondria as signaling organelles in the vascular endothelium[J]. Proc Natl Acad Sci U S A. 2006;103(14):5379-5384.
    5. Wilson YJ,Wood JE.Secondary heterotypic versus homotypic infection by coxsakie B group viruse: impact on early and late histopathological lesions and virus genome prominence[J].Cardiovasculer Pathology,1999,8(2):93-103.
    6. Izumi T, Hannawa H, Sacki M, et al. Cardiac contractile proteins and autoimmune myocarditis[J]. Mol Cell Biochem,1993,119:67-71.
    7. Victor VM, Rocha M. Targeting antioxidants to mitochondria: a potential new therapeutic strategy for cardiovascular diseases[J]. Curr Pharm Des. 2007;13(8): 845-863.
    8. Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease[J]. Int J Biochem Cell Biol. 2007;39(1): 44-84.
    9. Adlam VJ, Harrison JC, Porteous CM, et al. Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury[J]. FASEB J. 2005;19(9):1088-1895.
    10. Abramov AY, Scorziello A, Duchen MR. Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation[J]. J Neurosci. 2007;27(5):1129-1138.
    11. Davidson SM, Duchen MR. Endothelial mitochondria: contributing to vascular functionand disease[J].Circ Res. 2007;100(8):1128-1141.
    12. Kovacic P, Somanathan R. Mechanism of teratogenesis: electron transfer, reactive oxygen species, and antioxidants[J]. Birth Defects Res C Embryo Today. 2006;78(4): 308-325.
    13. Czarna M, Jarmuszkiewicz W. Role of mitochondria in reactive oxygen species generation and removal; relevance to signaling and programmed cell death[J]. Postepy Biochem. 2006;52(2):145-156.
    14. Hajnoczky G, Csordas G, Das S, et al. Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis[J].Cell Calcium. 2006;40(5-6):553-560.
    15. Brady NR, Hamacher-Brady A, Westerhoff HV, et al. A wave of reactive oxygen species (ROS)-induced ROS release in a sea of excitable mitochondria[J]. Antioxid Redox Signal. 2006;8(9-10):1651-1665.
    16. Formigli L, Conti A, Lippi D. "Falling leaves": a survey of the history of apoptosis[J]. Minerva Med. 2004;95(2):159-164.
    17. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics[J].Br J Cancer. 1972;26(4):239-257.
    18. Kerr JF. History of the events leading to the formulation of the apoptosis concept [J]. Toxicology. 2002;181-182:471-474.
    19. Mirkes PE. 2001 Warkany lecture: to die or not to die, the role of apoptosis in normal and abnormal mammalian development[J].Teratology. 2002;65(5):228-239.
    20. Odaka C, Ucker DS. Apoptotic morphology reflects mitotic-like aspects of physiological cell death and is independent of genome digestion[J].Microsc Res Tech. 1996;34(3):267-271.
    21. Peter ME, Heufelder AE, Hengartner MO. Advances in apoptosis research[J]. Proc Natl Acad Sci U S A. 1997;94(24):12736-12737.
    22. Tsujimoto Y , Shimizu S . Another way to die: autophagic programmed cell death[J].Cell Death and Differentiation .2005; 12, 1528–1534.
    23. Hamacher-Brady A, Brady NR, Gottlieb RA. The interplay between pro-death and pro-survival signaling pathways in myocardial ischemia/reperfusion injury: apoptosis meets autophagy[J].Cardiovasc Drugs Ther. 2006;20(6):445-462.
    24. Hiramine C. Definition and morphological features of apoptosis[J]. Rinsho Byori. 1997; 45(5):459-69.
    25. Crow MT, Mani K, Nam Y-J, et al. The Mitochondrial Death Pathway and Cardiac Myocyte Apoptosis[J]. Circulation Research. 2004;95(10):957-970.
    26. Neuss M, Crow MT, Chesley A, et al.Apoptosis in cardiac disease--what is it--how does it occur[J]. Cardiovasc Drugs Ther. 2001;15(6):507-523.
    27. Ayala A, Wesche-Soldato DE, Perl M, et al. Blockade of apoptosis as a rational therapeutic strategy for the treatment of sepsis[J].Novartis Found Symp. 2007;280: 37-49.
    28. Siegel RM, Frederiksen JK, Zacharias DA, et al. Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations[J]. Science. 2000; 288: 2354–2357.
    29. Boldin MP, Goncharov TM, Goltsev YV, et al. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death[J]. Cell. 1996; 85: 803–815.
    30. Li H, Zhu H, Xu CJ, et al. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis[J]. Cell. 1998; 94: 491–501.
    31. Fischer U, Janicke RU, Schulze-Osthoff K. Many cuts to ruin: a comprehensive update of caspase substrates[J]. Cell Death Differ. 2003; 10: 76–100.
    32. Scarabelli TM, Knight R, Stephanou A, et al. Clinical implications of apoptosis in ischemic myocardium[J].Curr Probl Cardiol. 2006;31(3):181-264.
    33. Beere HM. Death versus survival: functional interaction between the apoptotic and stress-inducible heat shock protein pathways[J].J Clin Invest. 2005;115(10):2633-2639.
    34. Renatus M, Stennicke HR, Scott FL, et al. Dimer formation drives the activation of the cell death protease caspase 9[J]. Proc Natl Acad Sci U S A. 2001; 98: 14250–14255.
    35. Zou Hua, Henzel WJ,Liu Xuesong, et al. Apaf-1,a human protein homologous to Celegans CED-4,participates in cytochrome C-dependent activation of caspase-3[J]. Cell, 1997, 90(3): 405-413.
    36. Ravagnan L, Gurbuxani S, Susin SA, et al. Heat-shock protein 70 antagonizes apoptosis-inducing factor[J]. Nat Cell Biol. 2001; 3: 839–843.
    37. Luo X, Budihardjo I, Zou H, et al. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors[J]. Cell. 1998; 94: 481–490.
    38. Ellis HM, Horvitz HR. Genetic control of programmed cell death in the nematode Celegans[J].Cell,1986,44(7):817-829.
    39. Kumar S. Caspase function in programmed cell death. Cell Death Differ. 2007;14(1): 32-43.
    40. Lamkanfi M, Festjens N, Declercq W, et al. Caspases in cell survival, proliferation and differentiation[J]. Cell Death Differ. 2007;14(1):44-55.
    41. Johnson CR, Jarvis WD. Caspase-9 regulation: an update.Apoptosis. 2004;9(4): 423-427.
    42. Jurgensmeier J, M,Xie Z, Deveraux Q, et al. Bax directly induces release of cytochrome c from isolated mitochondria[J]. Proc Natl Acdad Sci USA,1998,95(9):4997-5002.
    43. Nakagawa T, Zou Hua, Morishima N , et al. Caspase-12 mediates endoplasmic–reticulum–specific apoptosis and cytotoxicity by amyloid-beta[J]. Nature, 2000, 403 (6765):98-103.
    44. Morishima N, Nakanishi K, Takenouchi H, et al. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12[J]. J Biol Chem. 2002; 277: 34287–34294.
    45. Xiao C-Y, Chen M, Zsengeller Z, et al. Poly(ADP-Ribose) Polymerase PromotesCardiac Remodeling, Contractile Failure, and Translocation of Apoptosis-Inducing Factor in a Murine Experimental Model of Aortic Banding and Heart Failure[J].J Pharmacol Exp Ther. 2005; 312(3): 891 - 898.
    46. Ranjan P, Shrivastava P, Singh SM, et al. Baculovirus P35 inhibits NO-induced apoptosis in activated macrophages by inhibiting cytochrome c release[J].J Cell Sci. 2004;117(Pt 14):3031-3039.
    47. Adachi K, Fujino M, Kitazawa Y, et al. Exogenous expression of Fas-ligand or CrmA prolongs the survival in rat liver transplantation[J]. Transplant Proc. 2006; 38(8): 2710-2713.
    48. Uriarte SM, Joshi-Barve S, Song Z, et al. Akt inhibition upregulates FasL, downregulates c-FLIPs and induces caspase-8-dependent cell death in Jurkat T lymphocytes[J]. Cell Death Differ. 2005 ;12(3):233-242.
    49. Naito M. Molecular mechanism of apoptosis inhibition by IAPs and its implication to cancer therapy[J]. Seikagaku. 2006;78(6):525-528.
    50. Yaqin M, Runhua L, Fuxi Z. Analyses of Bcl-2, Survivin, and CD44v6 expressions and human papillomavirus infection in cervical carcinomas[J]. Scand J Infect Dis. 2007; 39(5): 441-448.
    51. Orelio C, Dzierzak E. Bcl-2 expression and apoptosis in the regulation of hematopoietic stem cells[J]. Leuk Lymphoma. 2007;48(1):16-24.
    52. Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy[J]. Oncogene. 2007;26(9):1324-1337.
    53. Rao L, Perez D, White E. Lamin proteolysis facilitates nuclear events during apoptosis.J Cell Biol[J]. 1996;135(6 Pt 1):1441-1455.
    54. Tsutsui H. Mitochondrial oxidative stress and heart failure[J]. Intern Med. 2006; 45(13): 809-813.
    55. van Empel VP, Bertrand AT, Hofstra L, et al. Myocyte apoptosis in heart failure[J]. Cardiovasc Res. 2005 1;67(1):21-29.
    56. Buja LM and Entman ML. Modes of myocardial cell injury and cell death in ischemic heart disease[J]. Circulation 1998,98: 1355–1357.
    57. Anversa P, Cheng W, Liu Y, et al Apoptosis and myocardial infarction[J]. Basic Res Cardiol 1998,93(Suppl 3): 8–12.
    58. Kajstura J, Cheng W, Reiss K, et al. Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats[J]. Lab Invest. 1996;74(1): 86-107.
    59. Gottlieb RA, Burleson KO, Kloner RA, et al. Reperfusion injury induces apoptosis in rabbit cardiomyocytes[J]. J Clin Invest. 1994;94(4):1621-1628.
    60. Vohra HA, Galinanes M. Effect of the degree of ischaemic injury and reoxygenation time on the type of myocardial cell death in man: role of caspases[J]. BMC Physiol. 2005;5:14.
    61. Wencker D, Chandra M, Nguyen K, et al. A mechanistic role for cardiac myocyte apoptosis in heart failure[J]. J Clin Invest. 2003; 111: 1497–1504.
    62. Olivetti G, Abbi R, Quaini F, et al. Apoptosis in the failing human heart[J]. N Engl J Med. 1997; 336: 1131–1141.
    63. Bennett MR. Apoptosis in the cardiovascular system[J]. Heart 2002;87;480-487.
    64. Williams RJ. Calcium in health and disease[J].Cell Calcium. 1998;24(4):233-237.
    65. Gibson GE, Zhang H, Xu H, et al.Oxidative stress increases internal calcium stores and reduces a key mitochondrial enzyme[J]. Biochim Biophys Acta. 2002;1586(2):177-189.
    66. Duchen MR. Mitochondria and calcium: from cell signalling to cell death[J].J Physiol. 2000 15;529 (Pt 1):57-68.
    67. Bouaziz N,Redon M.Mitochondrial respirtary chain as a new taget for anti-ischemic molecules[J].European Journal of Pharmacology,2002,441:35-45.
    68. Chen Q, Camara AK, Stowe DF, et al. Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion[J].Am J Physiol Cell Physiol. 2007;292(1):C137-147.
    69. Bringold U, Ghafourifar P, Richter C. Peroxynitrite formed by mitochondrial NO synthase promotes mitochondrial Ca2+ release[J].Free Radic Biol Med. 2000;29(3-4): 343-348.
    70. Ghafourifar P, Bringold U, Klein SD, et al. Mitochondrial nitric oxide synthase, oxidative stress and apoptosis[J].Biol Signals Recept. 2001;10(1-2):57-65.
    71. Correa F, Soto V, Zazueta C. Mitochondrial permeability transition relevance for apoptotic triggering in the post-ischemic heart[J].Int J Biochem Cell Biol. 2007;39(4): 787-798.
    72. Argaud L, Gateau-Roesch O, Muntean D, et al. Specific inhibition of the mitochondrial permeability transition prevents lethal reperfusion injury[J]. J Mol Cell Cardiol. 2005; 38(2): 367-374.
    73. Brady NR, Hamacher-Brady A, Gottlieb RA. Proapoptotic BCL-2 family members and mitochondrial dysfunction during ischemia/reperfusion injury, a study employing cardiac HL-1 cells and GFP biosensors[J]. Biochim Biophys Acta. 2006;1757(5-6): 667-678。
    74. Rajesh KG, Sasaguri S, Zhitian Z, et al. Second window of ischemic preconditioning regulates mitochondrial permeability transition pore by enhancing Bcl-2 expression[J]. Cardiovasc Res. 2003;59(2):297-307.
    75. Ozawa T. Mitochondrial DNA mutations and age[J].Ann N Y Acad Sci. 1998;854: 128-154.
    76. Zhang D, Mott JL, Farrar P, et al. Mitochondrial DNA mutations activate the mitochondrial apoptotic pathway and cause dilated cardiomyopathy[J]. Cardiovasc Res. 2003;57(1):147-57.