字形和表象有关任务的脑功能连通和性别差异研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在功能磁共振成像(functional Magnetic Resonance Imaging,fMRI)的研究中,人们不仅关心哪些脑区会在相应的任务中激活,而且对脑激活网络的功能连通性更加感兴趣。语言加工和表象都属于人类的高级认知功能,对这两种认知过程中的脑加工模式进行深入研究具有深刻意义。尽管人们已经揭示了这两种认知任务中所激活的脑区,但关于各脑区间的功能连通性研究鲜有报道。
     心理旋转是一种表象变换,它是空间认知的一个重要方面。近年来,性别差异成为心理旋转领域中的研究热点。大量研究表明男性在心理旋转任务中的表现好于女性,一些研究发现心理旋转任务的脑激活也有性别差异,但是关于导致这种性别差异的原因人们还没有得到一致的结论,甚至还没有人研究经典的三维心理旋转中事件相关电位(Event-related Potential,ERP)的性别差异。针对以上问题,本文进行了以下研究:
     1.利用fMRI技术和WICA(Within-condition Interregional Covariance Analysis)方法建立了汉真字和汉假字加工过程中由右额下回(BA9)、左额中回(BA6)、左梭状回、右梭状回构成的神经系统的功能连通模型。结果发现:虽然四个感兴趣区在两种任务下都有激活,但是它们的功能连通模式不同,尤其是右梭状回,它在两种任务中与其他脑区之间的功能连通模式截然不同。这说明在汉真字和汉假字的加工过程中,脑内可能有着不同的信息加工模式,右梭状回可能在汉字字形加工中起到重要作用。
     2.利用fMRI技术和低频相干分析方法,采用事件相关设计,探讨了字符视觉表象任务中脑网络的功能连通性,结果发现:左额下回(Inferior Frontal Gyrus,IFG)、左顶上叶(Superior Parietal Lobule,SPL)和左楔叶(Cuneus,CUN)两两之间有着很强的功能连通,而左梭状回(Fusiform Gyrus,FUS)同其他三个脑区之间的连通性都很弱。这些结果部分的支持Kosslyn提出的关于表象的理论并初步揭示了视觉表象任务中各脑区间的功能相互作用。
     3.前人研究表明,心理旋转任务会用到客体工作记忆系统。本文采用先后呈现提示刺激和目标刺激的范式来探讨工作记忆的负荷是否会影响心理旋转中的性别差异,有三种实验任务:①无效提示的数字旋转;②有效提示的数字旋转;③有效提示的PMA(Primary Mental Abilities)图形旋转。结果发现:对无效提示的数字旋转任务,反应时和正确率在性别之间都无显著差异;对有效提示的数字旋转任务,正确率在性别之间无显著差异,而反应时的性别差异边缘显著;对有效提示的PMA图形旋转任务,正确率在性别之间无显著差异,但反应时有显著的性别差异。这说明工作记忆的负荷可能会影响心理旋转中的性别差异。
     4.对经典的三维心理旋转任务中ERP(Event-related Potential,ERP)的性别差异进行了研究。行为结果表明:反应时没有性别差异,正确率有显著的性别差异,男性表现明显好于女性。ERP结果表明:在顶叶区的电极,刺激出现后900-1000 ms的时间窗内,旋转100度与旋转50度相比波幅有负向漂移;在右额叶电极,600-700和800-900 ms时间窗内也发现了与旋转角度有关的波幅成分;同时,只在右额叶电极400-700 ms时间段发现了波幅的性别差异。这些结果表明,三维心理旋转中的性别差异发生在任务加工过程较早的阶段,可能包括旋转过程之前的刺激感知和辨识的认知过程。
Researchers not only concern which areas are activated but also pay attention to functional connectivity among brain regions in studies using fMRI(functional Magnetic Resonance Imaging).Language processing and imagery are cognitive functions of human being.It is meaningful to investigate neural mechanisms of them.Brain regions which are activated during tasks involved language processing and imagery are found by neuroimaging studies.However,studies which examined functional connectivity among brain areas during cognitive tasks involved language and imagery are sparse.
     Mental rotation,which is one type of image transformation,is an important aspect of spatial cognition.Recently,sex differences became a hot point in studies of mental rotation.A number of studies found men performed better than women in mental rotation tasks.Some studies even found sex differences of brain activation during mental rotation.However,there are still debates about the factors which cause this sex differences.There is even no study examined sex differences of ERP(Event-related Potential) effects during the classical three-dimensional mental rotation task.In view of those issues,this dissertation implemented the following studies:
     1.FMRI and WICA(Within-condition Interregional Covariance Analysis) method are used to investigate functional connectivity pattern of the neural system consisted of right inferior frontal gyrus(BA9),left middle frontal gyrus(BA6),left fusiform gyrus and right fusiform gyrus during processing Chinese character and Chinese pseudo-character.The results indicate connectivity patterns especially the patterns between right fusiform gyrus and the other three areas are different during processing character and pseudo-character,although all of the four areas are activated underlining both conditions.These results suggest different patterns of information processing are used for processing Chinese character and Chinese pseudo-character and right fusiform gyrus may play important role in Chinese orthography.
     2.Low frequency coherence analysis and event-related fMRI are used to investigate functional connectivity of brain network during character imagery.The results indicate left IFG(Inferior Frontal Gyrus),left SUP(Superior Parietal Lobule) and left CUN(Cuneus) have strong connectivity between them,whereas the functional connectivity between left FUS (Fusiform Gyrus) and any of the other three areas is weak.These results partly support the imagery theory advanced by Kosslyn and primarily reveal functional interactions among brain regions during visual mental imagery.
     3.Previous studies indicate image is stored in object working memory system during mental rotation.Successive presentation paradigms are used to investigate if working memory load affects sex differences in mental rotation.Three tasks are designed:①number rotation with useless cue;②number rotation with cue;③PMA(Primary Mental Abilities) figure rotation with cue.Analysis of variance of repeated measures results indicate that:for the task of number rotation with useless cue,neither accuracy nor response time had significant differences between sexes;for the task of number rotation with cue,the accuracy had no significant difference between sexes while the response time had marginal significant difference between sexes;for the task of PMA figure rotation,the accuracy had no significant difference between sexes while the response time had significant difference between sexes. These results suggest working memory load could affect sex differences in mental rotation.
     4.Sex differences of ERPs during the classical three-dimensional mental rotation task are investigated.Results of behavioral data indicate response times have no significant difference between sexes,whereas accuracy had significant difference between sexes.Mental rotation related ERP effects were observed 900-1000 ms post-stimulus at parietal electrodes and 600-700 as well as 800-900 ms post-stimulus at right frontal leads,respectively.Sex differences,however,were observed already 400-700 ms post-stimulus at right frontal electrodes.These findings suggest that sex differences during three-dimensional mental rotation occurred in relatively early cognitive processing stages presumably including perception and identification of stimuli instead of mental rotation itself.
引文
[1]汪云九.神经信息学——神经系统的理论和模型.北京:高等教育出版社,2006.
    [2]孙久荣.脑科学导论.北京:北京大学出版社,2001.
    [3]范金铎.脑电非线性时间序列仿真研究:(博士学位论文).合肥:中国科学技术大学,2007.
    [4]郁洪强.单个汉字认知过程中的事什相关电位的研究:(博士学位论文).天津:天津大学,2006.
    [5]罗跃嘉主编.认知神经科学教程.北京:北京大学出版社,2006.
    [6]Luck S J.An introduction to the event-related potential technique:Cambridge,MA:MIT Press,2005.
    [7]赵喜平.磁共振成像系统的原理及其应用.北京:科学出版社,2000.
    [8]唐孝威.脑功能成像.合肥:中国科学技术大学出版社,1999.
    [9]张海敏,陈盛祖.一种新的脑功能显像分析法——统计参数图(SPM).中国医学影像技术,2002,18(7):711-713.
    [10]Amaro E Jr,Barker G J.Study design in fMRI:Basic principles.Brain and Cognition,2006,60:220-232.
    [11]闫芬.功能磁共振数据处理的儿种方法研究:(硕士学位论文).大连:大连理工大学,2006.
    [12]贾富仓,翁旭初.事件相关功能磁共振成像.生理科学进展,2001,32(4):368-370.
    [13]Rorden C,Brett M.Stereotaxic display of brain lesions.Behavioural Neurology,2000,12(4):191-200.
    [14]赵熹平,郑崇勋.磁共振脑功能成像的数据处理方法.中国医学影像技术,2000,16(2):90-92.
    [15]吴义根,李可.SPM软件包数据处理原理简介——第一部分:基本数学原理.中国医学影像技术,2004,20(11):1768-1772.
    [16]吴义根,李可.SPM软件包数据处理原理简介——第二部分:应用于PET及fMRI.中国医学影像技术,2004,20(11):1772-1776.
    [17]Duann J R,Jung T P,Kuo W Jet al.Single-trial variability in event-related BOLD signals.NeuroImage,2002,15:823-835.
    [18]Hyv(a|¨)rinen A.Fast and robust Fixed-Point algorithms for independent component analysis.IEEE Transactions on Neural Networks,1999,10(3):626-634.
    [19]Friston K J,Holmes A P,Worsley J P et al.Statistical Parametric Maps in functional imaging:A general linear approach.Human Brain Mapping,1995,2:189-210.
    [20]骆姚星,唐一源,伍建林等.脑功能成像分析软件SPM使用介绍,中国医学影像技术,2003,19(7):926-928.
    [21]潘丽丽.独立成分分析及其在脑功能磁共振成像中的应用:(硕士学位论文).大连:大连理工大学.2005.
    [22]Mitchell T,Hutchinson R,Just M et al.Classifying instantaneous cognitive states from fMRI data.American Medical Informatics Association Symposium Proceedings,2003:465-469.
    [23]邸新,饶恒毅.人脑功能连通性研究进展.生物化学与生物物理进展,2007,34(1):5-12.
    [24]Friston K J,Frith C D,Liddle P E et al.Functional connectivity:the principal component analysis of large(PET) data sets.J Cereb Blood Flow Metab,1993,13(1):5-14.
    [25]Friston K J,Frith C D,Frackowiak R S J.Time-dependent changes in effective connectivity measured with PET.Hum Brain Mapp.1993,1(1):69-79.
    [26]He AG,Tan L H,TangY Y et al.Modulation of neural connectivity during tongue movement and reading.Human Brain Mapping,2003,18(3):222-232.
    [27]Liu Y J,Gao J H,Liott M et al.Temporal Dissociation of Parallel Processing in the Human Subcortical Outputs.Nature,1999,400:364-367.
    [28]范丽伟,唐焕文,唐一源.独立成分分析应用于fMRI数据的研究.大连理工大学学报,2003,43(4):23-28.
    [29]周扬.屈光参差性弱视面孔及物体形觉认知和正常人群对汉字认知人脑皮层功能活动特征的fMRI研究:(硕士学位论文).重庆:第三军医大学,2007.
    [30]严建雯,孙善麟.汉字识别的加工模型.宁波大学学报(理工版),2005,18(3):329-332.
    [31]Tan L H,Laird A R,Li K et al.Neuroanatomical correlates of phonological processing of chinese characters and alphabetic words:a meta-analysis.Human brain mapping,2005,25:83-91.
    [32]Tan L H,Liu H L,Perfetti C A et al.The neural system underlying chinese logograph reading.Neuroimage,2001,13:836-846.
    [33]Tan L H,Spinks J A,Feng C Met al.Neural systems of second language reading are shaped by native language.Human brain mapping,2003,18:158-166.
    [34]Kuo W J,Yeh T C,Lee J R et al.Orthographic and phonological processing of Chinese characters:an fMRI study.Neuroimage,2004,21:1721-1731.
    [35]陈宝国,于立新,彭聃龄.高、低频汉字形音义激活的时间进程.心理与行为研究,2006,4(4):252-257.
    [36]Kuo W J,Yeh T C,Lee C Y et al.Frequency effects of Chinese character pocessing in the brain:an event-related fMRI study.Neuroimage,2003,18:720-730.
    [37]Mccandliss B D,Cohen L,Dehaene S.The visual word form area:expertise for reading in the fusiform gyrus.Trends in cognitive sciences,2003,7(7):293-299.
    [38]Price C J,Devlin J W.The myth of the visual word form area.Neuroimage,2003,19:473-481.
    [39]Liu C,Zhang W T,Tang Y Y et al.The visual word form area:evidence from an fMRI study of implicit processing of Chinese characters.Neuroimage,2008,40:1350-1361.
    [40]彭聃龄,张必隐.认知心理学.杭州:浙江教育出版社,2004.
    [41]Eysenck M W,Keane M著.高定国,肖晓云译.认知心理学.上海:华东师范大学出版社,2000.
    [42]Kosslyn S M,Ganis G,Thompson W L.Mental imagery:against the nihilistic hypothesis.Trends in Congnitive Sciences,2003,7(3):109-111.
    [43] Farah M J. The neurological basis of mental imagery: a componential analysis. Cognition, 1984, 18:245-272.
    [44] Behrmann M, Winocur G, Moscovitch M. Dissociation between mental imagery and object recognition in a braindamaged patient. Nature, 1992, 359:636-637.
    [45] Kosslyn S M, Thompson W L, Alpert N M. Neural systems shared by visual imagery and visual perception: a positron emission tomography study. Neuroimage, 1997, 6:320-334.
    [46] Ganis G, Thompson W L, Kosslyn S M. Brain areas underlying visual mental imagery and visual perception: an fMRI study. Cognitive brain research, 2004, 20:226-241.
    [47] O'Craven K M, Kanwisher N. Mental imagery of faces and places activates corresponding stimulus -specific brain regions. Journal of cognitive neuroscience, 2000, 12:1013 -1023.
    [48] Kosslyn S M, Thompson W L, Ganis G et al. Brain rCBF and performance in visual imagery tasks: common and distinct processes. European Journal of Cognitive Psychology, 2004, 16(5): 696-716.
    [49] Mast F W, Kosslyn S M. Visual mental images can be ambiguous: insights from individual differences in spatial transformation abilities. Cognition, 2002, 86:57-70.
    [50] Thompson W L, Kosslyn S M. In Brain Mapping II: the Systems. (Academic, San Diego. eds Toga A W, Mazziotta J C), 2000:535-560.
    [51] Klein I, Paradis A L, Poline J B et al. Transient activity in human calcarine cortex during visual imagery. Journal of cognitive neuroscience, 2000, 12:15-23.
    [52] Kosslyn S M, Pascual-Leone A, Ganis G et al. The role of areal7 in visual imagery: convergent evidence from PET and rTMS. Science, 1999, 284:167-170.
    [53] Kosslyn S M, Thompson W L. When is early visual cortex activated during visual mental imagery? Psychological Bulletin, 2003, 129(5):723-746.
    [54] Mellet E, Bricogne S, Tzourio-Mazoyer N et al. Neural correlates of topographic mental exploration: the impact of route versus survey perspective learning. Neuroimage, 2000, 12:588-600.
    [55] Zatorre R J, Halpern A R, Perry D W et al. Hearing in the mind's ear: a PET investigation of musical imagery and perception. Journal of cognitive neuroscience, 1996, 8:29-46.
    [56] Halpern A R, Zatorre R J. When that tune runs through your head: a PET investigation of auditory imagery for familiar melodies. Cerebral cortex, 1998, 9:697-704.
    [57] Griffiths T D. Musical hallucinosis in acquired deafness. Phenomenology and brain substrate. Brain, 2000, 123:2065-2076
    [58] Kosslyn S M, Ganis G, Thompson W L. Neural Foundations of Imagery. Nature reviews neuroscience, 2001, 2:635-642.
    [59] Richter W, Somorjaia R, Summersa R et al. Motor area activity during mental rotation studied by time-resolved single-trial fMRI. Journal of cognitive neuroscience, 2000, 12: 310-320.
    [60] Kosslyn S M, DiGirolamo G, Thompson W L et al. Mental rotation of objects versus hands: neural mechanisms revealed by positron emission tomography. Psychophysiology, 1998, 35:151-161.
    [61] Vingerhoets G, Lange F P, Vandemaele P et al. Motor Imagery in Mental Rotation: An fMRI Study. NeuroImage, 2002, 17:1623-1633.
    [62] Wraga M, Thompson W L, Alpert N M et al. Implicit transfer of motor strategies in mental rotation. Brain and cognition, 2003, 52:135-143.
    [63] Kosslyn S M, Thompson W L, Wraga M et al. Imagining rotation by endogenous versus exogenous forces: distinct neural mechanisms. Neuroreport, 2001, 12:2519-2525.
    [64] Kreiman G, Koch C, Fried I. Imagery neurons in the human brain. Nature, 2000, 408: 357-361.
    [65] Lang P J, Greenwald M K, Bradley M M et al. Looking at pictures: affective, facial, visceral, and behavioral reactions. Psychophysiology, 1993, 30:261-273.
    [66] Kosslyn S M, Shin L M, Tompson W L, et al. Neural effects of visualizing and perceiving aversive stimuli: a PET investigation. Neuroreport. 1996, 7:1569-1576.
    [67] Ishai A, Haxby J V, Ungerleider L G. Visual imagery of Famous Faces: Effects of Memory and Attention Revealed by fMRI. NueuroImage, 2002, 17:1729-1741.
    [68] Behrmann M. The mind's eye mapped onto the brain's matter. Current directions in psychological Science, 2000, 9:50-54
    
    [69] Galton F. Inquiries into Human Faculty and its Development. London, Macmillan, 1883.
    [70] Macleod C M, Hunt E G. Individual differences in the verification of sentence-picture relationships. J. verb. Learn. verb. Behav., 1978, 5:93-508.
    [71] Mathews N N, Hunt E B. Strategy choice and strategy training in sentence-picture verification. J. verb. Learn. verb. Behav., 1980, 19:531-548.
    [72] Egan D E. Differences in mental representations spontaneously adopted for reasoning. Mem. Cog., 1982, 10:297-307.
    [73] Kosslyn S M, Brunn J, Cave K R et al. Individual differences in mental imagery ability: A computational analysis. Cognition, 1984, 18:195-245.
    [74] Kosslyn S M, Margolis J A, Anna M et al. Age differences in imagery abilities. Child Dev. ,1990, 61(4):995-1010.
    [75] Mast F W, Grnis G, Christie S et al. Four types of visual mental imagery processing in upright and tilted observers. Cognitive Brain Research, 2003, 17: 238-247.
    [76] Ganis G, Thompson W L, Kosslyn S M. Understanding the effects of task-specific practice in the brain: Insights from individual-differences analyses. Cognitive Affective. &Behavioral neuroscience, 2005, 5(2):235-245.
    [77] Kosslyn S M. Mental images and the brain. Cognitive neuropsychology, 2005, 22(3/4): 333-347.
    [78] Kosslyn S M. Image and brain: The resolution of the imagery debate. Cambridge MA:MIT Press, 1994.
    [79] Shepard R N, Metzler J. Mental rotation of threedimensional objects. Science, 1971, 171:701-703.
    [80] Jansen-Osmann P, Heil M. Suitable stimuli to obtain (no) gender differences in the speed of cognitive processes involved in mental rotation. Brain and Cognition, 2007, 64(3):217-227.
    [81] Voyer D, Voyer S, Bryden M P. Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychological Bulletin, 1995, 117:250-270.
    [82] Vandenberg S G, Kuse A R. Mental rotation, a group test of three-dimensional spatial visualisation. Perceptual and Motor Skills, 1978, 47:599-604.
    [83] Goldstein D, Haldane D, Mitchell C. Sex differences in visual-spatial ability: The role of performance factors. Memory and Cognition, 1990, 18 (5):546-550.
    [84] Peters M. Sex differences and the factor of time in solving Vandenberg and Kuse mental rotation problems. Brain and Cognition, 2005, 57:176-184.
    [85] Resnick S M. Sex differences in mental rotations: an effect of time limits? Brain and Cognition, 1993, 21(1) :71-79.
    [86] Voyer D, Rodgers M A, McCormick P A. Timing conditions and the magnitude of gender differences on the Mental Rotations Test. Memory and Cognition,2004, 32(0:72-82.
    [87] Delgado A R, Prieto G. Sex differences in visuospatial ability: do performance factors play such an important role? Memory and Cognition, 1996, 24(4):504-510.
    [88] Masters M S. The gender difference on the Mental Rotations test is not due to performance factors. Memory and Cognition, 1998, 26(3):444-448.
    [89] Collins D W, Kimura D. A large sex difference on a two-dimensional mental rotation task. Behavioral Neuroscience, 1997, 111(4):845-849.
    [90] Peters M, Laeng B, Latham K et al. A redrawn Vandenberg & Kuse Mental Rotations Tests: Different versions and factors that affect performance. Brain and Cognition, 1995, 28:39-58.
    [91] Cooper L A, Shepard R N. Chronometric studies of the rotation of mental images. In W. G. Chase (Ed.), Visual information processing. Oxford, England: Academic, 1973.
    [92] Kail R, Carter P, Pellegrino J W. The locus of sex differences in spatial ability. Perception and Psychophysics, 1979, 26:182-186.
    [93] Loring-Meier S, Halpern D F. Sex differences in visuo-spatial working memory: components of cognitive processing. Psychonomic Bulletin & Review, 1999, 6: 464-471.
    [94] Wiedenbauer G, Schmid J, Jansen-Osmann P. Manual training of mental rotation. European Journal of Cognitive Psychology, 2007, 19:17-36.
    [95] Ilan A B, Miller J. A violation of pure insertion: mental rotation and choice reaction time. Journal of Experimental Psychology: Human Perception and Psychophysics, 1994, 20: 520-536.
    [96] Thurstone T G. Manual for the primary mental abilities. Chicago: Science Research Associates, 1958.
    [97] Jordan K, Wustenberg T, Heinze H J et al. Women and men exhibit different cortical activation patterns during mental rotation tasks. Neuropsychologia, 2002, 40(13): 2397-2408.
    [98] Hugdahl K, Thomsen T, Ersland L. Sex differences in visuo-spatial processing: An fMRI study of mental rotation. Neuropsychologia, 2006, 44(9):1575-1583.
    [99] Butler T, Imperato-McGinley J, Pan H et al. Sex differences in mental rotation: top-down versus bottom-up processing. Neuroimage, 2006, 32(1):445-456.
    [100] Roberts J E, Bell M A. Two- and three-dimensional mental rotation tasks lead to different parietal laterality for men and women. International Journal of Psychophysiology, 2003, 50(3):235-246.
    [101] Roberts J E, Bell M A. Sex differences on a mental rotation task: variations in electroencephalogram hemispheric activation between children and college students. Developmental Neuropsychology, 2000, 17(2):199-223.
    [102] Roberts J E, Bell M A. The effects of age and sex on mental rotation performance, verbal performance, and brain electrical activity. Developmental Psychobiology, 2002, 40(4): 391-407.
    [103] Desrocher M E, Smith M L, Taylor M J. Stimulus and sex differences in performance of mental rotation: evidence from event-related potentials. Brain and Cognition, 1995, 28(1): 14-38.
    [104] Gootjes L, Bruggeling E C, Magnee T et al. Sex differences in the latency of the late event-related potential mental rotation effect. Neuroreport, 2008, 19(3):349-353.
    [105] Crucian G P, Berenbaum S A. Sex differences in right hemisphere tasks. Brain and cognition, 1998, 36:377-389.
    [106] Peters M, Manning J T, Reimers S. The effects of sex, sexual orientation, and digit ratio (2D:4D) on mental rotation performance. Arch Sex Behav, 2007, 36(2):251-260.
    [107]Raabe S,Hoger R,Delius J D.Sex differences in mental rotation strategy.Perceptual and Motor Skills,2006,103:917-9:30
    [108]Lamm C,Windischberger C,Moser E et al.The functional role of dorso-lateral premotor cortex during mental rotation An event-related fMRI study separating cognitive processing steps using a novel task paradigm.NeuroImage,2007,36:1374-1386
    [109]Schoning S,Engelien A,Kugel H et al.Functional anatomy of visuo-spatial working memory during mental rotation is influenced by sex,menstrual cycle,and sex steroid hormones.Neuropsychologia,2007,45:3203-3214
    [110]Frost J A,Binder J R,Springer J A et al.Language processing is strongly left lateralized in both sexes.Brain,1999,122(1):199-208.
    [111]Chee M W,Tan E W,Thiel T.Mandarin and English single word processing studied with functional magnetic resonance imaging.J Neurosci,1999,19:3050-3056.
    [112]Muller R A,Rothermal R D,Behen M E et al.Receptive and expressive language activations for sentences:a PET study.Neuroreport,1997,8:3767-3770.
    [113]Hean R,Klose U,Jesson F et al.Functional MRI of cerebral activation during encoding and retrieval of words.Human Brain Mapp,1999,8(4):157-169.
    [114]Karbe H,Warker M,Herholz K et al.Planum temporal and Brodmann's area 22 MRI and high-resolution PET demonstrate functional left-right asymmetry.Arch Neurol,1995,52:869-874.
    [115]李恩中,翁旭初,韩璎等.语言与音乐刺激下脑功能活动的MR功能更像研究.中华放射学杂志,1999,33(5):311-315.
    [116]Tan L H,Spinks J A,Gao J H et al.Brains activation in the processing of Chinese characters and words a functional MRI study.Human Brain Mapp,2000,10(1):16-27.
    [117]张华宇,孙吉林,吴杰等.磁源成像对中、英文语言功能区的研究.中国医学影像技术,2003,19(2):161-163.
    [118]彭聃龄,徐世勇,丁国盛等.汉语单字词音、义加工的脑激活模式.中国神经科学杂志,2003,19(5):287-291.
    [119]Horwitz B,Braun AR.Brain network interactions in auditory,visual and linguistic processing.Brain and Language,2004,89:377-384.
    [120]Bokde A L,Tagaments M A,Friedman R B et al.Functional interactions of the inferior frontal cortex during the processing of words and word-like stimuli.Neuron,2001,30:609-617.
    [121]周志华,曹存跟.神经网络及其应用.北京:清华大学出版社,2004,366-399.
    [122]Kosslyn S M,Thompson W L,Kim I J et al.Topographical representations of mental images in primary visual cortex.Nature(London),1995,378:496-498.
    [123]SunFT,Miller L M,D' Esposito M.Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data.Neuroimage,2004,21:647-658.
    [124]Sun FT,Miller L M,Rao A A et al.Functional connectivity of cortical network involved in bimanual motor sequence learning.Cerebral cortex,2006,17(5):1227-1234.
    [125]James K H,6authier I..Letter processing automatically recruits a sensory-motor brain network.Neuropsychologia,2006,44(14):2937-2949.
    [126]Kosslyn S M,Thompson W L,Sukel K E et al.Two types of image generation:evidence from PET.Cognitive,affective & behavioral Neuroscience,2005,5(1):41-53.
    [127]James K H,James T W,Jobard G et al.6authier I.Letter processing in the visual system:different activation patterns for single letters and strings.Cognitive,affective & behavioral,2005,5:452-466.
    [128]Cohen J D,MacWhinney B,Flatt M et al.Psyscope:A new graphic interactive environment for designing psychology experiments.Behavioral Research Methods,Instruments and computers,1993,25:257-271.
    [129]Halliday D M,Rosenberg J R,Amjad A M et al.A framework for the analysis of mixed time series/point process data-theory and application to the study of physiological tremor,single motor unit discharges and electromyograms.Prog Biophys Molec Biol,1995,64:237-278.
    [130]Hyun J S,Luck S J.Visual working memory as the substrate for mental rotation.Psychonomic Bulletin & Review,2007,14(1):154-158.
    [131]罗良,林崇德,刘兆敏等.客体工作记忆任务中大脑皮层活动的记忆负荷效应.心理学报,2006,38(6):805-814
    [132]Cohen D,Kubovy M.Mental rotation,mental representation,and flat slopes.Cognitive Psychology,1993,25(3):351-382.
    [133]rhayer Z C,Johnson B W.Cerebral processes during visuo-motor imagery of hands.Psychophysiology,2006,43(4):401-412.
    [134]刘练红,皇甫恩,苗丹民等.心理旋转的事件相关电位P300研究进展.中华航空航天医学杂志,2004,15(4):248-250.
    [135]Heil M.The functional significance of ERP effects during mental rotation.Psychophysiology,2002,39(5):535-545.
    [136]Voyer D,Butler T,Cordero J et al.The relation between computerized and paper-and-pencil metal rotation tasks:a validation study.J Clin Exp Neuropsychol,2006,28:928-939.
    [137]Kawamichi H,Kikuchi Y,Noriuehi M et al.Distinct neural correlates underlying two-and three-dimensional mental rotations using three-dimensional objects.Brain Res,2007,1144:117-126.
    [138] Kawamichi H, Kikuchi Y, Ueno S. Spatio-temporal brain activity related to rotation method during a mental rotation task of three-dimensional objects: An MEG study. Neuroimage, 2007, 37(3):956-965.
    
    [139] Shepard R N, Cooper L A. Mental images and their transformations. MA: MIT press, 1982.
    [140] Yoshino A, Inoue M, Suzuki A. A topographic electrophysiologic study of mental rotation. Brain Res. Cogn. Brain Res., 2000, 9(2):121-124.
    [141] Parsons T D, Larson P, Kratz K et al. Sex differences in mental rotation and spatial rotation in a virtual environment. Neuropsychologia, 2004, 42(4):555-562.
    [142] Wraga M, Duncan L, Jacobs E C et al. Stereotype susceptibility narrows the gender gap in imagined self-rotation performance. Psychon Bull Rev, 2006, 13(5):813-819.
    [143] Peters M, Lehmann W, Takahira S et al. Mental rotation test performance in four cross-cultural samples (n = 3367): overall sex differences and the role of academic program in performance. Cortex, 2006, 42(7):1005-1014.
    [144] Heil M, Rolke B. Toward a chronopsychophysiology of mental rotation. Psychophysiology, 2002, 39(4):414-422.
    [145] Wijers A A, Otten L J, Feenstra S et al. Brain potentials during selective attention, memory search, and mental rotation. Psychophysiology, 1989, 26:452-467.
    [146] Weiss E, Siedentopf C M, Hofer A et al. Sex differences in brain activation pattern during a visuospatial cognitive task: a functional magnetic resonance imaging study in healthy volunteers. Neurosci Lett, 2003, 344:169-172.
    [147] Heil M, Jansen-Osmann P. Sex differences in mental rotation with polygons of different complexity: Do men utilize holistic processes whereas women prefer piecemeal ones? Q J Exp Psychol, 2008, 61:683-689.