CIBR/酶促湿地污水脱氮除磷技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文针对目前国内城市污水处理存在的“三高一多”问题,着眼于当今水污染控制的前沿领域,研究切实可行的“三低一少”的城市污水处理生物/生态型组合工艺——城市污水处理连续流一体化生物反应器(CIBR)/酶促湿地脱氮除磷技术。分析了污水生物/生态处理工艺中的CIBR的兼性生化、AAA脱氮除磷二个模式的基本技术原理,酶促湿地协同净化技术原理,并建立了生物与生态协同的氮磷调控原则。论文的主要研究内容与结果如下:
     ①CIBR兼性生化技术
     基于生物絮体内传质规律、同向絮凝与絮凝沉淀的基本原理,研究兼性生物微絮体生化,流体动力激波切割絮体促进传质,反应池内紊流传质的技术,建立兼性微生物絮体内传质、兼性生化动力学、兼性生物絮凝动力学与混合液沉降动力学模型,为CIBR兼性生化操作模式奠定了技术理论基础。
     兼性生化可以在水温较高的季节里应用于含低浓度氮磷的城市污水处理。在气温较高时可以利用较低的能耗实现有机物的降解,但脱氮效果较差。如果原水NH3-N含量较高则需要变换模式以满足脱氮的需要。兼性生化适宜原水水质浓度范围为:COD≤300mg/L,NH3-N≤15mg/L,TN≤30mg/L,TP≤2mg/L。温度对于兼性生化工艺影响甚大,通过不同季节的试验研究,对COD去除率与水温变化曲线极值点求解获得兼性生化模式向AAA模式变换的临界温度范围为12.38℃。
     在低温状态下强化絮凝与兼性生化联用对COD、TP及浊度去除有协同促进作用。COD平均去除率比单纯的污水混凝与单纯的生物反应增加15%,混凝剂与生物的协同作用可以提高TP的去除率约20%,而对脱氮未表现明显协同作用。兼性生化系统投加絮凝剂PAC,最佳投加量为20mg/L,最佳停留时间为8h。
     ②CIBR脱氮除磷技术
     针对低C/N与C/P比的城市污水,研究短程硝化反硝化与利用亚硝酸盐反硝化除磷,实现“一碳两用”,缓解了碳源的不足,提高了污水的脱氮除磷效率。
     在CIBR反应器中利用低溶解氧和定时交替好氧/缺氧运行模式,在常温下,实现了稳定的短程生物脱氮。亚硝化率稳定在80%-85%之间。而应用实时控制,在常温、常溶解氧和中性pH下能够高效稳定的实现和维持短程生物脱氮,亚硝酸盐积累率维持在95%以上,CIBR利用自身独特的交替好氧/缺氧运行方式,通过不断强化“厌氧/缺氧”环境,培育出了利用亚硝酸盐反硝化除磷菌,并且以实际生活污水为原水,在常温、常溶解氧下,以定时控制的运行方式实现了反硝化除磷,磷的去除率高达90%,出水磷浓度低于1mg/L。
     基于小试成果进行中试研究,推荐最优工况为2:2:2。在该工况下,COD、NH3-N、TN与TP平均去除率分别达到了76.60%、81.73%、60.19%与66.76%,可以较好的满足后续生态处理的要求。
     通过以上试验研究结果,确定了CIBR的变模式规则,并核算了CIBR节能效率,研究表明CIBR全年平均污水处理电耗为0.153kWh/m3,相比于A2/O节能24.27%,比氧化沟工艺节能28.96%。
     ③酶促湿地协同净化技术
     通过中试研究了酶促湿地的多重生态位优化构建。在湿地填料与植物比选配伍、湿地构造与类型、递进布水与湿地堵塞规律研究的基础上,构建出四类六种可比较的酶促湿地。通过不同的工况运行,获得了最佳湿地构型及良好的协同净化效果。
     针对不同的进水进行了湿地填料的比选与配伍,获得了适合于不同水质的填料配伍:对于含氮浓度低或中、高有机物浓度的污水,煤渣+砾石+碎石填料组合有较好的去除效果;对于含氮浓度高或有机物浓度低的污水,粉煤灰砖屑+碎石组合有较好的去除效果。对于含磷浓较度高的污水,各组填料都有较好的去除效果。选育出四种不同季节的湿地植物种类及功能配伍。美人蕉、香蒲、灯心草和水竹在正常生长期内对污染物的去除效果之间无明显差异。美人蕉和水竹生长期最长,且生物量和细根量增长最大,这两种植物对污水的净化效果比香蒲和灯心草更好。
     对比研究了四类六种酶促湿地的构造与类型,并进行了工艺优化与降污试验,得出递进布水波形缩变流人工湿地去除污染物的运行效果更为稳定,水力流态更加优化,污染物负荷分配均匀,通过三级进水比例的调控可有效防止湿地的堵塞,提高湿地的处理效率和使用寿命。
     探讨了波形流与水平流酶促湿地的降污动力学,有利于酶促湿地的深入研究与应用。
     ④建立CIBR/酶促湿地系统的氮磷调控原则
     通过单元技术集成与优化配置,形成了CIBR与酶促湿地优化组合工艺,以污水氮磷为主控因子,充分利用酶促湿地的脱氮除磷功能,通过主控参数pH、ORP实时调控CIBR的运行工况,实现CIBR/酶促湿地的最佳脱氮除磷功能。在此基础上,建立CIBR/酶促湿地系统氮磷负荷界面优化调控策略,形成节能型多模式CIBR/酶促湿地污水处理控制系统,实现系统的有效脱氮除磷与节能运行。
At present, the problem of municipal wastewater treatment in China is“Three high and one more”. Focusing on this problem and the front field research of the current water pollution control, a new practical biological/ecological combined process has been developed to treat municipal wastewater with“Three low and one less”-named continuous-flow integrated biological reactor (CIBR)/enzymatic wetland, technology for nitrogen and phosphorus removal in municipal wastewater. Two basic technical principle models of facultative biological process in CIBR and nitrogen and phosphorus removal by AAA, as well as enzymatic wetlands co-purification are analyzed, and a control principle by nitrogen and phosphorus in biological and ecological system is established. The main results are as follows:
     ①facultative biological technology in CIBR
     The technology is based on mass transfer theory within biological flocculation, basic theory of concentric flocculation and flocculation settling. Biochemical reaction in facultative biomass, mass transfer promoted by fluid cutting flocculation, as well as turbulence mass transfer in the reactor are studied. Model on transfer theory within biological flocculation, facultative biological dynamics, flocculation dynamics within facultative biomass, and precipitation dynamics in mixing are constructed which lay a foundation for facultative biological technology in CIBR.
     Facultative biological model is adopted in municipal wastewater treatment of low nitrogen and phosphorus concentration at higher temperature. Lower energy is consumed to degrade organic matters at higher temperature. However, the nitrogen removal efficiency is weak, and the model should be changed to adjust higher nitrogen concentration. The range of original water suitable for facultative biological process is: COD≤300mg/L, NH3-N≤15mg/L, TN≤30mg/L and TP≤2mg/L. The temperature has great effect on the facultative biological technology, tests has been done under different seasons, through calculation by COD removal rate and the extreme value point from water temperature changing cure, The critical temperature 12.38℃is obtained as the model change from facultative biological to AAA.
     Under low temperature, the combination of enhanced flocculation and facultative biological reaction has cooperative and accelerating effect on removal of COD, TP and turbidity, and the average COD removal efficiency is 15% more than that of single wastewater coagulation or single biological reaction,the cooperatives of coagulant and microorganism can improve TP removal efficiency by 20%, while there is no significant change in the nitrogen removal. For the flocculent PAC, the optimum dosage and retention time for the facultative biological system is 20mg/L and 8h, respectively.
     ②Removal of nitrogen and phosphorus by CIBR
     Aiming at low C/N ratio and low C/P ratio in municipal wastewater, short-cut nitrification and denitrification, as well as denitrification and phosphorus removal using nitrite are studied to realize“diplex utilization of the carbon source”, also to relieve carbon shortage and to increase nitrogen and phosphorus removal efficiency.
     Low oxygen and timed alternating aerobic/anoxic operation modes are used in the CIBR to achieve stable short-cut nitrogen removal under normal temperature successfully. The notarization rate is between 80% and 85%. While when the on-time control is adopted, the short-cut nitrogen removal can be achieved stably under normal temperature, normal dissolved oxygen and neutral pH value, and the nitrite accumulation rate is beyond 95%. Denitrifying phosphorus removal bacteria is cultured by the special alternating aerobic/anoxic operation of CIBR, and continuous strengthen“aerobic/anoxic”environment. Under normal temperature, normal dissolved oxygen and practical domestic wastewater, denitrifying phosphorus removal is obtained by on-time control, and the phosphorus removal efficiency is beyond 90%, while the effluent phosphorus concentration is below 1mg/L.
     Pilot research has been done on the basis of the results of laboratory study, and the optimum condition is 2:2:2. Under this condition, the removal efficiency of COD, NH3-N, TN and TP are 76.60%、81.73%、60.19% and 66.76%, respectively, which can well meet the following ecological treatment.
     The changing model rule of CIBR is determined through the above test results, and the energy saving efficiency is accounted. Research shows that the special power consumption for wastewater treatment by CIBR is 0.15 kWh/m3 in the whole year, compared with A2/O and oxidation ditch, the energy consumption is less than 24.27% and 28.96%, respectively.
     ③Co-purification with enzyme wetlands
     Through pilot research,multi-niche optimize structure for enzymatic wetlands has been studied. Four types and six kinds of enzymatic wetlands are constructed based on researches include comparison and chooses between wetland fillers and wetland plants, structure and types of the wetland, stage influents and law of wetland block. The best wetland type and better co-purification effects are attained through different run operation.
     Different fillers for wetlands are chosen by comparison and then matched, the following filler matching is achieved aiming at different influent: for wastewater with low nitrogen concentration and medium or high organic matter concentration, better removal efficiency is attained by combined fillers of coal cinder + pebble stone + gravel; for wastewater with high nitrogen concentration and low organic matter concentration, the optimum combination is fly ash brick crumbs + gravel. For wastewater with high phosphorus concentration, each combination achieved good removal efficiency.
     Four wetland plants of different seasons and their function matching are selected and cultured. Under normal growth period, there is no significant difference among cannas, typhus, juncos and water bamboo. But cannas and water bamboo has longer growth period, as well as larger biomass and amount of fine roots. Their purifying efficiency is better than that of typhus and juncos.
     The construct and type among four types and six kinds of wetlands are compared, and the process optimization and pollutants degrading test has been done. Contractive wavy-flow wetland with stage influents has more stable pollutants removal efficiency, and its hydraulic flow pattern is more suitable, as well as even distribution pollutants loadings. The block can be avoided through ratio in three stages, and the treatment efficiency and use age can be improved.
     The pollutants degradation dynamic of wavy-flow and horizontal-flow enzymatic wetlands are discussed, which are good for further research and application of the enzymatic wetlands.
     ④To establish control principle of the nitrogen and phosphorus between CIBR and enzymatic wetlands
     Through cell technology integration and optimize allocation, the optimization combined process between CIBR and enzymatic wetlands are formed, nitrogen and phosphorus concentration are the main control factors, by making full use of enzymatic wetlands to remove nitrogen and phosphorus, we take pH value and ORP as control factors to control CIBR operation condition to realize the best nitrogen and phosphorus removal efficiency in the CIBR and enzymatic wetlands system. On this basis, the interface optimization control strategy of nitrogen and phosphorus loading in CIBR and enzymatic wetlands system has been established, and a control system with energy-saving and multi-model in the process of CIBR and enzymatic wetlands has been formed, which takes efficient nitrogen and phosphorus removal as well as energy-saving to the system.
引文
[1] Y. Z. Peng, X. L. Wang and B. K. Li. Anoxic biological phosphorus uptake and the effect of excessive aeration on biological phosphorus removal in the A2/O process[J]. Desalination. 2006. 189(1-3):155-164.
    [2] Eugenia J. Olguín. Phycoremediation: key issues for cost-effective nutrient removal processes[J]. Biotechnology Advances. 2003. 22(1-2): 81-91.
    [3] E. Vaiopoulou, P. Melidis and A. Aivasidis. An activated sludge treatment plant for integrated removal of carbon, nitrogen and phosphorus[J]. Desalination. 2007. 211(1-3): 192-199.
    [4] S. H. Chuang and C. F. Ouyang. The biomass fractions of heterotrophs and phosphate -accumulating organisms in a nitrogen and phosphorus removal system[J]. Wat. Res. 2000. 34(8): 81-91.
    [5] M. Lamine, L. Bousselmi and A. Ghrabi. Biological treatment of grey water using sequencing batch reactor[J]. Desalination. 2007. 215(1-3):127-132.
    [6] N. R. Louzeiro, D. S. Mavinic and W. K. Oldham et al. Methanol-induced biological nutrient removal kinetics in a full-scale sequencing batch reactor[J]. 2002. 36(11):2721-2732.
    [7] T. Y. Pai, Y. P. Tsai and Y. J. Chou et al. Microbial kinetic analysis of three different types of EBNR process[J]. Chemosphere. 2004. 11(1): 109-118.
    [8] C. F. Alves, L. F. Melo and M. J. Vieira. Influence of medium composition on the characteristics of a denitrifying biofilm formed by Alcaligenes denitrificans in a fluidised bed reactor[J]. Process Biochem. 2002. 37(8): 837-845.
    [9] J. M. Gálvez, M. A. Gómez and E. Hontoria et al. Influence of hydraulic loading and air flowrate on urban wastewater nitrogen removal with a submerged fixed-film reactor[J]. Journal of Hazardous Materials. 2003. 101(2): 219-229.
    [10] K. Naohiro, K. Juhyun and T. Satoshi et al. Anaerobic/oxic/anoxic granular sludge process as an effective nutrient removal process utilizing denitrifying polyphosphate-accumulating organisms [J]. Wat. Res. 2006. 40 (12):2303-2310.
    [11]娄金生,谢水波,何少年等.生物脱氮除磷原理与应用[M].湖南长沙:国防科技大学出版社. 2002.
    [12] M. J. Donkin and J. M. Russell. Treatment of a milk powder/butter wastewater using the A/A/O activated sludge configuration[J]. Wat. Sci. Tech. 1997. 36(10):79-86.
    [13] J. A. Baeza, D. Gabriel and J. Lafuente. Effect of internal recycle on the nitrogen removaleffciency of an anaerobic/anoxic/oxic (A2/O) wastewater treatment plant (WWTP)[J]. Process Biochem. 2004. 39(2):1615-1624.
    [14] M. L. Daumer, F. Béline and F. Guiziou et al. Effect of nitrification on phosphorus dissolving in a piggery effluent treated by a sequencing batch reactor[J]. Biosystems Engin. 2007. 96(4): 551-557.
    [15] Chin-Han Chan and Poh-Eng Lim. Evaluation of sequencing batch reactor performance with aerated and unaerated FILL periods in treating phenol-containing wastewater[J]. Bioresource Tech. 2007. 98 (7): 1333-1338.
    [16] Y. F. Tsang, F. L. Hua and H. Chua et al. Optimization of biological treatment of paper mill effluent in a sequencing batch reactor[J]. Biochem. Eng. J. 2007. 34 (3): 193-199.
    [17] T. Satoshi, O. Takashi and S. Koichi et al. Simultaneous nitrogen and phosphorus removal using denitrifying phosphate-accumulating organisms in a sequencing batch reactor[J]. Biochem. Eng. J. 2006. 27 (3):191-196.
    [18] C. F. Ouyang and C.T. Juan. A study of a modified process for the intermittent cycle extended aeration system[J]. Wat. Sci. Tech. 1995. 31 (9):173-180.
    [19] P. Y. Yang and Z. Y. Wang. Integrating an intermittent aerator in a swine wastewater treatment system for land-limited conditions[J]. Bioresource Tech. 1999. 69(3):191-198.
    [20] G. Demoulin, M. C. Goronszy and K. Wutscher et al. Co-current nitrification/ denitrification and biological P-removal in cyclic activated sludge plants by redox controlled cycle operation [J]. Wat. Sci. Tech. 1997. 35(1): 215-224.
    [21] M. C. Goronszy and A. J. Barker. Application of the CASS sequencing batch reactorto meeting modern-day discharge consent limits[J]. Institution of Chemical Engineers Symposium Series. 1994. (4-6): 147-149.
    [22] J. E. Claes, V. G. Ryckaert and J. F. Van. Impe. Mathematical modeling and identification of UNITANK wastewater treatment systems[J]. European Water Pollution Control. 1996. 6(6): 34-44.
    [23] F. G. Zhang, J. X. Liu and J. Sui. Sludge concentration dynamic distribution and its impact on the performance of UNITANK[J]. J. Environ. Sci. 2007. 19(2):141-147.
    [24] D. T. Sponza and H. Atalay. Simultaneous phosphorus, nitrogen and dinitrotoluene removals in batch anaerobic/anoxic/aerobic sequentials[J]. Process Biochem. 2005. 40(1): 25-34.
    [25] J.M. Martinez, A. Goitara and R. Mendez. Tannery wastewater treatment: Comparison between SBR and MSBR[J]. Wat. Sci. Tech. 2003. 3(5-6): 275-282.
    [26] C. N. Chang and H. R. Chen. Using SBBR to treat ABS wastewater[J]. Wat. Sci. Tech. 2000.41 (4-5): 433-440.
    [27] S. Suntud and Y. Suriyakit .Application of a new type of moving bio-film in aerobic sequencing batch reactor (aerobic-SBR)[J]. J. Environ. Manage. 2006. 78(2):149-156.
    [28] S. Gillot and A. Héduit. Effect of air flow rate on oxygen transfer in an oxidation ditch equipped with fine bubble diffusers and slow speed mixers[J]. Wat. Res. 2000. 34(5): 1756- 1762.
    [29] Insel Guclu, Artan Nazik and Orhon Derin. Effect of aeration on nutrient removal performance of oxidation ditch systems[J]. Environ. Eng. Sci. 2005. 22(6): 802-815.
    [30] X. D. Hao, D. H. J and V. Groenestijn et al. Conditions and mechanisms affecting simultaneous nitrification and denitrification in a Pasveer oxidation ditch[J]. Bioresource Tech. 1997. 59 (2-3): 207-215.
    [31] S. Y. Gao, Y. Z. Peng and S. Y. Wang et al. Novel strategy of nitrogen removal from domestic wastewater using pilot Orbal oxidation ditch[J]. J. of Environ. Sci. 2006. 18(5):833-839.
    [32] M. O. Neill and N. J. Horan. Achieving simultaneous nitrification and denitrification of wastewaters at reduced cost[J]. Wat. Sci. Tech. 1995. 32(9-10):303-312.
    [33]李彦春,王志宏,汪立飞.城市污水处理技术探讨[J].四川环境. 2001. 20(l):40-42, 52.
    [34]赵耀,赵素君,孙成才等.浅析氧化沟污水处理技术[J].中州建设, 2006(7):60-61.
    [35] X. S. Guo, J. X. Liu and Y. S. Wei. et al. Sludge reduction with tubificidae and the impact on the performance of the wastewater treatment process[J]. J. of Environ. Sci. 2007. 1 (3): 257- 263.
    [36] Xia S. B. and Liu J. X. An innovative integrated oxidation ditch with vertical circle for domestic wastewater treatment[J]. Process Biochem. 2004. 39:1111-1117.
    [37] S. C. Williams and J. Beresford. The effect of anaerobic zone mixing on the performance of a three-stage Bardenpho plant[J]. Wat. Sci. Tech. 1998. 38(1):55-62.
    [38]彭超英,朱国洪,尹国等.人工湿地处理污水的研究[J].重庆环境科学. 2000. 22(6): 43-45.
    [39]席俊秀,谢协忠.污水的湿地处理工艺[J].工业用水与废水. 2001. 32(5): 32-33.
    [40] Kadlec and H.Robert. Chemical, Physical and Biological Cycles in Treatment Wetlands [J]. Water Science and Technology. 1999. 40(3):37-44.
    [41]白晓慧等.人工湿地污水处理技术及其发展应用[J].哈尔滨建筑大学报. 1999. 32(6): 88-92.
    [42] Gopal and Brij. Natural and Constructed Wetlands for Wastewater Treatment: Potentials and Problems [J]. Water Science and Technology. 1999. 40(3): 27-35.
    [43]丁疆华,舒强.人工湿地在处理污水中的应用[J].农业环境保护. 2000. 19(5): 320-321.
    [44] Jos Verhoeven T. A., Meuleman and Arthur F. M. Wetlands for wastewater Treatment: Opportunities and limitations [J]. Ecological Engineering. 1999. 12(12): 5-12.
    [45]王爱萍,周琪.人工湿地处理污水的研究.四川环境. 2005. 24(2): 76-80.
    [46] F. Breen Peter and J. Chick Alan. Rootzone dynamics in constructed wetlands receiving wastewater: a comparison of vertical and horizontal flow systems [J]. Water Science and Technology. 1995. 32(3): 281-290.
    [47] A. Heritage, Pistillo and K. P. Sharma et al. Treatment of primary-settled urban sewage in pilot-scale vertical flow wetland filters: Comparison of four emergent macrophyte species over a 12 month period [J]. Water Science and Technology. 1995. 32 (3): 295-304.
    [48]段志勇等.复合植物床式人工湿地研究.环境污染治理技术与设备. 2002. 3(8): 4-7.
    [49]何成达,谈玲,葛丽英等.波形潜流人工湿地处理生活污水的试验研究[J].农业环境科学学报. 2004. 23(4):766-769.
    [50]徐伟伟.波形潜流湿地处理低浓度生活污水试验研究[D].华中科技大学. 2005.
    [51] Bonomol, G. Pastorell and N. Zambon. Advantages and limitation of duck-wead-based wastewater treatment systems [J]. Water Science and Technology. 1997. 34(5): 239-246.
    [52]李寒娥.人工湿地系统在我国污水处理中的应用[J].环境污染治理技术与设备. 2004. 5(7): 9-12.
    [53]黄德锋,李田.不同基质复合垂直流人工湿地对富营养化景观水的净化效果[J].环境污染与防治. 2007. 29(8):616-621.
    [54]夏汉平.人工湿地处理污水的机理与效率[J].生态学杂志. 2000. 15:41-45.
    [55] R. L. Knight, Jr V. W. E. Payne and R. E. Borer et al. Constructed wetlands for livestock wastewater management [J]. Ecological Engineering. 2000. 15: 41-45.
    [56] L. M. Nguyen Organic matter composition, microbial biomass and microbial activity in gravel-bed constructed wetlands treating farm dairy wastewaters [J]. Ecological Engineering. 2000. 16:199-221.
    [57] P. A. Mays and G. S. Edwards Comparison of heavy metal accumulation in a natural wetland and constructed wetlands receiving acid mine drainage [J]. Ecological Engineering.2001. 16: 487-500.
    [58] W. J. Mitsch and K. M. Wise Water quality, fate of metals, and predictive model validation of a constructed wetland treating acid mine drainage [J]. Water Research. 1998. 32(6): 1888- 1900.
    [59] D. Vihovsek and V. Kukanja Constructed wetland for industrial wastewater treatment [J].Water Research. 1996. 30(10): 2287-2292.
    [60] R. N. Thut. Feasibility of treating pulp mill effluent with a constructed wetland [A]. in Moshiri, G. A. (ed). Constructed Wetlands for Water Quality Improvement[C]. Boca Raton, Florida, Lewis Publishers. 1993. 441-447.
    [61] J. Kern and C. Idler.Treatment of domestic and agricultural wastewater by reed bed systems [J]. Ecological Engineering. 1999. 13(25):13-25.
    [62] G. Sun, K. R. Gray and A. Biddlestone J. et al. Treatment of agri cultural wastewater in a combined tidal flow-down flow reed bed system [J]. Water Science and Technology. 1999. 40 (3):139-146.
    [63] D. Vrhovsek and R. Kuschk. The use of constructed wetland for landfill leachate treatment [J]. Water Science and Technology. 1997. 35(5): 301-306.
    [64] C. D. Martin, K. D. Johnson and R. H. Kadlec et a1. The use of extended aeration and in series surface-flow wetlands for landfill leachate treatment [J]. Water Science and Technology. 1995. 32 (3): 119-128.
    [65] P. Thomas. Constructed wetlands as a tool for sewage and stormwater pollution control [J]. Water, Sanitation and Health. 2000. 105: 305-310.
    [66] K. A. Thurston. Lead and petroleum hydrocarbon changes in an urban wetland receiving storm water run off [J]. Ecological Engineering. 1999. 12: 387-399.
    [67] P. A. M. Bachand and A. J. Horne. Denitrification in constructed free water surface wetland [J]. Ecological Engineering. 2000. 14: 9-32.
    [68] E. M. D'Angelo and K. R. Reddy. Diagenesis of organic matter in a wetland receiving gyper-eutrophic lake water [J]. Journal Environmental Quality. 1994. 23(3): 928-943.
    [69] US EPA. Design manual of constructed wetlands and aquatic plant systems for municipal wastewater treatment. 1988. EPA625/1-88/022. 23-25.
    [70] U. Stottmeister, A. WieBner and P. Kuschk et al. Effects of plants and microorganisms in constructed wetlands for wastewater treatment [J]. Biotechnology Advances. 2003. 22(122): 93-117.
    [71]卢少勇,张彭义,余刚,等.农田排灌水的稳定塘-植物床复合系统处理[J].中国环境科学. 2004. 24(5):605-609.
    [72]白军红,欧阳华,邓伟等.湿地氮素传输过程研究进展[J].生态学报. 2005. 25 (2): 326-333.
    [73]梁威,吴振斌.人工湿地对污水中氮磷去除机制研究进展[J].环境科学动态. 2000. 25(3): 32-37.
    [74] D. McNevin, M. Harrison and A. King et al. and Mitchell C. Towards an integrated performance model for subsurface flow constructed wetlands [J]. J. Environ. Sci. Health: Special Issue in Wastewater Treatment. 2000. 35(8): 1415-1429.
    [75] A. Arias, M. Delbubba H. and Brix. Phosphorus removal by sands for use as media in subsurface flow constructed reed beds [J]. Water Research. 2001. 35(5):1159-1168.
    [76] Chris C. Tanner, Joachim D. Eugenio and Graham B. McBride et al. Effect of water level fluctuation on nitrogen removal from constructed wetland mesocosms [J]. Ecological Engineering. 1999. 19(12):67-92.
    [77] Drizo, A. Christiane Forget and Robert P. Chapuis et al. Phosphorus removal by electric arc furnace steel slag and serpentinite [J]. Water Research. 2006. 40(8): 1547-1554.
    [78] C. A. Prochaska and A. I Zouboulis, Removal of phosphates by pilot vertical-flow constructed wetlands using a mixture of sand and dolomite as substrate [J]. Ecological Engineering. 2006. 26 (3): 293-303.
    [79] Defu Xu, Jianming Xu and Jianjun Wu et al. Studies on the phosphorus sorption capacity of substrates used in constructed wetland systems [J]. Chemosphere. 2006. 63: 344-352.
    [80] S. Philippi Luiz, H. R. da Costa Rejane and H. Sezerino Pablo. Domestic Effluent Treatment through Integrated System of Septic Tank and Root Zone [J]. Water Science and Technology. 1999. 40(3): 125-131.
    [81]董发开,傅嘉媛.运用生物循环理论建立多元生物污水处理新工艺.安全与环境工程, 2001.8 (3): 5-8.
    [82]北京市水利局水环境治理考察团.日本韩国的水环境治理.北京水利. 2003. (4): 30-32.
    [83]董哲仁,刘蒨,曾向辉.受污染水体的生物/生态修复技术.水利水电技术. 2002. 33(2):1-4.
    [84] M. S. Lucas, A. A. Dias and A. Sampaio et al. Degradation of a textile reactive azo dye by a combined chemical-biological process:Fenton's reagent-yeast[J].Wat. Res. 2007. 41(5): 1103-1109.
    [85]苑宏英,周琪.生物/生态污水处理系统[J].环境污染治理技术与设备. 2005. 6(10):19-23.
    [86]刘礼祥.城市污水处理连续流一体化生物反应器工艺研究与能效分析[D].博士学位论文.武汉.华中科技大学. 2008..
    [87] J. Charpentier, G. Martin, H. Wacheux, et al. ORP regulation and activated sludge: 15 years of experience[J]. Wat. Sci.Tech., 1998, 38(3): 197-208.
    [88] D. G. Wareham, D. S. Mavinic, K. J. Hall. Sludge digestion using ORP-regulated aerobic- anoxic cyclics[J]. Wat. Res., 1994, 28(2): 373-384.
    [89] D. G. Wareham, K. J. Hall, D. S. Mavinic. An ORP screening protocol for biologicalphosphorus removal in sequencing batch reactors[J]. Can. J. Cil. Eng., 1995, 22: 260-269.
    [90] C. K. Lo, C. W. Yu, N. F. Tam, et al. Enhanced nutrient removal by Oxidation-Reduction Potentional(ORP) controlled aeration in a laboratory scale extended aeration treatment system[J]. Wat. Res., 1994, 28(10): 2087-2094.
    [91] P. Caulet, B. Bujon, J. P. Philippe, et al. Upgrading of wastewater treatment plant for nitrogen removal: Industrial application of an automated aeration management based on ORP evolution analysis[J]. Wat.Sci.Tech., 1998, 37(9): 41-47.
    [92] C. C. Peddle, D. S. Mavinic, C. J. Jenkins. Use of ORP for monitoring and control of aerobic sludge digestion[J]. J. Env. Eng., 1990, 116(3): 461-471.
    [93] D. G. Wareham, K. J. Hall, D. S. Mavinic. Real-time control of wastewater treatment systems using ORP[J]. Wat.Sci.Tech., 1993, 28(11-12):273-282.
    [94] K. Wouters-Wasiak, A. Heduit, J. M. Audic, et al. Real-time control of nitrogen removal at full-Scale using oxidation reduction potential[J]. Wat.Sci.Tech., 1994, 30(4): 207-210.
    [95] P. Caulet, B. Bujon, J. P. Philippe, et al. Upgrading of wastewater treatment plants for nitrogen removal: Industrial application of an automated aeration management based on ORP evolution analysis[J]. Wat. Sci.Tech., 1998, 37(9): 41-47.
    [96] E. Paul,S. Plisson-Saune, M. Mauret et al. Process state evaluation of alternating oxic-anoxic activated sludge using ORP, pH and DO[J]. Wat. Sci.Tech., 1998, 38(3): 299-306.
    [97]彭永臻,周利,邵剑英.利用ORP作为SBR反应时间的计算机控制参数[J].中国给水排水, 1997, 13(6): 6-9.
    [98]姜慧勇. SBR法计算机自动控制理论的基础研究[D].哈尔滨建筑大学. 1996.
    [99] C. S. Ra, K. V. Lo, D. S. Mavinic. Control of a swine manure treatment process using a specific feature of Oxidation Reduction Potential[J]. Bioresource Tech., 1999, 70(2): 117-127.
    [100] K. Sasaki, Y. Yamamoto, K. Tsumura, et al. Simulaneous removal of nitrogen and phosphorus in intermittently aerated 2-tank activated sludge process using DO and ORP- bending-point control[J]. Wat. Sci. Tech., 1993, 28(11-12): 513-521.
    [101]高景峰. SBR法去除有机物和脱氮除磷在线模糊控制的基础研究[D].哈尔滨工业大学. 2001.
    [102]彭永臻,王宝贞,王淑莹.活性污泥法的多变量最优化控制:基础理论与DO浓度对运行费用的影响[J].环境科学学报, 1998,18(l):11-19.
    [103] G. Demoulin, M. C. Goronszy, K. Wutscher., et al. Co-current nitrification/ denitrification and biological P-removal in cyclic activated sludge plants by redox controlled cycleoperation[J]. Wat. Sci. Tech., 1997, 35(1): 215-224.
    [104] Georg Schon, Susanne Geywitz, Frank Mertens. Lnfuence of dissolved oxygen and Oxidation-Reduction Potential on phosphorus release and uptake by activated sludge from sewage plants with enhanced biological phosphorus removal[J]. Wat. Res., 1993, 27(3): 349- 354.
    [105] Chao H. Chang, Oliver J. Hao. Sequencing batch reactor system for nutrient removal: ORP and pH profiles[J]. J. of Chem. Tech. and Biotech., 1996, 67(1): 27-38.
    [106] Ibrahim Al-Ghusain, Oliver J. Hao. Use of pH control parameter for aerobic/anoxic sludge digestion[J]. J. Env. Eng., 1995, 121(3): 225-235.
    [107] Ingildsen P., Wendelboe H. Improved nutrient removal using in situ continuous on?line sensors with short response time[J]. Wat Sci. Tech., 2003, 48 (1): 95-102.
    [108] A. Spagni, J. Buday, P. Ratini and G. Bortone. Experiment consideration on monitoring ORP, pH, conductivity and dissolved oxygen in nitrogen and phosphorus biological removal processes[J]. Wat. Sci. Tech., 2001, 43(11): 197-204.
    [109] Oliver J. Hao, Jason Huang. Alternating aerobic-anoxic process for nitrigen removal: process evaluation[J]. Wat. Environ. Res., 1996, 68(1): 83-93.
    [110] Paul E. Plisson, S. S. Mauret, Cantet J. Process state evaluation of alternating oxic?anoxic activated sludge using ORP, pH, and DO[J]. Wat. Sci. Tech., 1998, 38(3): 299-306.
    [111] Kim J. H., Chen M., and Kishida N., et al. Integrated real?time control strategy for nitrogen removal in swine wastewater treatment using sequencing batch reactors[J]. Wat. Res., 2004, 38(14-15): 3340-3348.
    [112] Y. Z. Peng, J. F. Gao, S. Y. Wang and M. H. Sui. Use Ph and ORP as fuzzy control parameters of denitrification in SBR process[J].Wat. Sci. Tech., 2002, 46(4-5):131-137.
    [113] Dockhorn T., Dichti N. and Kayser R. Comparative investigations on COD?removal in sequencing batch reactors and continuous flow plants[J]. Wat. Sci. Tech., 2001, 43(3): 45-52.
    [114] John A. P. and Spyros G. P. Real-time monitoring and conrtol of sequencing batch reactors for secondary treatment of a poultyr processing[J]. Wat. Environ. Res., 2000, 72(5): 585- 592.
    [115] Andreottola G., Foladori P. and Ragazzi M. On?line control of a SBR system for nitrogen removal from industrial wastewater[J]. Wat. Sci. Tech. 2001, 43(3): 93-100.
    [116] C. N. Chang and H. R. Chen. Using SBBR to treat ABS wsatewater[J]. Wat. Sci. Tech. 2000, 41(4-5): 433-440.
    [117] Yu R. F., Liaw Sh. L.,Cho B. C and Yang S. J. Dynamic control of a continuous-inflow SBRwith time-varying inlfuent loading[J].Wat. Sci. Tech., 2001, 43(3): 107-114.
    [118] E. Paul, S. Plisson-Saune, M. Mauret and J. Cantet. Process state evaluation of alternating oxic-anoxic activated sludge using ORP, pH and DO[J]. Wat. Sci. Tech., 1998, 38(3): 299-306.
    [119] Baeza J. Ferreira E. C. and Lafuente J. Knowledge-based supervision and control of wastewater treatment plant: A real time implementation [J].Wat. Sci. Tech., 2000, 41(12): 129-137.
    [120] D. S. Lee, C. O. Jeon, J. M. Park. Biological nitrogen removal with enhanced phosphate uptake in a sequencing batch reactor using single sludge system[J]. Wat. Res., 2001, 35(1): 3968- 3976.
    [121]刘礼祥,章北平,周红燕等.一体化CIBR反应器的低温脱氮除磷中试[J].中国给水排水. 2006. 22(19): 21-24.