稀土掺杂二氧化钛纳米管模板法制备及光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米TiO_2是一种新型半导体材料,其化学性质稳定、无毒、难溶、价格低廉,是一种较为理想的半导体光催化剂,在太阳能的储存与利用、光电转换、光致变色及光催化降解大气和水中的污染物等诸多方面具有广阔的应用前景。但其禁带宽约3.2eV,激发产生电子-空穴对需用(近)紫外线光照射,其电荷载流子复合速率很快,一般发生在皮秒和纳秒的时间尺度范围内,导致光催化活性不高,制约了其广泛的实际应用,提高其光催化性能是目前研究的主要方向之一。目前该方向的研究主要集中在对TiO_2纳米粉体和薄膜的改性上,但改性的TiO_2纳米粉体和薄膜光催化性能仍较低。TiO_2纳米管具有比纳米粉体和薄膜更大的比表面积,将TiO_2制备成纳米管是一种提高其光催化性能的新途径,但目前国内外对其研究报道极少,对掺杂稀土元素的TiO_2纳米管制备及其光催化性能研究鲜见报道。
     本文利用溶胶-凝胶法,以多孔有序阳极氧化铝膜为模板制备掺杂稀土元素镧和铈的TiO_2纳米管,以甲基橙为目标降解物,对比未掺杂的TiO_2纳米管以及未掺杂和掺杂稀土元素的纳米粉进行光催化降解试验,研究其光催化性能,并对降解机理及稀土元素掺杂对TiO_2纳米管光催化性能影响机理进行分析。本文的主要工作包括模板和纳米管的制备及研究:
     以高纯铝片为原料,分别以草酸和硫酸为电解液,采用二步阳极氧化法制备多孔有序阳极氧化铝膜,制得的膜厚为1~4μm,孔径在100nm左右,孔径均匀,排列有序的阳极氧化铝膜可作为制备TiO_2纳米管的模板。利用场发射扫描电子显微镜、透射电子显微镜和X射线衍射仪等对其进行表征,并对阳极氧化铝膜及其阵列孔的形成机理进行分析。根据试验结果并结合目前几种常见机理,可较圆满解释阳极氧化铝膜及其阵列孔的形成。
     以钛酸丁脂为前驱物,采用溶胶-凝胶法,以多孔阳极氧化铝膜为模板,经后续热处理制得分别掺杂稀土镧、铈和稀土镧、铈混合掺杂的锐钛矿晶型TiO_2纳米管及纳米粉,利用场发射扫描电子显微镜、透射电子显微镜、比表面仪、荧光光谱仪和X射线衍射仪等对其进行表征,并对其形成的影响因素及机理进行分析。
     本试验条件下制得的TiO_2纳米管外径80~130nm,内径50~70nm,较均匀;同样以溶胶-凝胶法并经后续热处理制得的TiO_2纳米粉粒径在20~30nm,较均匀。
     在15W紫外光源照射下,经150min光催化降解试验表明:TiO_2纳米管比纳米粉具有更高的光催化性能;掺杂稀土元素的TiO_2纳米管光催化性能优于未掺杂的TiO_2纳米管;掺杂稀土镧0.5%的锐钛矿晶型TiO_2纳米管降解率达89.11%;掺杂稀土铈2.0%的锐钛矿晶型TiO_2纳米管降解率达76.87%;稀土镧、铈混合掺杂的锐钛矿晶型TiO_2纳米管在掺杂镧0.3%和掺杂铈1.5%时降解率可达95.24%,正交试验表明该混合掺杂量下,光催化性能最优。
     稀土元素掺杂降低了TiO_2电子-空穴对的复合几率,使其光催化性能提高;TiO_2制备成纳米管大大增加了比表面积,增大催化活性,从而进一步提高其光催化性能。
     本研究为进一步提高TiO_2光催化性能,使其在诸多领域得到广泛的实质性应用提供了一种新的途径。
Nanometer TiO_2 is a new type of semiconductor material. It is a kind of ideal semiconductor photocatalyst becase of its properties such as stable, poisonless, difficultly soluble and cheap. It has wide application prospects in solar energy storage and utilization, photoelectric conversion, photochromism, photocatalysis in degradation of pollutants in atmosphere and water and so on. But the electron-hole pairs can only be excited by ultraviolet light or near ultraviolet rays because of its 3.2eV forbidden band, The recombination rate of charge carriers is rapid and this mostly occur within picosecond and nanosecond, so lead to its low photocatalysis activity and can not be applied widely and actually. At present, it is one of main directions to improve the photocatalysis property of nanometer TiO_2, the research mainly focus on the modification of nanometer powders and nanometer films, but the photocatalysis property is still low. TiO_2 nanotubes have more specific surface area than nanometer powders and nanometer films, it is a kind of new approach to improve the photocatalysis property of nanometer TiO_2 by prepare nanometer TiO_2 to nanotube, but there are seldom researches about this at home and abroad. The researches on the preparation and photocatalysis property of rare earth ions doped TiO_2 nanotubes is scarcely reported.
     In this thesis, the rare earth ions doped titanium dioxide nanotubes are prepared by sol-gel method using Anodic Aluminum Oxide (AAO) film as template. The photocatalytic properties of doped and undoped nanotubes and nanopowders were researched by degrading the methyl orange solution. The degradation mechanism and the influence mechanism of photocatalytic properties by rare earth ions doped are researched. The main researches of this thesis include the preparations and studies of templates and nanotubes:
     AAO films were prepared by two-step anodizing in sulfuric and oxalic acid solutions. The AAO films can be used as template of TiO_2 nanotube, which thickness is about 1~4μm and the apertures on it are about 100nm and uniform. The samples are observed by field emission scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffraction(XRD).The formation mechanism of film and array holes is researched. The formation of the AAO film and array holes could be explained based on the present experiment and some former models.
     The La-doped, Ce-doped and La-Ce co-doped anatase TiO_2 nanotubes and nanopowders are prepared by sol-gel method using porous anodic alumina as template with C_(16)H_(36)O_4Ti as precursors. The samples are observed by field emission scanning electron microscope (SEM), transmission electron microscope (TEM), specific surface area measurement (BET), fluorescence spectrometer(FS) and X-ray diffraction(XRD).The formation mechanism and influencing factors are researched.
     The external diameters of TiO_2 nanotubes are 80~130nm and the internal diameters are 50~70nm, the diameters are uniform in this experiment condition. The TiO_2 nanopowders are made by sol-gel method at the same conditions, their particle sizes are 20~30nm and the diameters are uniform.
     At the irradiation of 15W ultraviolet light source, after 150min, the results of photodegradation show that the photocatalytic properties of TiO_2 nanotubes are better than those of nanopowders, the doped nanotubes are better than those of undoped nanotube. The degradation rate of La-doped anatase TiO_2 nanotubes is 89.11%, the degradation rate of Ce-doped anatase TiO_2 nanotubes is 76.87%, the degradation rate of 0.3%La-1.5%Ce doped anatase TiO_2 nanotubes is 95.24%. The orthogonal test shows that the photocatalytic property is optimal at the 0.3%La-1.5%Ce doped content.
     The photocatalytic properties of TiO_2 are improved because that the TiO_2 electron-hole pairs of recombination probability is reduced with the rare earth ions doped in. The specific surface areas of TiO_2 are greatly increased when it become to nanotube, this made the catalytic activities increasing and the photocatalytic properties improved further.
     This research provides a kind of new approach to improve the photocatalysis property of TiO_2 and made the application of nano TiO_2 to become extensive and substantive in many fields.
引文
[1]夏建白.现代半导体物理[M].北京:北京大学出版社,2000.
    [2]张立德.纳米材料和技术战略地位、发展趋势和应用[J].中国高新技术企业杂志,2000,(4):4-6.
    [3] James Z. Shen, Rachman Chaim. Making ceramics ductile at low homologous temperatures[J].Nature, 2007, 56: 89-91.
    [4] Gopal K. Mor, Oomman K. Varghese, Maggie Paulose et al.A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications [J].Solar Energy Materials and Solar Cells,2006,90(14):2011-2075.
    [5] L I J, PAPADOPOULOS C, XU J M et al. Highly ordered carbon nanotube arrays for electronics applications[J ] . Appl Phys Lett ,1999 ,75(3) :367 -369.
    [6] Y. Wang., N. Herron. Nanometer-size semiconductor cluster: material synthesis, quantum size effects and photophysical properties[J]. J. Phys. Chem. 1991, 95: 525-528.
    [7]郑红,汤鸿霄,王怡中.有机污染物半导体多相光催化氧化机理及动力学研究发展[J].环境科学进展,1996,4(3):1-18.
    [8]赵文宽,覃榆森.水面石油污染物的光催化降解[J].催化学报,1999,20(3):369-372.
    [9]陶跃武,赵梦月.空气中有害物质的光催化去除[J].催化学报,1997,l8(4):345-347.
    [10] Heller A,Nair M,Davidson L et al.Photocatalytic Purification and Treatment of Water and Air,Amsterdam[J].Elsevier:1993,139-143.
    [11]张立德.纳米材料研究的现状、特点和发展趋势[J].中国高新技术企业杂志,2000,(3):13-14.
    [12]徐华蕊,李凤生.国内外制备纳米材料研究情况综述[J].仪器仪表学报,1996,17(1):36-39.
    [13]吴烈善,王瑛辉,薛柳.纳米材料及其应用前景[J].矿产与地质,2001.6(13):688-691.
    [14]朱永法.纳米材料的表征及测试技术[M].北京:化学工业出版社,2006.
    [15]张立德.纳米材料学[M].沈阳:辽宁科技出版社,1994.
    [16]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2002.
    [17]许并社.纳米材料及应用技术[M].北京:化学工业出版社,2004.
    [18] ZhangZhikun, CuiZuolin.PhaseStructuresInn-Y2O3[J]. Nano Structured Meterials.1994, 4 (7): 823-831.
    [19]王世敏,许祖勋,傅晶等.纳米材料制备技术[M].北京:化学工业出版社,2002.
    [20] Bin-shi Xu, Wei Zhang, Shi-can Liu, et al. Remanufacturing Technology for the 21stCentury[J]. Proceedings of the 15st European Maintenance Conference, March, 2000 in Gothenburg, Sweden: 335-339 .
    [21]周华军,王大志,刘金华.纳米二氧化钛的量子尺寸效应及掺杂氧化锡对光吸收的影响[J].化学物理学报,2002.13(1):61-64.
    [22]都有为,陈鹏,朱建民等.纳米结构ZnxFe(3-x)O4-α-Fe2O3多晶材料中的巨隧道磁电阻效应[J].物理学报,2001,50(11): 1175-1177.
    [23] XU Yajie, XU Dingsheng, CHEN Dapeng et al. Electrochemistry preparation and characterization of CDS nanowire arrats[J]. Acta Physico Chimica Sinica ,1999,15 (7):577-580.
    [24]杨树人,王宗昌.半导体材料[M].北京:科学出版社,2004.
    [25]王艳芹,程虎民,马季铭等.二氧化钛和三氧化二铁复合纳米晶电极的光电化学性质[J].物理化学学报,1999,15(3):222-227.
    [26]沈伟韧,贺飞,赵文宽等.TiO2纳米粉体的制备及光催化活[J].武汉大学学报(自然科学版),1999,45(4):389-392.
    [27]湛社霞,范山湖.钼掺杂TiO2光催化活性的研究[J].中山大学学报(自然科学版),200l,40(2):125-127.
    [28]郜涛,孟国文,张立德.多孔氧化铝膜的光致紫外发光[J].科学通报,2003,48(6):551-555.
    [29]岳林海,徐铸德.半导体的表面修饰与其光电化学应用[J].化学通报,1998,9:28-34.
    [30]征茂平,金燕苹,金国良等.二氧化钛溶胶凝胶的光致变色[J].化学学报,2001,59(1):142-145.
    [31]高远,徐安武,祝静艳.RE/TiO2用于NO2-光催化氧化的研究[J].催化学报,2001,22(1):53-56.
    [32]薛增泉,刘惟敏.纳米电子学[M].北京:电子工业出版社,2003.
    [33]高原,马永祥,力虎林.用膜板法制备TiO2纳米线阵列膜及光催化性能研究[J].高等学校化学学报,2003,24(6):1089-1092.
    [34] Tomoko Kasuga.Formation of titanium oxide nanotubes using chemical treatments and their characteristic properties [J].Thin Solid Films,2006,496(1):141-145 .
    [35] Tanaka T, Takenaka T I S, Funabiki T et a1.Photocatalytic Oxidation of Alkane at a Steady Rate over Alkali-Ion-Modified Vanadium Oxide Supported on Silica [J].Catal Today, 2000, 61(4):109-115.
    [36]薛寒松,李华基,胡慧芳.稀土镧掺杂二氧化钛纳米管光催化性能[J].中国稀土学报,2008,26(1):18-23.
    [37] Dong-Seok, Jong-Kook Lee, Hwan Kim. Preparation of nanotube-shaped TiO2 powder[J].Journal of Crystal Growth,2001,229(1-4):428-432.
    [38] Claudius Korman, Deltlef W. Bahnemann, Michael R. Hoffmann. Preparation and characterization of quantum-size titanium dioxide[J]. J. Phys. Chem., 1988, 92: 5196-5210.
    [39]余永宁.金属学原理[M].北京:冶金工业出版社,2000.
    [40]唐波,葛介超,王春先等.金属氧化物纳米材料的制备新发展[J].化工进展,2002,21(10):707-712.
    [41]高濂,郑珊等.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002.
    [42] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J].Nature, 1972, 238 :37-41 .
    [43]祖庸,雷闫盈,俞行.新型防晒材料—纳米二氧化钛[J].化工新型材料,1998,31(6):26-30.
    [44]李春荣,杨胜科,段磊等.二氧化钛光催化降解硝基苯废水[J].应用化工,2007,36(8):748-750.
    [45] Testa, Juan J, Maria A Grela et al.Experimental Evidence in Favor of an Initial One-Electron-Transfer Process in the Heterogeneous Photocatalytic Reduction of Chromium (Ⅵ) Over TiO2[J].Langmuir, 2001, 17(12):3515-3517.
    [46]王刚,阎康平,周川等.阳极氧化铝模板法制备钠米电子材料[J].电子元件与材料,2002,21(5):27-30.
    [47]太惠玲,蒋亚东,谢光忠.聚苯胺/二氧化钛复合薄膜的制备及其气敏性能[J].物理化学学报, 2007,24(2):11-13.
    [48] Hoffman M R,Martin S T,Choi W et al.Environmental Applications of Semiconductor Photo-catalysis[J].Chem Rev,1995,95:69-96.
    [49] Goswami D Y.A review of engineering developments of aqueous phase solar photocataltic detox-ification and disinfection processes[J]. Journal of solar Energy Engineering,1997,119(3):101-107.
    [50]祖庸.应用前景诱人的纳米二氧化钛[J].西北大学学报,1995,25(4):319-323.
    [51]刘守新,刘鸿.光催化及光电催化基础与应用[M].北京:化学工业出版社,2006.
    [52] Michael R. Hoffmann, Scot T. Martin, Wongyong Choietal. Environmental applications of semiconductor photocatalysis[J]. Chem. Rev. 1995, 95: 69-96 .
    [53] Michael Gratzel,Russell F Howe. Electron paramagnetic resonance studies of doped TiO2 colloids[J].J Phys Chem,1990,94:2566-2572.
    [54]霍爱群,潭星等.纳米TiO2膜光催化降解废水中的阿特拉津的研究[J].工业水处理,1998,18(3):25-29.
    [55] Mills A , Davies R H , Worsley D . Water Purification by Semiconductor Photocatalysis[J].Chem Soc Rev,1993,22(6):4l7-425.
    [56]张坚亦,肖忠海.不锈钢负载半导体薄膜光催化降解有机污染物的研究[J].湖北化工,2000,(04):20-21.
    [57]武正簧.TiO2薄膜在光催化处理含铬废水[J].太原理工大学学报,1999,31(03):289-290.
    [58]吴天宝.太阳能—TiO2非均相催化氧化染料污水脱色研究[J].中国环境科学,1997,17(1):93-96.
    [59]李晓平,徐宝琨,刘国范等.纳米TiO2光催化降解水中有机污染物的研究发展[J].功能材料,1999,30(3):242-245.
    [60]邱星林,徐安武.纳米级TiO2光催化净化大气环保涂料的研制[J].中国涂料,2000(4):30-32.
    [61]黄淑梅.抗菌钛在工业中的应用[J].钛工业进展,1998,(5):24-27.
    [62]刘平,林华香,付贤智等.掺杂TiO2光催化膜材料的制备及其灭菌机理[J].催化学报,1999,20(3):325-328.
    [63]高瑞平.纳米材料和技术的研究和展望[J].材料导报,2001,15(5):6-7.
    [64]尚静,杜尧国,徐自力.TiO2纳米粒子气-固复相光催化VOC-S作用的研究发展[J].环境污染治理技术与设备,2000,1(3):67-76.
    [65]范崇政,肖建平,丁延伟.纳米TiO2的制备与光催化发应研究进展[J].科学通报,2001,46(4):265-273.
    [66]水淼,岳林海,徐铸德.几种制备方法的掺铁二氧化钛光催化特性[J].物理化学学报,200l,l7(3):282-286.
    [67] Degan G. TiO2 Aerogels for Photocatalytic Decontamination of Aquatic Environments[J].J.Phys.Chem,1993,97(49):12651-12655
    [68]高濂.醇盐水解法制备二氧化钛纳米粉体[J].无机材料学报,1995,10(4):423-427.
    [69]张青红,高濂,郭景坤.四氯化钛水解法制备纳米氧化钛超细粉体[J].无机材料学报,2000,15(1):21-25.
    [70]翟继卫,张良莹,姚熹.溶胶-凝胶法制备TiO2-SiO2复合薄膜的研究[J].功能材料,1998,29(3):284-286.
    [71] CHARLES R. Martin nanomaterials: a membrane based synthetic approach[J]. Science, 1994, 263(23): 1961-1966.
    [72] Dong Jin Kim, Sung Hong Hahn, Sung Hoon. Influence of calcinations temperature on structural and optical properties of TiO2 films prepared by sol-gel dip coating [J]. Materials letters, 2002, 57(2): 355-360.
    [73]孙尚梅,康振晋,魏志仿.TiO2膜太阳光催化氧化法处理毛纺染料废水[J].化工环保,2000,2000,20(1):11-13.
    [74]鲍新努,张岩,肖良质等.表面包覆对TiO2超微粒光学性质的影响[J].吉林大学自然科学学报,1993,2:119-122.
    [75]谭湘萍,蒋伟川.载银TiO2半导体催化剂对印染废水的光降解研究[J].环境污染和防治,1994,16(5):5-7.
    [76] Kang M G, Han H E,Kim K J. Enhanced photodecomposition of 4-chlorophenol in aqueous solution by deposition of Cds on TiO2[J]. J Photochem Photobiol A:Chem, 1999-2003.
    [77]王本根,李义和,王清华.Al2O3涂覆TiO2纳米晶粒的制备及其抗絮凝性研究[J].高等学校化学学报,1998,19(5):685-687.
    [78]赵家龙,周方策,靳春明等.表面化学修饰对了TiO2半导体超微粒子光学性质的影响[J].化学物理学报,1993,16,(2):129-133.
    [79]张宇.半导体纳米粒子的表面修饰及其光学性质研究[J].材料导报,2000,11:67-69.
    [80]丁铁柱,李蓉萍.复合氧化物SrTiO3-TiO2氧敏材料的研究[J].云南大学学报(自科版),1997,19(1):69-71.
    [81] Liu ZQ, Zhou YP, Li ZH et al.Enhanced photocatalytic activity of (La, N) co-doped TiO2 by TiCl4 sol-gel autoigniting synthesis [J].Journal of University of Science and Technology Beijing , 2007, 14(6):552-557.
    [82] Choi W,Termin A,Hoffmann M R.The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreaetivity and charge carrier recombination dynamics[J].J Phys Chem,1994,98,l36-139.
    [83] Balek V,Li D,Subrt J et al. Characterization of nitrogen and fluorine co-doped titania photocatalyst: Effect of temperature on microstructure and surface activity properties[J].Journal of Physics and Chemistry of Solids,2007,68(5):770-774.
    [84] Angela Guiovana, Cesar Pulgarin. Effect of PH, inorganic ions, organic matter and H2O2 on photocatalytic inactivation by TiO2: implications in solar water disinfection [J]. Applied Catalysis 2004, 51(4): 283-302.
    [85] E. Setiawati, K. Kawano.Stabilization of anatase phase in the rare earth; Eu and Sm ion doped nanoparticle TiO2[J].Journal of Alloys and Compounds,2008,451:293-296.
    [86]岳林海,水淼,徐铸德.稀土掺杂二氧化钛的相变和光催化活性[J].浙江大学学报(理学版),2000,27(1):69-74.
    [87]陈俊涛,李新军,杨莹等.稀土元素掺杂对TiO2薄膜光催化性能的影响[J].中国稀土学报,2003,21(增刊):67-70.
    [88]井立强,张新,屈宜春等.掺杂镧的TiO2纳米粒子的光致发光及其光催化性能[J].中国稀土学报,2004,22(6):746-750.
    [89]蔡河山,刘国光,吕文英等.钬掺杂提高TiO2纳米晶光催化活性的光谱性能机制研究[J].中国稀土学报,2007,25(1):16-21.
    [90]刘志海.钴离子掺杂二氧化钛纳米管的制备及光催化性研究[D].南京航空航天大学,2007.
    [91]王芹,陶杰,翁履谦,宋申华等.氧化钛纳米管的合成机理与表征[J].材料开发与应用,2004,19(5):9-12.
    [92] Luozheng Zhang, Hong Lin, Ning Wang et al. The evolution of morphology and crystal form of titanate nanotubes under calcination and its mechanism[J].Journal of Alloys and Compounds,2007,431(1-2):230-235.
    [93]张青红,高濂,郑珊等.制备均一形貌的长二氧化钛纳米管[J].化学学报,2002,60(8):1439-1444.
    [94]吴省,蒋淇忠,马紫峰等.微波制备二氧化钛纳米管的方法[P].中国专利:CN1733609,2006-02-15.
    [95] Pol VG , Langzam Y , Zaban A.Application of microwave superheating for the synthesis of TiO2 rods [J].Langmuir ,2007,23(22):11211-11216.
    [96]刘萍,李新勇,王玉新.二氧化钛纳米管阵列的构建及其光电催化性能[J].高等学校化学学报,2006,27(12):2411-2413.
    [97]孙超,黄浪欢,刘应亮.氮掺杂二氧化钛纳米管制备与光催化性能[J].功能材料,2005,36(9):1412-1417.
    [98]邵颖,薛宽宏,陈巧玲等.TiO2纳米管的光催化作用[J].应用化学,2003,20(5):433-436.
    [99]梁建,马淑芳.二氧化钛纳米管的合成及其表征[J].稀有金属材料与工程,2005,34(2):287-290.
    [100]曾曙,马莒生,郭鹤桐.铝阳极氧化膜纳米级微孔内电沉积Fe-Co-Mn合金的磁性和垂直磁记录介质特性研究[J].功能材料,2000, (增刊):32-38.
    [101] Martin C R. Nanomatrials: A membrane based synthetic approach [J].Science, 1994, 266: 1961-1966.
    [102] FORRER P, SCHLOTTIG F, SIEGENTHAL ER H et al. Electrochemical preparation and surface properties of gold nanowire arrays formed by the template technique[J]. J Appl Electrochem, 2000, 30(5): 533-541.
    [103] N. V. Gaponenko, O. V. Sergeev, E. A. Stepanova et al. Surface derivatization and isolation of characterization of Erbium-doped TiO2 xerogel films processed on porous anodic alumina[J]. Journal of the electrochemical society, 2001,148(2):13-16 .
    [104]虞澜,史聪花,彭巨擘等.氧化铝纳米阵列模板的制备和研究[J].云南大学学报(自然科学版),2002,24(3):211-214.
    [105]王爱华,管荻华,周维亚等.多孔氧化铝有序膜的制备研究[J].无机化学学报,2002,18(5):447-450.
    [106] Du Y, Cai W L , Mo C M et al. Preparation and photoluminescence of alumina membranes with orderedpore arrays [J ] . Appl Phys Lett , 1999 ,74 :2951-2953.
    [107] LU Bin, BHARATHULWAR S, LAU GHLINDE et al. Time and orientation dependence of ordering in anodized alumina for self-organized magnetic arrays[J]. Journal of Applied Physics, 2000, 87(9):4721-4723.
    [108] Kumar S.Adiabatic Solution Transmission in Fibers with Lumped Amplifiers[J].Water Envir Res.1997,69:1238-1245.
    [109] KONOVALOV V V, METZGER R M. Long scale ordered nano-patterns formed by electrochemical polishingand anodization of polycrystalline and single crystal aluminum[M] . USA : Proc Electrochem Soc, 2000.
    [110] H ideki Masuda, Haruki Yamada, Masahiro Satoh et al. Highly ordered nanochannel array archtecture in anodic alumina [J]. App l. Phys. Lett. 1997, 71: 770-773.
    [111]吴俊辉,邹建平,朱青等.硅基氧化铝纳米有序孔列阵制备[J].半导体学报,1999,20(4):314-317.
    [112]吴俊辉,邹建平,朱青等.硅衬底阳极氧化铝膜的荧光发射研究[J].发光学报,2000,21(1):53-56.
    [113]黄丽清,赵军武,王永昌等.高度有序多孔氧化铝膜的制备和研究[J].西安交通大学学报,2003,37(10):1094-1097.
    [114]姚素薇,孔亚西,张璐.高度有序多孔阳极氧化铝膜形成机理的探讨[J].功能材料, 2006 ,37(1):113-116.
    [115] Yang Yang, Huilan Chen, Yongfeng Mei et al. Anodic alumina template on S i substrate and preparation of CdS nanowires [J ]. Solid State Communication, 2002, 123: 279-281.
    [116] Pu L in, Bao Ximao, Zou Jianping et al. Individual alumi nanano tubes [J]. A ngew Chem. Int. Ed, 2001, 40: 190-194.
    [117] Yamamoto Y, Baba N, Tajima S. Coloured materials and photolum inescence centres in anodic films on aluminum [J ].Nature, 1981, 289: 572-576.
    [118] Wu Jun Hui, PU Lin, ZOU Jian Ping et al. Preparation of Si nanocrystals using anodic porous alumina template formed on silicon substrate [J ]. Chin. Phys. Lett. , 2000, 17: 451-455.
    [119]邹建平.硅基多孔氧化铝及其在硅基纳米光电子集成中的应用[D].南京大学, 2002.
    [120]徐金霞,黄新民,钱利华.二次阳极氧化方法制备有序多孔氧化铝膜[J].化学物理学报,2003,16(3):223-226.
    [121] Sullivan J. P., Wood G.C.. The morphology and mechanism of formation of porous anodic films on aluminum[J].Proc Roy Soc Lond A, 1970,317:511-543.
    [122]马胜利,井晓天.铝及铝合金阳极氧化膜结构与应用[J].兵器材料科学与工程, 1998, 21: 54-57.
    [123]徐源, Thompson G E, Wood G C.多孔型铝阳极氧化膜孔洞形成过程的研究[J].中国腐蚀与防护学报, 1989, 9(1):1-10.
    [124]黎樵焱.铝阳极氧化膜的形态结构和成分分布的研究[J].表面技术,1992,21(4):17-25.
    [125] KELL ER F, HUNTER M S, ROBINSON D L. Structural features of oxide coating on Aluminium[J]. Journal of the Electrochemical Society, 1953, 100(9): 411-419.
    [126]徐源, Thompson G E,Bethune B B.壁垒型铝阳极氧化膜的成分及电解质离子在膜中的漂移[J].中国腐蚀与防护学报,1987,7(3):12-21.
    [127] Xu Y, Thompson G. E, Wood G. C. Mechanism of anodic film growth on aluminum [J]. Trans. Transactions of the Institute of Metal Finishing.1985,63:98-103.
    [128] Jessensky O, Miller F. Self-organized formation of hexagonal pore arrays in anodic alumina[J].Appl Phys Lett, 1998,72(10):1173-1175.
    [129] Parkhutik V. P., Shershulsky V.I. .Theoretical modelling of porous oxide growth on aluminium[J].J. Phys. D: Appl.Phys., 1992, 25(8): 1258-1263.
    [130]魏剑,李克智,李贺军等.多孔阳极氧化铝薄膜的制备[J].材料工程,2005,(5):56-59.
    [131]刘海平,徐源,张文奇.铝的壁垒型阳极氧化膜的透射电镜观察[J].北京科技大学学报,1990,12(2):77-81.
    [132] Guo Yuguo, Wan Lijun, Zhu Chuanfeng. Ordered Ni-Cu nanowire array with enhanced coercivity[J]. Chem Mater, 2003, 15: 664-667.
    [133] Zhou Yingke , Huang Jier , Shen Chengmin. Synthesis of highly ordered LiNiO2 nanowire arrays in AAO templates and their structural properties[J ] . Materials Science and Engineering A ,2002 , 335 : 260-267.
    [134] Park JH, Kim S, Bard AJ.Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting[J].Nano Letters,2006,6(1):24-28.
    [135] P. E. Lippens, A. V. Chadwick, A. Weibel et a1.Structure and Chemical Bonding in Zr-Doped Anatase TiO2 Nanocrystals [J].J. Phys. Chem. C, 2008, 112(1):43-47.
    [136]徐光宪.稀土[M].北京:冶金工业出版社,1995.
    [137]黄翠英,张澜萃,李晓辉.稀土离子掺杂对纳米TiO2光催化制氢活性的影响[J].催化学报,2008,29(2):67-70.
    [138] Liang CH, Li FB, Liu CS.The enhancement of adsorption and photocatalytic activity of rareearth ions doped TiO2 for the degradation of Orange I[J].Dyes and Pigments , 2008, 76(2):477-484.
    [139] Jing LQ, Sun XJ, Xin BF, Wang BQ et al.The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity [J].Journal of Solid State Chemistry, 2004, 177(10):3375-3382.
    [140]郭玉.二氧化钛薄膜的掺杂、复合及其性能研究[D].浙江大学,2007.
    [141]钱斯文,王智宇,王民权.La3+掺杂对纳米TiO2微观结构及光催化性能的影响[J].材料科学与工程, 2003,23(01):48-52
    [142] Birol Sonuparlark.Sol-Gel processing of infrred transparent mullite[J].Advanced Ceramic Materials,1988,3(3):263-267.
    [143] Chunming Huang, Xueqin Liu, Yanping Liu et al.Room temperature ferromagnetism of Co-doped TiO2 nanotube arrays prepared by sol–gel template synthesis[J].Chemical Physics Letters,2006, 432(4-6):468-472.
    [144]包定华,顾豪爽,邝安祥等.Sol-Gel法合成TiO2纳米粉末和薄膜[J].无机材料学报,1996, 11(3):453-458.
    [145]廖东亮,肖新颜,张会平等.溶胶-凝胶法制备纳米二氧化钛的工艺研究[J].化学工业与工程,2003,20(5):256-260.
    [146]张玉红,吴鸣,孙福侠等.二氧化钛溶胶粒度分布与光谱特征[J].催化学报,1999,20(3):305-308.
    [147]黄剑锋.溶胶-凝胶原理与技术[M].北京:化学工业出版社,2005.
    [148]侯亭红.稀土掺杂纳米TiO2的结构和电子特性研究[D].四川大学,2006.
    [149] Haro Poniatowsh E.Crystallization of Nanosized Titania Particles Prepared by the Sol-Gel Process[J].J.Mater.Res,1994,9(8):2102-2108
    [150] X. Z. Ding.The effect of impurity doped oxide on TiO2 crystal transformation [J].J.Mater. Sci.Letter,1994,13(1):462-466.
    [151]于向阳,程继健,杜永娟.稀土元素掺杂对TiO2相组成和光催化性能的影响[J].玻璃与搪瓷,2000,28(2):15-20.
    [152]蔡元霸,梁玉仓.纳米材料的概述、制备及其结构表征[J].结构化学,2001,11(6):425-438.
    [153]张国栋.材料研究与测试方法[M].北京:冶金工业出版社,2002.
    [154]尹荔松,周歧发,唐新桂等.纳米粉晶的XRD研究[J].功能材料.1999, 30(5):498-500.
    [155]张锐.现代材料分析方法[M].北京:化学工业出版社,2007.
    [156]井立强,辛柏福,王德军等.ZnO和TiO2纳米粒子的光致发光性能及其与光催化活性的关系[J].高等学校化学学报,2005,26(1):111-115.
    [157]蔡铁军,岳明,王贤文等.复合催化剂NdPW12O40/ TiO2的制备、表征及光催化性能[J].催化学报,2007, 28(1):10-16.
    [158]苏锵.稀土元素[M].北京:清华大学出版社,2000.
    [159] IIidakaⅡ,Asai Y,Zhao J.Photodegradation of surfactants catalyzed by a TiO2 semiconductor [J].Phys Chem,1995,99(20):8244-8248.
    [160] Shiga T, Motohiro T.Photosensitization of nanoporous TiO2 film with porphyrin-linked fullerene [J].Thin Solid Films , 2008, 516(6):1204-1208.
    [161]贾海红,孙桂进,马卫兴等.甲基橙在分析化学中的应用进展[J].理化检验-化学分册,2006,42(7):588-593.
    [162]王智宇,赵彬,高春梅等.S掺杂TiO2光催化剂的可见光降解甲基橙研究[J].武汉理工大学学报,2007,29(1):243-247.
    [163]刘千钧,余煜棉,张音波等.TiO2光催化降解甲基橙若干反应条件的研究[J].环境科学与技术,2003,26(6):13-16.
    [164]崔玉民,范少华,张颖.铈掺杂TiO2光催化降解甲基橙的研究[J].稀有金属,2006,30(4):469-474.
    [165]尤先锋,陈锋,张金龙等.银促进的TiO2光催化降解甲基橙[J].催化学报,2006,27(3):270-274.
    [166]苏均和.试验设计[M].上海:上海财经大学出版社,2005.
    [167] L. E. Brus. Electron-electron and electron-hole interactions in small semiconductor crystallites : the size dependence of the lowest excited electronic state[J]. J. Chem .Phys., 1984, 80 (9): 4403-4409.
    [168] Ludislav Kavan, Brain O Regan, Andreas Kay et al. Preparation of TiO2( anatase) films on electrodes by anodic oxidative hydrolysis of TiCl3[J]. Journal of Electroanalytical Chemistry, 1993,346:291-307.
    [169] Adil F., M. Christian, S. Bernard & C. Mauro. Theoretical analysis of the structures of titanium dioxide crystals[J]. Phys. Rev. B 1993.47:11717-11724.
    [170] Cerrato, G., Marchese, L, Morterra, C. Structural and morphological modifications of sintering microcrystalline TiO2: An XRD, HRTEM and FTIR study[J].Applied Surface Science, 1993, 70-71:200-205.
    [171] Sekiyama A., S. Suga, M. Fujikawa, S. Imada et al.Electronic states of charge ordering Nd0.5Sr0.5MnO3 probed by photoemission[J]. Phys. Rev. B 1999,59:15528-15532.
    [172] Xiao-jun Li,De-jun Si,Jun Fang. Co-doping of Iron and Cerium in Titanium Dioxide: Observation of a Cooperative Effect[J].Chinese Journal of Chemical Physics,2006,19(6):539-542.
    [173]王剑波,张景来,卢寿慈.金属共掺杂对TiO2光催化性能的影响[J].安徽理工大学学报(自然科学版),2004,24(3):61-64.
    [174]桥本和仁,藤岛昭.邱建荣,朱从善.图解光催化技术大全[M].北京:科学出版社,2007,4.