新型低成本多孔陶瓷分离膜的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一类新型分离介质,无机陶瓷分离膜具有高聚物膜无法比拟的诸多优点,如分离效率高、耐高温、结构稳定性高、低能耗和易于清洗再生等,日益广泛应用于食品工业、医药、冶金、生物技术、环境工程等工业分离过程,是一个方兴未艾的高技术产业领域。随着大批量废液处理、强酸碱介质分离和高温热冲击分离等环境应用对陶瓷膜的强烈需求,商品化的多孔陶瓷分离膜存在诸多问题,如成本高、材质品种少、应用范围窄等,严重影响其大规模工业化应用。本论文从陶瓷分离膜的低成本化、特殊环境应用(高温和强酸碱应用)等角度出发,侧重于研究低成本多孔陶瓷分离膜的制备和性能表征,发展了若干具有实用价值的新型低成本多孔陶瓷分离膜,并依据其性能研究拓展了应用范围,如强酸强碱液体分离、高温气体除尘和收尘等,取得了阶段性成果。主要包括如下几个方面:
     1.管状多孔堇青石陶瓷膜支撑体的制备与性能研究
     作为经典陶瓷材料的堇青石(2MgO_2·Al_2O_3·5SiO_2)有诸多优点,尤其是低的热膨胀系数,多应用于耐火材料和汽车尾气催化剂载体,据称,日本科技界将其应用于多孔陶瓷的制备,但具体制备过程未见相关文献报道。
     本工作研究了堇青石多孔陶瓷膜管的挤出成型制备过程,详尽考察了其耐酸碱腐蚀性能和腐蚀机理。以大颗粒工业堇青石为原料,运用挤出成型-烧结工艺,详细研究了烧结温度对管状支撑体C-1的孔径及分布、孔隙率、机械强度、渗透性能和热膨胀系数等性能的影响,并比较了不同粒径粉体所制备的支撑体的孔隙率、孔径及渗透通量等主要性质,在优化的工艺制度下,分别制得平均孔径为8.66-9.49μm(C-1样品)和17.03-19.24μm(C-2样品)的多孔陶瓷膜管,进而亦可作为制备微滤膜和超滤膜的载体。
     为实现特殊环境应用,考察所制备的堇青石多孔陶瓷膜管C-1样品(平均孔径为8.66μm)和商业氧化铝支撑体(平均孔径为2.96μm)的耐酸碱腐蚀性能,对其腐蚀机理进行分析。结果表明,经过10 wt%NaOH溶液4 h的腐蚀,堇青石陶瓷膜管耐酸碱性能好,孔结构变化较小,强度损失率也仅为8.16%,远小于氧化铝膜管的73.6%,这样的结果国际上尚未见报道。相反地,经过强酸的腐蚀(如20wt%H_2SO_4溶液4 h),堇青石陶瓷膜管强度损失率为57.87%,而耐强酸的腐蚀氧化铝陶瓷膜管的仅为3.56%。
     因此,商品化氧化铝支撑体宜于处理强酸介质,与之相比,耐强碱腐蚀的低膨胀堇青石陶瓷膜管由于原料廉价易得,烧结温度低,更适合大规模地应用于处理强碱性介质和高温气-固、液-固分离等领域。本研究有望填补多孔陶瓷分离膜在强碱苛性介质分离应用和高温环境应用中的空白。
     2.多孔莫来石陶瓷膜支撑体的制备研究
     莫来石(3Al_2O_3·2SiO_2)为硅铝酸系中唯一稳定存在的晶相,具有许多独特的优点,是一种优良的结构陶瓷。将其应用于多孔陶瓷膜的制备却少有文献报道。
     第一部分,以廉价易得的工业莫来石粉体为主要原料,以碱式碳酸镁和高岭土混合物为添加剂,研究了烧结温度、成孔剂、添加剂对多孔莫来石烧结特性、相组成和孔结构等性能的影响,在1500℃优化烧结温度下,制备了平均孔径为26.21μm、热膨胀系数为6.24×10~(-6)℃~(-1)的低成本莫来石多孔陶瓷。
     在国际上,首次以具有“粉煤灰核-氢氧化铝壳”微结构的莫来石前驱体为主要原料,运用反应烧结技术制备出微结构可控的多孔莫来石,详细研究了烧结过程中样品的相转变机理和烧结行为。淀积氢氧化铝涂层,只是适当地提高莫来石多孔陶瓷的烧成温度,却能够获得以下诸多优点:a.拓宽烧结体的烧结温度范围;b.使得烧结体微结构更易控制;c.消除方石英有害相;d.提高烧结体中莫来石相的浓度。本研究解决了粉煤灰多孔陶瓷烧结温度窄、微结构难以控制、易产生有害相和高温烧结时易发泡变形等科学难点,不仅获得了低成本的多孔陶瓷支撑体,也为工业废物的环境治理、高附加值应用提供了一条切实可行的途径。
     3.以粉煤灰为原料的管状堇青石微滤膜的制备研究
     商品化多孔陶瓷分离膜不能满足大批量地处理废液、高温气-固和液-固分离等环境应用的需求。为此,本工作以上述堇青石陶瓷管(平均孔径:18.00um,开孔隙率:41.40%)为支撑体,在国际上首次利用粉煤灰原位合成结晶相可控的非对称堇青石多元氧化物陶瓷膜。
     我们使用球状工业废弃物粉煤灰,辅以少量碱式碳酸镁作为氧化镁源,利用浸涂-喷涂工艺成功地制备非对称堇青石微滤膜。研究了制备过程中烧结膜层的开裂机理及解决措施,膜层结晶相的转变机理和多孔微结构的控制因素,并对微滤膜的气体渗透性能和渗透机理进行了初步分析。研究表明,优化原材料组分是减少膜层开裂的有效措施,在1100℃低温下即可形成堇青石相,在所研究的烧结温度范围内,制备出平均孔径3.6-6.4μm堇青石微滤膜,0.15 MPa平均压力下,氮气渗透性为(7.52-9.82)×10~4 m~3·m~(-2)·h~(-1)·MPa~(-1)。高的氮气渗透通量使得膜内渗透阻力大大降低,加上低的制备成本,有望应用于大批量地预处理含尘热气体和工业废液预处理等分离领域。
     4.以天然沸石为原料的管状陶瓷微滤膜的制备与表征
     天然沸石矿物由于具有丰富的内部活性微孔,以颗粒形式广泛用于吸附和离子交换领域。本实验室前期工作将其用于多孔分离膜的制备,将活性微孔和粒间堆积孔结合起来,成功发展了具有离子交换和分离耦合功能的天然沸石基矿物多孔支撑体。
     为发展更具实用价值的低成本矿物膜,我们以廉价、矿藏丰富的片沸石(Ca[Al_2Si_7O_(18)]·6H_2O)矿物为原料,在管状多孔矿物支撑体上利用悬浮粒子浸涂工艺制备了三层结构的矿物微滤膜。系统研究了制备过程各工艺参数的影响,如粉体的分级,膜层的形成和烧结。XRD结果表明,膜层结晶相组成与烧结温度密切相关,最终膜层主晶相为石英和钠长石;从SEM结果可看出,膜层内矿物粒子在碱、碱土金属氧化物助熔剂作用下,850℃开始烧结。优化的烧结温度范围内(850-950℃),中间层的平均孔径为0.69-1.10μm,以此为支撑体制备出平均孔径为0.54μm的顶层膜。0.1 MPa膜端压和室温条件下,非对称三层膜的氮气通量和纯水通量分别为1.96×10~5 1·m~(-2)·h~(-1)·bar~(-1)和3.20×10~3 1·m~(-2)·h~(-1)·bar~(-1)。所制备的矿物基陶瓷分离膜制备成本低,适合应用于大规模分离中性介质,为液体分离陶瓷膜增加了新品种,也将引起开发矿物材料的技术革新。
     5.低成本陶瓷膜材料莫来石的合成及性能表征
     从某种意义上说,陶瓷支撑体材料的选择和合成是无机陶瓷膜研究的基础。本工作首次以廉价、矿藏丰富的富铝矿物-天然铝矾土作为氧化铝源,来代替工业氧化铝,进行陶瓷膜材料莫来石的合成研究。详尽研究了铝矾土、粉煤灰和基于3:2莫来石的混合物的相变机理和烧结特性。结果表明,≤1300℃,方石英和刚玉通过固态反应二次莫来石化,在更高的温度,刚玉熔于短暂玻璃相中进一步发展了二次莫来石化;二次莫来石化导致样品的体积膨胀,而非烧结收缩。此外,对不同温度烧结样品的性质,如相对致密度、孔隙率、微结构、热及机械性能进行了表征。在1600℃优化的烧结温度下,样品的相对致密度和抗弯强度分别为93.94%和186.19 MPa,烧结体中仅有少量的闭气孔存在。1600℃莫来石烧结样品在强酸强碱热溶液中表现出较好的耐腐蚀性能,其腐蚀过程可分为两个阶段:快速阶段(0-5 h)和低速阶段(5-20 h),这分别对应于表面腐蚀和体腐蚀过程。
     合成低成本、高性能的莫来石陶瓷体材料,然后经过粉碎分级,以作为制备多孔陶瓷膜,尤其是多孔陶瓷支撑体的原材料,这样的研究对于陶瓷膜制备领域,也有重大的意义和价值。
As a type of novel separation media,inorganic ceramic separation membranes exhibit more merits than their high polymer counterparts,such as high separation efficiency,good high temperature resistance,good structural stability,low energy consumption and easy clean-regeneration.As a result,they are increasingly applied in many industrial separation fields,including food industry,medical industry, metallurgy,bio-technology.With the strong environmental demands for ceramic membranes nowadays,such as massive liquid waste treatment,strong acidic or alkali media separation and high temperature thermal shock applications,commercialized porous ceramic separation membranes could not be used on a large scale in industry due to their several drawbacks,such as high cost,rare membrane materials and narrow application range.Accordingly,in my Ph.D dissertation work,the efforts were focused on the investigation of preparation and performance characterization of low cost porous ceramic membranes based on the needs of lowering cost and meeting the specific environmental applications(high temperature,strong acidic or alkali applications).Several cost-effective novel porous separation membranes with applied value have been developed.And the application performances were also studied from the viewpoint of extending application fields,for example,separation of strong acidic or alkali liquids and the removal or recovery of solids from powder-containing hot gas. Some phasic achievements have been obtained.The work in this dissertation can be described briefly as follows.
     1.Preparation and performance investigation of tubular porous cordierite ceramic membrane supports
     As a classic ceramic material,cordierite(2MgO_2·Al_2O_3·5SiO_2)is usually applied in the fields of refractory products and automobile exhaust catalyst carriers due to its many advantages,especially low thermal expansion co-efficient.It is said that in Janpan' scientific and technical community cordierite has been used in the preparation of porous ceramics.However,specific preparation process has not been reported in the relevant literatures.
     In this work,the preparation process of cordierite ceramic membrane tubes was studied.The corrosion performances and the corresponding mechanism were also studied in detail.Low cost commercial grade coarse cordierite powders were used as the starting materials,while the "extrusion-sintering" process was adopted.The effects of sintering temperature on pore size and its distribution,porosity,mechanical strength,permeation flux and thermal expansion coefficient were studied in detail. The main properties(porosity,pore size and permeation flux)of these two supports prepared from different powders were compared.Under the optimized process system, two tubular ceramic membrane tubes with average pore sizes of 8.66-9.49μm and 17.03-19.24μm were prepared respectively.Furthermore,these porous tubes could be used as the supports for the preparation of micro-filtration or ultra-filtration membranes.
     To verify the practicability in the specific environmental applications,the acidic and alkali corrosion resistance tests were carried out for the fabricated cordierite tubes C-1(average pore size:8.66μm)and the commercial alumina supports(average pore size:2.96μm).In particular,their corrosion mechanisms were analyzed.The results indicated that,after 10 wt%NaOH solution corrosion for 4 h,the alkali-resistant cordierite ceramic membrane tubes exhibited a slight change in pore-structure,and lower strength loss ration(8.16%)than the alumina supports(73.6%).This has not been reported in international research community.On the contrary,after the acid corrosion(for example,20 wt.%H_2SO_4 solution for 4 h),the strength loss ratio of the cordierite ceramic membrane tubes was 54.87%,while that of acid-resistant alumina ceramic tubes is only 3.56%.
     Therefore,the commercial alumina supports are suitable for the treatment of strong acidic liquids.By comparison,due to cheap and abundant raw materials and low sintering temperature,the fabricated alkali-resistant cordierite supports with low expansion co-efficient are expected to have potential large-scale applications in the pre-treatment of strong alkali media and high temperature solid-gas or liquid-solid separation.This study is expected to fill the research blank of the environmental application of porous ceramic membrane in the separation of alkali caustic media and high temperature hot gas.
     2.Preparation investigation of porous mullite ceramic membrane supports
     Mullite(3Al_2O_3·2SiO_2)is the only stable existing phase for the Si-Al system.As an excellent structural ceramic,it shows many unique advantages.However,the use of mullite for the porous ceramic membrane preparation is rarely reported in the literatures.
     In the first part,industrial coarse mullite was used as the aggregate materials while the mixture of kaolin and basic carbonate magnesium as additive.The influences of sintering temperature,pore-forming agent,additives on the properties of the porous mullite were studied,such as sintering characteristics,phase composition and pore structure.At the optimized sintering temperature of 1500℃,low-cost porous mullite ceramics with average pore size of 26.21μm and thermal expansion co-efficient of 6.24×10~(-6)℃~(-1)were prepared.
     In the second part,for the first time,the porous mullite ceramic membrane supports with controllable micro-structure were prepared from the mullite precursors(fly ash core and aluminum hydroxide shell)by the reaction sintering technique.The phase transition mechanism and sintering behavior were studied in detail during the course of heat treatment.Although there is a slight increase in sintering temperature for porous mullite,some advantages could be still achieved as follows:a.extension of sintering temperature range;b.easier control of micro-structure of the sintered bodies; c.consumption of harmful phase cristobalite;d.increase in the phase concentration of mullite.This study solved the scientific difficulties for the sintering of fly ash porous ceramic,such as narrow sintering temperature range,difficult control of micro-structure,production of harmful phase and foam/deformation during high-temperature sintering.This not only has access to obtain the low-cost porous ceramic supports,but also provides a feasible practical way for high value-added utilization and environmental governance of industrial waste.
     3.Preparation investigation of tubular cordierite micro-filtration membranes with fly ash as the main starting materials
     Commercialized porous ceramic membrane can not meet the demands for environmental applications,such as the large-scale waste liquid treatment, high-temperature gas-solid or liquid-solid separation.In the work,for the first time, low-cost asymmetric cordierite multiple-oxide porous membranes with controllable crystalline phases were in situ synthesized using fly ash as the main starting materials on the above-mentioned tubular supports(average pore size:18 um,open porosity: 41.40%).
     Asymmetric cordierite-based porous ceramic micro-filtration membranes were prepared using spherical industrial waste fly ash as the starting materials with basic magnesium carbonate as source of magnesium by the spray-coating/dip-coating process.Crack-forming mechanism of membrane layer and the corresponding dissolution method,phase transition mechanism and the control factors of micro-structure were studied during the preparation process.Also,the gas permeation performances and permeation mechanism were preliminarily studied.Optimization of the raw materials ratio was found to be necessary to avoid crack formation during sintering.The results also confirm thatα-cordierite was formed above 1100℃,and that the optimized sintering temperature range(1150-1200℃),cordierite-based porous membranes showed average pore size in the range of 3.6-6.4μm and nitrogen permeance of 7.52-9.82×10~4 m~3·m~(-2)·h~(-1)·MPa~(-1)under the average pressure of 0.15 MPa. Because the high nitrogen flux makes penetration resistance greatly reduced,also for low preparation cost,the fabricated membranes are expected to be applied in the massive pretreatment of dust-containing hot gas and waste liquids.
     4.Fabrication and characterization of tubular micro-filtration mineral membranes from natural zeolite
     The natural zeolite granulars are widely used in the fields of adsorption and ion-exchange because of its abundant active micro-pores.However,natural zeolite was applied to membrane preparation in our previous work.The narural zeolite-based porous mineral supports with coupling function of separation an ion-exchange have been successfully developed based on the combination of active micro-pores and the gaps between the accumulated particles.
     In order to develop low-cost mineral membranes with applied value,tri-layer mineral micro-filtration membranes have been fabricated on tubular porous mineral supports by dip-coating using cheap and abundant natural Heulandite (Ca[Al_2Si_7O_(18)]·6H_2O)mineral as the starting materials.The influence of the parameters during the preparation process,including the powder classification,the forming and sintering of membranes,was systematically studied.The XRD results reveals that the phase compositions of the membranes were related to the sintering temperature and the final major phases were almost quartz and albite.SEM studies subsequently indicate that solids in the membrane begun to sinter at about 850℃with alkali metal oxides as the aid fluxes.The inter-layers with average pore size in the range of 0.69-1.10μm were obtained at the optimum firing temperature(850- 950℃).Then,the top-layer membrane with average pore size of 0.54μm could be prepared on the above support.Nitrogen gas permeation flux and pure water permeation flux of the resulting tri-layer membranes are 1.96×10~5l·m~(-2)·h~(-1)·bar~(-1)and 3.20×10~3l·m~(-2)·h~(-1)·bar~(-1),respectively,with the trans-membrane pressure of 0.1 MPa at room temperature.The prepared mineral ceramic membranes with low preparation cost are suitable for the large-scale separation of neutral medium.This not only added a new species for liquid separation ceramic membranes,but will lead to the technological innovations for the development of mineral materials.
     5.Synthesis and property characterization of low-cost ceramic membrane materials-mullite
     In a sense,the choice and synthesis of the ceramic support material are the basis for the inorganic ceramic membrane study.In the work,low cost mullite ceramics were for the first time prepared with natural bauxite as resource of alumina,which is a cheap and abundant substitute material for industrial grade alumina.The fired samples, including fly ash,bauxite and their mixture based on the composition of 3:2 mullite, were studied in terms of phase development mechanism and sintering characteristics. The results indicate that the secondary mullitization occurred by the solid state reaction of cristobalite and corundum below 1300℃,followed by the dissolution of corundum into transitory glassy phase at higher temperatures.The dilatometric results reveal that the formation of secondary mullite resulted in slight expansion despite of the shrinkage induced by sintering.In addition,the samples were fired at elevated temperatures and then characterized in terms of relative density,porosity, micro-structure and thermal and mechanical performances.At the optimized sintering temperature of 1600℃,the relative density and bending strength are 93.94%and 186.14 MPa,respectively.Only a small amount of nearly spherical closed pores were observed in the sintered body.The 1600℃sintered mullite samples exhibited better corrosion resistant performance in the strong acid or alkali solutions.The corrosion process can be divided into two stages:high-speed stage(0-5h)and low-speed stage (5-20 h),which was respectively corresponded with the surface corrosion and bulk corrosion process.
     The synthesized low-cost,high-performance mullite ceramic materials is suitable for the preparation of porous ceramic membranes,in particular the porous ceramic membrane supports after size reduction for classification.The study is of great significance and value for ceramic membrane preparation field.
引文
[1]W.J.Koros,Y.H.Ma,T.Shimidzu,Teminology for membranes and membrane process,Journal of Membrane Science,120(1996)149-159
    [2]时钧,袁权,高从增,膜技术手册,化学工业出版社,北京(2001)
    [3]徐铜文,膜化学与技术教程,中国科学技术大学出版社,合肥(2003)
    [4]徐南平,刑卫红,赵宜江,无机膜分离技术及应用,化学工业出版社,北京(2003).
    [5]Arto Lehtovaara,Wahab Mojtahedi,Ceramic-filter behavior in gasification,Bioresource Technology,46(1-2)(1993)113-118.
    [6]A.Larbot,E.Prouzet,M.Bertrand,Proceedings of 7~(th)international conference on inorganic membranes(ICIM7-2002),Dalian,China,2002,P 23-26
    [7]J.C.Ruiz,Ph.Blanc,E.Prouzet,P.Coryn,P.Laffont,A.Larbot,Solid aerosol removal using ceramic filters,Separation and Purification Technology 19(2000)221-227
    [8]Y.Nigara,B.Cales,Production of carbon monoixde by direct thermal splitting of carbon dioxide at high temperature,Bull.Chem.Soc.Japan,59(1986)1997-2002
    [9]S.Uemiya,N.Sato,H.Ando,T.Matsuda,E.Kikuchi,Methane Conversion-a Challenge to the Industrial Chemist,Applied Catalysis,67(1991)22-23.
    [10]M.Moskovits,U.S.Patent,4,472,553(1984)
    [11]J.N.Armor,Catalysis with permselective inorganic membranes,Applied Catalysis,49(1)(1989)1-25.
    [12]E.A Hashun,U.S.Patent,4,791,179(1988)
    [13]N.I.Basov,V.M.Gryaznov,Membr.Katal,(1985)117
    [14]S.P.S.Badwal,K.Foger,Solid oxide electrolyte fuel cell review,Ceramics International,22(3)(1996)257-265.
    [15]常启兵,多孔陶瓷膜的材料设计与科学研究,中国科学技术大学博士论文(2005)
    [16]P.Puhlfurβ,A.Voigt,R.Weber,M.Morbe,Microporous YiO_2 membranes with a cut off<500Da,Journal of Membrane Science,174(2000)123-133.
    [17]Jose Ignacio Calvo,Aldo Bottino,Gustavo Capannelli,Antonio Hernandez,Comparison of liquid-liquid displacement porosimetry and scanning electron microscopy image analysis to characterize ultrafiltration track-etched membranes,Journal of Membrane Science,239(2004)189-197
    [18]黄培,邢卫红,徐南平,时钧,气体泡压法测定无机微滤膜孔径分布研究,水处理技术,22(2)(1999)80-84
    [19]K.S.Mcguire,K.W.Lawson,D.R.Lioyd,Pore size distribution determination from liquid permeation through micrporous membranes,J Membr Sci,99(1995)127-137
    [20]R.Subramanian,K.E.Nandini,P.M.Sheila,et al,Membrane processing of used flying oils,J.Am.Oil Chem.Soc.,69(1992)405-410.
    [21]Toshinori Tsuru,Tomoya Hino,Tomohisa Yoshioka,Masashi Asaeda,Permporometry characterization of microporous ceramic membranes,Journal of Membrane Science,186(2001)257-265
    [22]A.EM.Leenaars,A.J.Burggraaf,The preparation and characterization of alumina membranes with ultrafine pores:Part 3.The permeability for pure liquids,J Membr Sci,24(3)(1985)245-260
    [23]A.EM.Leenaars,A.J.Burggraaf,The preparation and characterization of alumina membranes with ultra-fine pores:Part 4.Ultrafiltration and hyperfiltration experiments,J.Membr.Sci.,24(3)(1985)261-270.
    [24]伍昌年,陶瓷分离膜制备和表征,中国科学技术大学博士学位论文,(2006)P.9
    [25]Tim Van Gestel,Carlo Vandecasteele,Anita Buekenhoudt,Chris Dotremont,Jan Luyten,Roger Leysen,Bart Van der Bruggen,Guido Maesc,Alumina and titania multilayer membranes for nanofiltration:preparation,characterization and chemical stability,Journal of Membrane Science 207(2002)73-89
    [26]Toshinori Tsuru,Daisuke Hironaka,Tomohisa Yoshioka,Masashi Asaeda,Titania membranes for liquid phase separation:effect of surface charge on flux,Separation and Purification Technology 25(2001)307-314
    [27]S.Masmoudi,R.Ben Amar,A.Larbot,H.El Feki,A.Ben Salah,L.Cot,Elaboration of inorganic microfiltration membranes with hydroxyapatite applied to the treatment of wastewater from sea product industry,Journal of Membrane Science,247(2005)1-9
    [28]罗儒显,黄仲涛,固体烧结法制α-Al_2O_3陶瓷膜管的研究(I),五邑大学学报(自然科学版)10(1)(1996)1-7.
    [29]孙宏伟,谢灼利,郑冲,微孔α-Al_2O_3陶瓷膜管的制备与性能,无机材料学报,13(5)(1998)698-702.
    [30]朱立群,陶瓷材料的腐蚀,兵器材料科学与工程,18(4)(1995)50-54.
    [31]Guanghai Li,Zhi Jiang,Anquan Jiang,Lide Zhang,Strengthening of porous A1203 ceramic through nanopartMe addition,NanoStructured Materials,8(6)(1997)749-754.
    [32]Zhen-Yan Deng,You Zhou,Yoshiaki Inagaki,Motohide Ando,Tatsuki Ohji,Role of Zr(OH)_4 hard agglomerates in fabricating porous ZrO_2 ceramics and the reinforcing mechanisms,Acta Materialia 51(3)(2003)731-739
    [33]常启兵,多孔陶瓷膜的材料设计与科学研究,中国科学技术大学博士论文(2005)
    [34]Y.H.Wang,Y.Zhang,X.Q.Liu,G.Y.Meng,Microstructure control of ceramic membrane support from corundum-rutile powder mixture,Powder Technology 168(2006)125-133.
    [35]S.Khemakhem,A.Larbot,L.Cot et al.,Preparation and characterization of Tunisian clay based support and micro-filtration membrane and zirconia ultra filtration membrane.ICIM8,Cicinnati,Ohio,2006,USA.
    [36]M.R.Weir,E.Rutinduka,C.Detellier,C.Y.Feng,Q.Wang,T.Matsuura,R.Le VanMao,Fabrication,characterization and preliminary testing of all-inorganic ultra-filtration membranes composed entirely of a naturally occurring sepiolite clay mineral,J.Membr.Sci.182(2001)41-50.
    [37]R.Le Van Mao,E.Rutinduka,C.Detellier,R Gougay,V.Hascoet,S.Tavakoliyan,S.V.Hoa,T.Matsuura,Mechanical and pore characteristics of zeolite composite membranes,J.Mater.Chem.9(1999)783-788
    [38]M.C.Almandoz,J.Marchese,P.Pradanos,L.Palacio,A.Hernandez,,Preparation and characterization of non-supported microfiltration membranes from aluminosilicates,J.Membr.Sci.241(2004)95-103
    [39]S.Masmoudi,A.Larbot,H.E.Feki,R.B.Amar,Elaboration and characterization of apatite based mineral supports for microfiltration and ultrafiltration membranes,Ceram.Int.33(2007)337-344.
    [40]S.Masmoudi,A.Larbot,H.E1 Feki,R.Ben Amar,Elaboration and properties of new ceramic microfiltration membranes from natural and synthesised apatite,Desalination 190(2006)89-103.
    [41]S.Masmoudi,R.Ben Amar,A.Larbot,H.E1 Feki,A.Ben Salah,L.Cot,Elaboration of inorganic microfiltration membranes with hydroxyapatite applied to the treatment of wastewater from sea product industry,Journal of Membrane Science 247(2005)1-9
    [42]N.Saffaj,S.A.Younssi,A.Albizane,A.Messouadi,M.Bouhria,M.Persin,M.Cretin,A.Larbot,Elaboration and properties of TiO_2-ZnAl_2O_4 ultrafiltration membranes deposited on cordierite support,Sep.Purif.Technol.36(2004)107-114.
    [43] S. Masmoudi, R.B. Amar, A. Larbot, H.E. Feki, A. B. Salah, L. Cot, Elaboration of inorganic microfiltration membranes with hydroxyapatite applied to the treatment of wastewater from sea product industry, J. Membr. Sci. 247 (2005) 1-9.
    [44] N. Saffaj, S. A. Younssi, A. Albizane, A. Messouadi, M. Bouhria, M. Persin, M. Cretin, A. Larbot, Preparation and characterization of ultrafiltration membranes for toxic removal from wastewater, Desalination 168 (2004) 259-263.
    [45] L. Palacio, P. Pradanos, J.I. Calvo, G. Kherif, A. Larbot, A. Hernandez, Fouling, structure and charges of a composite inorganic microfiltration membrane, Colloids Surf, A 138 (1998) 291-299.
    [46] F. Bouzerara, A. Harabi, S. Achour, A. Larbot, Porous ceramic supports for membranes prepared from kaolin and doloma mixtures, J. Eur. Ceram. Soc. 26 (2006) 1663-1671.
    [47] N. Saffaj, M. Persin, S. A. Younsi, A. Albizane, M. Cretin, A. Larbot, Elaboration and characterization of microfiltration and ultrafiltration membranes deposited on raw support prepared from natural Moroccan clay: Application to filtration of solution containing dyes and salts, Appl. Clay Sci. 31 (2006) 110-119.
    [48] N. Seffaj, S. Alami Younsi, M. Persin, M. Cretin, A. Albizane, A. Larbot, Processing and characterization of TiO_2/ZnAl_2O_4 ultrafiltration membranes deposited on tubular support prepared from Moroccan clay, Ceramics International, 31(1) (2005) 205-210
    [49] J. Bentama, K. Ouazzani, Z. Lakhliai, M. Ayadi, Inorganic membranes made of sintered clay for the treatment of biologically modified water, Desalination, 168 (2004) 295-299
    [50] J. Bentama, K. Ouazzani, P. Schmitzb, Mineral membranes made of sintered clay: application to crossflow microfiltration, Desalination, 146 (2002) 57-61
    
    [51] A. Hinkova, I. Bohacenko, Z. Bubnik, M. Hrstkova, P. Jankovska, Mineral membrane filtration in refinement of starch hydrolysates, J. Food. Eng. 61 (2004) 521-526
    
    [52] 关振铎,张太中,焦金生,无机材料物理性能,清华大学出版社,北京(2002)
    
    [53] J.A. Kuszyk, R.C. Bradt, Influence of grain size on effects of thermal expansion anisotropy in MgTi_2O_5, Journal of the American Ceramic Society, 56 (8) (1973) 420-423
    [54] H. Morishima, Z. Kato, K. Uematsu, K. Saito, T. Yano, N. Otosuka, Synthesis of aluminium titanate-mullite composite having high thermal shock resisitance, Journal of Materials Science Letters, 6 (1987) 389-390
    [55] F.J. Parker, Al_2TiO_5-ZrTiO_4 ZrO_2 composites: a new family of low expansion ceramics, Journal of American Ceramic Socoety, 73 (1990) 929-932
    
    [56] C. Falamaki, J. Veysizadeh, Comparative study of different routes of particulate processing on the characteristics of alumina functionally graded microfilter/membrane supports, J. Membr. Sci.280(2006)899-910.
    [57]P.M.Biesheuvel,H.Verweij,Design of ceramic membrane supports:permeability,tensile strength and stress,Journal of Membrane Science 156(1999)141-152.
    [58]RM.Biesheuvel,V.Breedveld,A.R Higler,H.Verweij,Graded membrane supports produced by centrifugal casting of a slightly polydisperse suspension,Chem.Eng.Sci.56(2001)3517-3525.
    [59]R M.Biesheuvel,A.Nijmeijer,H.Verweij,Theory ofbatchwise centrifugal casting,A.I.Ch.E.Journal,44(1998)1914-1922.
    [60]P.M.Biesheuvel,H.Verweij,Calculation of the composition profile of a functionally graded material produced by centrifugal casting,Journal of the American Ceramic Society,83(2000)743-749.
    [61]A.Nijmeijer,C.Huiskes,N.G.M.Sibelt,H.Kruidhof,H.Verweij,Centrifugal casting of tubular membrane support,Am.Ceram.Soc.Bull.77(1998)95-98
    [62]K.H.Kim,S.J.Cho,D.J.Kim,K.J.Yoon,Centrifugal casting of large alumina tube with low rpm,Am.Ceram.Soc.Bull.77(2000)95.
    [63]K.H.Kim,S.J.Cho,K.J.Yoon,J.J.Kim,J.Ha,Dong-II Chun,Centrifugal casting of alumina tube for membrane application,J.Membr.Sci.199(2002)69-74.
    [64]G.C.Steenkamp,H.W.J.R Neomagus,H.M.Krieg,K.Keizer,Centrifugal casting of ceramic membrane tubes and the coating with chitosan,Separation and Purification Technology 25(2001)407-413.
    [65]Cavus Falamaki,Jamileh Veysizadeh,Taguchi design of experiments approach to the manufacture of one-step alumina microfilter/membrane supports by the centrifugal casting technique,Ceramics International,In Press,Corrected Proof,Available online 17 August 2007
    [66]黄肖容,黄仲涛,熔膜离心法制备高纯氧化铝基质膜管,膜科学与技术,16(2)(1996)31-38.
    [67]X.D.Sui,X.R.Huang,The characterization and water purification behavior of gradient ceramic membranes,Separation and Purification Technology,32(2003)73-79.
    [68]C.Y.Chen,S.Y.Chen,D.M.Liu,Electrophoretic deposition forming of porous alumina membranes,Acta mater,47(1999)2717-2726.
    [69]C.Falamaki,M.Naimi,A.Aghaie,Dual behavior of CaCO_3 as a porosifier and sintering aid in the manufacture of alumina membrane/catalyst supports,J.Eur.Ceram.Soc.24(2004)3195-3201.
    [70]Y.S.Han,J.B.Li,Y.J.Chen,Fabrication of bimodal porous alumina ceramics,Materials Research Bulletin 38(2003)373-379.
    [71] S. Baud, F. Thevenot, C. Chatillon, High temperature sintering of SiC with oxide additives: I. Analysis in the SiC-Al_2O_3 and SiC-Al_2O_3-Y_2O_3 systems, J. Eur. Ceram. Soc, 23 (2003) 1-8.
    [72]S. Baud, F. Thevenot, ,C. Chatillon, High temperature sintering of SiC with oxide additives: II. Vaporization processes in powder beds and gas-phase analysis by mass spectrometry. J. Eur. Ceram. Soc. 23(2003)9-18.
    [73]S. Baud, F. Thevenot, ,C. Chatillon, High temperature sintering of SiC with oxide additives: IV. Powder beds and the influence of vaporization on the behaviour of SiC compacts. J. Eur. Ceram. Soc. 23 (2003) 29-36.
    [74] J. Ihle, M. Herrmann, J. Adler, Phase formation in porous liquid phase sintered silicon carbide: Part I: Interaction between Al_2O_3 and SiC, Journal of the European Ceramic Society, 25 (2005) 987-995
    [75] J. Ihle, M. Herrmann, J. Adler, Phase formation in porous liquid phase sintered silicon carbide: Part II Interaction between Y_2O_3 and SiC, Journal of the European Ceramic Society, 25 (2005) 997-1003
    [76]J. Ihle, M. Herrmann, J. Adler, Phase formation in porous liquid phase sintered silicon carbide: Part III: Interaction between Al_2O_3-Y_2O_3 and SiC, Journal of the European Ceramic Society, 25 (2005) 1005-1013
    
    [77] Manabu Fukushima, You Zhou, Hiroyuki Miyazaki, Yu-ichi Yoshizawa, Kiyoshi Hirao, Yuji Iwamoto, Satoshi Yamazaki, Takayuk Nagano, Microstructural characterization of porous silicon carbide membrane support with and without alumina additive, J. Am. Ceram. Soc, 00 [0] x-x (2006)
    
    [78] J.F. Yang, Z.Y. Deng, Tatsuki Ohji, Fabrication and characterisation of porous silicon nitride ceramics using Yb_2O_3 as sintering additive, Journal of the European Ceramic Society 23 (2003) 371-378
    [79] Yong Jun Leng, Siew Hwa Chan, Khiam Aik Khor, San Ping Jiang, Philip Cheang, Effect of characteristics of Y_2O_3/ZrO_2 powders on fabrication of anode-supported solid oxide fuel cells, Journal of Power Sources 117 (2003) 26-34.
    [80] Weitao Bao, Qibing Chang, Guangyao Meng, Effect of NiO/YSZ compositions on the co-sintering process of anode-supported fuel cell, Journal of Membrane Science 259 (2005) 103-109.
    [81] Marcel Hagymasi, Andreas Roosen, Roman Karmazin, Oliver Dernovsek, Werner Haas, Constrained sintering of dielectric and ferrite LTCC tape composites, Journal of the European Ceramic Society 25 (2005) 2061-2064.
    [82] H. Birol, T. Maeder, C. Jacq, P. Ryser, Investigation of interactions between co-fired LTCC components, Journal of the European Ceramic Society 25 (2005) 2065-2069.
    [83] J. de Jong, N.E. Benesl, G.H. Koops, M. Wessling, Towards single step production of multi-layer inorganic hollow fibers, Journal of Membrane Science 239 (2004) 265-269
    [84] Jun Feng, Yiqun Fan, Hong Qi, Nanping Xu, Co-sintering synthesis of tubular bilayer α-alumina membrane, Journal of Membrane Science 288 (2007) 20-27
    
    [85] Jun Feng, Minghui Qiu, Yiqun Fan, Nanping Xu, The effect of membrane thickness on the co-sintering process of bi-layer ZrO_2/Al_2O_3 membrane, Journal of Membrane Science, 305 (1-2) (2007) 20-26.
    
    [86] Qibing Chang, Lei Zhang, Xingqin Liu, Dingkun Peng, Guangyao Meng, Preparation of crack-free ZrO_2 membrane on Al_2O_3 support with ZrO_2-Al_2O_3 composite intermediate layers, Journal of Membrane Science, 250 (1-2) (2005) 105-111.
    
    [87] Asad Javaid, Michael P. Hughey, Varuntida Varutbangkul, David M. Ford, Solubility-based gas separation with oligomer-modified inorganic membranes, Journal of Membrane Science 187(2001)141-150
    
    [88] G. Xomeritakis, J. Han, Y.S. Lin, Evolution of pore size distribution and average pore size of porous ceramic membranes during modification by counter-diffusion chemical vapor deposition, Journal of Membrane Science, 124 (1997) 27-42.
    
    [89] J.J. Pesek, M.T. Matyska, J.E. Sandoval, E.J. Williamsen, Synthesis, characterization and applications of hydride-based surface materials for HPLC, HPCE and electrochromatography, J. Liq, Chromatogr. Relat. Technol. 19 (1996) 2843-2865.
    [90] N.R.E.N. Impens, P. Van Der Voort, E.F. Vansant, Silylation of micro-, meso- and non-porous oxides: a review, Micropor. Mesopor.Mater. 28 (1999) 217-232.
    
    [91] C. Picard, A. Larbot, F. Guida Pietrasanta, B. Boutevin, A. Ratdimihety, Grafting of ceramic membranes by fluorinated silanes: hydrophobic features, Sep. Purif. Technol. 25 (2001) 65-69.
    
    [92] C. Picard, A. Larbot, E. Tronel-Peyroz, R. Berjoan, Characterisation of hydrophilic ceramic membranes modified by fluoroalkylsilanes into hydrophobic membranes, Solid State Sciences, 6(6) (2004) 605-612.
    
    [93] A. Sah, H.L. Castricum, A. Bliek, D.H.A. Blank, J.E.ten Elshof, Hydrophobic modification of γ-alumina membranes with organochlorosilanes, Journal of Membrane Science 243 (2004) 125-132.
    
    [94]J. Randon, P. Blanc, R. Paterson, Modification of ceramic membranes surfaces using phosphoric acid and alkyl phosphonic acids and its effects on ultra-filtration of BSA Protein, Journal of Membrane Science, 98 (1995) 119-129.
    [95] Sebastian R. Krajewski, Wojciech Kujawski, Frederic Dijoux, Celine Picard, Andre Larbot, Grafting of ZrO_2 powder and ZrO_2 membrane by fluoroalkylsilanes,Colloids and Surfaces A:Physicochem.Eng.Aspects 243(2004)43-47
    [96]A.Larbot,L.Gazagnes,S.Krajewski,Water desalination using ceramic membrane distillation,Desalination 168(2004)367-372
    [97]张磊,陶瓷膜的制备改性与性能研究,中国科学技术大学硕士学位论文,2007
    [98]Y.H.Wang,X.Q.Liu,G.Y.Meng,Preparation of asymmetric pure titania ceramic membranes with dual functions,Materials Science and Engineering:A,445-446(15)(2007)611-619.
    [99]Y.H.Wang,X.Q.Liu,G.Y.Meng,Preparation and properties of supported 100%titania ceramic membranes,Materials Research Bulletin,In Press,Corrected Proof,Available online 19 June 2007.
    [1]J.de Jong,N.E.Benes,G.H.Koops,M.Wessling,Towards single step production of multi-layer inorganic hollow fibers,J.Membr.Sci.239(2004)265-269.
    [2]E.S.Kikkinides,K.A.Stoitsas,V.T.Zaspalis,V.N.Burganos,Simulation of structural and permeation properties of multi-layer ceramic membranes,J.Membr.Sci.243(2004)133-141.
    [3]H.Moil,S.Mase,N.Yoshimura,T.Hotta,K.Ayama,J.I.Tsubaki,Fabrication of supported Si_3N_4 membranes using the pyrolysis of liquid polysilazane precursor, J. Membr. Sci. 147 (1998) 23-33.
    [4] P. M. Biesheuvel, H. Verweij, Design of ceramic membrane supports: permeability, tensile strength and stress, J. Membr. Sci. 156 (1999)141-152.
    [5] N. Saffaj, M. Persin, S. A. Younsi, A. Albizane, M. Cretin, A. Larbot, Elaboration and characterization of microfiltration and ultrafiltration membranes deposited on raw support prepared from natural Moroccan clay: Application to filtration of solution containing dyes and salts, Appl. Clay Sci. 31 (2006) 110-119.
    [6] M.C. Almandoz, J. Marchese, P. Pradanos, L. Palacio, A. Hernandez, Preparation and characterization of non-supported microfiltration membranes from aluminosilicates, J. Membr. Sci. 241 (2004) 95-103.
    [7] T. Mohammadi, A. Pak, Effect of calcination temperature of kaolin as a support for zeolite membranes, Sep. Purif. Technol. 30 (2003) 241-249.
    [8] T. Mohammadi, A. Pak, Z. Nourian, M. Taherkhani, Experimental design in mullite microfilter preparation, Desalination 184 (2005) 57-64.
    [9] S. Masmoudi, A. Larbot, H. E. Feki, R. B. Amar, Elaboration and characterization of apatite based mineral supports for microfiltration and ultrafiltration membranes, Ceram. Int. 33 (2007) 337-344.
    [10] A. Belouatek, N. Benderdouche, A. Addou, A. Ouagued, N. Bettahar, Preparation of inorganic supports for liquid waste treatment, Micropor. Mesopor. Mat. 85 (2005) 163-168.
    [11] F. Bouzerara, A. Harabi, S. Achour, A. Larbot, Porous ceramic supports for membranes prepared from kaolin and doloma mixtures, J. Eur. Ceram. Soc. 26 (2006) 1663-1671.
    [12] Y.H. Wang, Y. Zhang, X.Q. Liu, G.Y. Meng, Microstructure control of ceramic membrane support from corundum-rutile powder mixture, Powder Technol. 168 (2006) 125-133.
    [13] C. Falamaki, M. Naimi, A. Aghaie, Dual behavior of CaCO_3 as a porosifier and sintering aid in the manufacture of alumina membrane/catalyst supports, J. Eur. Ceram. Soc. 24 (2004) 3195-3201.
    [14] P.M. Biesheuvel, V. Breedveld, A.P. Higler, H. Verweij, Graded membrane supports produced by centrifugal casting of a slightly polydisperse suspension, Chem. Eng. Sci. 56 (2001) 3517-3525.
    [15] K.H. Kim, S.J. Cho, K.J. Yoon, J.J. Kim, J. Ha, D. Chun, Centrifugal casting of alumina tube for membrane application, J. Membr. Sci. 199 (2002) 69-74.
    [16] N.E. Hipedinger, A.N. Scian, E.F. Aglietti, Magnesia-ammonium phosphate-bonded cordierite refractory castables: Phase evolution on heating and mechanical properties, Cement. Concrete Res. 34 (2004) 157-164.
    [17] H.M. Alves, G. Tari, A.T. Fonseca, J.M.F. Ferreira, Processing of porous cordierite bodies by starch consolidation, Mater. Res. Bull. 33 (1998) 1439-1448.
    [18] R. Fernandez-Ruiz, M. Furio, F.C. Galisteo, C. Larese, M. Lopez Granados, R. Mariscal, J. L. G. Fierro, Chemical analysis of used three-way catalysts by total reflection X-ray fluorescence, Anal. Chem. 74 (2002) 5463 -5469.
    [19] Q.Y. Liu, Z.Y. Liu, Z.G. Huang, T. Liu, J. Zhang, Regeneration of Al_2O_3-coated cordierite supported CuO for simultaneous SO_2 and NO removal, Ind. Eng. Chem. Res. 44 (2005) 651 -657.
    [20] Q.Y. Liu, Z.Y. Liu, Z.G. Huang, CuO supported on Al_2O_3-coated cordierite-honeycomb for SO_2 and NO removal from flue gas: effect of acid treatment of the cordierite, Ind. Eng. Chem. Res. 44 (2005) 3497 -3502.
    [21] M.E. Milberg, H.D. Blair, Thermal expansion of cordierite, J. Am. Ceram. Soc. 60 (1977) 372-373.
    [22] D.L. Evans, GR. Fischer, J.E. Geiger, F.W. Martin, Thermal expansions and chemical modifications of cordierite, J. Am. Ceram. Soc. 63 (1980) 629-634.
    [23] Sai Sundar V. S. S. Vepa, A.M. Umarji, Effect of substitution of Ca on thermal expansion of cordierite (Mg_2Al_4Si_5O_(18)), J. Am. Ceram. Soc. 76 (1993) 1873-1876.
    [24] N. Saffaj, S. A. Younssi, A. Albizane, A. Messouadi, M. Bouhria, M. Persin, M. Cretin, A. Larbot, Elaboration and properties of TiO_2-ZnAl_2O_4 ultrafiltration membranes deposited on cordierite support, Sep. Purif. Technol. 36 (2004) 107-114.
    [25] S. Masmoudi, R.B. Amar, A. Larbot, H.E. Feki, A. B. Salah, L. Cot, Elaboration of inorganic microfiltration membranes with hydroxyapatite applied to the treatment of wastewater from sea product industry, J. Membr. Sci. 247 (2005) 1-9.
    [26] N. Saffaj, S. A. Younssi, A. Albizane, A. Messouadi, M. Bouhria, M. Persin, M. Cretin, A. Larbot, Preparation and characterization of ultrafiltration membranes for toxic removal from wastewater, Desalination 168 (2004) 259-263.
    [27] L. Palacio, P. Pradanos, J.I. Calvo, G. Kherif, A. Larbot, A. Hernandez, Fouling, structure and charges of a composite inorganic microfiltration membrane, Colloids Surf., A 138 (1998) 291-299.
    
    [28] J.M. Benito, A. Conesa, F. Rubio, M.A. Rodriguez, Preparation and characterization of tubular ceramic membranes for treatment of oil emulsions, J. Eur. Ceram. Soc. 25 (2005) 1895-1903.
    [29] L.Z. Zhou, T. Wang, Q.T. Nguyen, J. Li, Y.C. Long, Z.H. Ping, Cordierite-supported ZSM-5 membrane:Preparation and pervaporation properties in the dehydration of water-alcohol mixture,Sep.Purif.Technol.44(2005)266-270.
    [30]徐祖耀等.材料科学导论.上海科学技术出版社,上海1986
    [31]范春阳,常亮,轻质低蓄热窑具的研究,建筑材料耐火技术,2(2001)21-23
    [32]Sen Mei,Juan Yang,Jose" M.E Ferreira,Sol-gel derived P205-doped cordierite powders:characterization and phase transformation,Materials Research Bulletin 36(2001)799-810
    [33]S.P.Hwang,J.M.Wu,Effects of composition on microstructural development in MgO-Al_2O_3SiO_2glass-ceramics,J.Am.Ceram.Soc,84(5)(2001)1108- 1112.
    [34]刘永杰,孙杰王景,王英姿,堇青石材料的应用,山东冶金,24(2002)34-36
    [35]R.M.Smart,F.R Glasser,The subsolidus phase equilibria and melting temperatures of MgO-Al_2O_3-SiO_2 compositions,Ceram.Int.7(1981)90-97.
    [36]Fiche A.S.T.F316-80,Standard test method for pore size characteristics of membrane filters for use with aerospace fluids.
    [37]Fiche A.S.T.F128-61,Standard test method for maxium pore size diameter permeability of rigid pore filters for laboratory.
    [38]R Huang,W.H.Xing,N.R Xu,J.Shi,Pore size distribution determination of inorganic micro-filtration membrane by gas bubble pressure method,Water Treat.Tech.22(1996)80-84.
    [39]G.M.Brindley,M.Nakahira,Kaolinite-mullite reaction series:I-III,J.Am.Ceram.Soc.42(7)(1959)311-314.
    [40]E.Jakobs,W.J.Koros,Ceramic membrane characterization via the bubble point technique,J.Membr.Sci.124(1997)149-159.
    [41]徐铜文,膜化学与技术教程,第119页,中国科学技术大学出版社,合肥(2003)
    [42]T.H.Elmer,Selective leaching of extruded cordierite honeycomb structures,Ceram.Eng.Sci.Proc.7(1986)40-51.
    [43]A.N.Shigapov,G.W.Graham,R.W.McCabe,M.R Peck,H.K.Plummer,The preparation of high-surface-area cordierite monolith by acid treatment,Appl.Catal.A:Gen.182(1999)137-146.
    [1]R.Barea,M.I.Osendi,Jose M.F.Ferreira,P.Miranzo,Acta.Mater.53(2005)3313-3318.
    [2]A.R.de Arellano-Ldpez,J.J.Melendez-Martinez,T.A.Cruse,R.E.Koritala,J.L.Routbort,K.C.Goretta,Acta.Mater.50(2002)4325-4338.
    [3]L.Montanaro,J.M.Tulliani,C.Perrot,A.Negro,J.Eur.Ceram.Soc.17(1997)1715-1723.
    [4]Raj Atisivan,Susmita Bose,Amit Bandyopadhyay,Porous Mullite preforms via fused deposition,J.Am.Ceram.Soc.,84
    [1](2001)221-23
    [5]B.A.Latella,L.Henkel,E.G.Mehirtens,Permeability and high temperature strength of porous mullite-alumina ceramics for hot gas filtration,J.Mater.Sci.,41(2006)423-430
    [6]Y.F.Liu,X.Q.Liu,H.Wei,G.Y.Meng,Ceram.Int.27(2001)1-7.
    [7]Y.E Chen,Y.H.Chang,M.C.Wang,M.H.Hon,Mat.Sci.Eng.A-Struct.373(2004)221-228.
    [8]S.J.Li,N.Li,Ceram.Int.33(2007)551-556.
    [9]Y.Juettner,H.Moertel,V.Svinka,R.Svinka,J.Eur.Ceram.Soc.27(2007)1435-1441.
    [10]Y.E Liu,X.Q.Liu,S.W.Tao,G.Y.Meng,O.Toff Sorensen,Ceram.Int.28(2002)479-486.
    [11]T.Mohammadi,A.Pak,Z.Nourian,M.Taherkhani,Experimental design in mullite microfilter preparation,Desalination 184(2005)57-64
    [12]X.Miao,Mater.Lett.38(1999)167-172.
    [13]H.C.Park,T.Y.Yang,S.Y.Yoon,R.Stevens,Mat.Sci.Eng.A-Stmct.405(2005)233-238.
    [14]T.Ebadzadeh,Ceram.Int.31(2005)1091-1095.
    [15]J.H.She,T.Ohji,Fabrication and characterization of highly porous mullite ceramics,Mater.Chem.Phys.80(2003)610-614.
    [16]J.H.SHE,T.OHJI,Porous mullite ceramics with high strength,Journal of Materials Science Letters 21(2002)1833-1834
    [17]徐平坤,魏国钊编著,耐火材料新工艺技术,冶金工业出版社,北京,2005
    [18]倪文,陈娜娜,赵万智,刘凤梅,莫来石的工艺矿物学特性及其应用,地质与勘探,30(1994)26-33
    [19]R.J.Angel et al,American mineralogist,71(1986)1476-1482
    [20]Askay,Journal of American Ceramic Society,74(1991)2343-2358
    [21]Klug et al,Journal of American Ceramic Society,1(1990)15-43
    [22]L.Montanaro,J.M.Tulliani,C.Perrot,A.Negro,Sintering of Industrial Mullites,Journal of the European Ceramic Society,11(1997)1715-1723
    [23]C.Y.Chen,G.S.Lan,W.H.Tuan,Microstructural evolution of mullite during the sintering of kaolin powder compacts,Ceramics International,26(2000)715-720
    [24]王华,陈德平,宋存义,张强,粉煤灰利用研究现状及其在环境保护中的应用,环境与开发,16(2001)4-6
    [25]A.Acosta,M.Aineto,I.Iglesias,M.Romero,J.Ma.Rincon,Physico-chemical characterization of slag waste coming from GICC thermal power plant,Materials Letters,50(2001)246-250
    [26]徐风广,漂珠的物性研究及与原始粉煤灰的比较,煤炭科学技术,30(2002),49-52
    [27]王栋知,郑桂兵,燃煤电厂粉煤灰中沉珠的理化特性,粉煤灰综合利用,2(1996)1-3
    [28]X.Huang,Fuel.Energ.Abstracts 37(1996)49-49.
    [29]X.Huang,J.Y.Hwang,B.C.Mutsuddy,Ceram.Int.44(1995)65-65.
    [30]J.Y.Hwang,X.Huang,A.M.Hein,J.Met.465(1994)36-39.
    [31]J.S.Jung,H.C.Park,R.Stevens,J.Mater.Sci.Lett.20(2001)1089-1091.
    [32]Marina Ilic,Christopher Cheeseman,Christopher Sollars,Jonathan Knight,Mineralogy and microstructure of sintered lignite coal fly ash,Fuel,82(2003)331-336
    [33]M.Y.A.Mollah,S.Promreuk,R.Schennach,D.L.Cooke,R.Gu,Cristobalite formation from thermal treatment of Texas lignite fly ash,Fuel 78(1999)1277-1282
    [34]G.Y.Hong,Inorganic solid state chemistry(in Chinese),Science Press,Peking,2002.
    [35]S.Ramanathan,SK.Roy.R.Bhat,D.D.Upadhyaya,A.R.Biswas,J.Alloys Compd.243(1996)39-44.
    [36]K.Ada,Y.Sarlkaya,T.Alemdaroglu,M.Onal,Ceram.Int.29(2003)513-518.
    [37]L.B.Kong,T.S.Zhang,J.Ma,F.Boey,J.Alloys Compd.359(2003)292-299.
    [38]L.B.Kong,Y.S.Zhang,J.Ma,E Boey,R.E Zhang,J.Alloys Compd.372(2004)290-299.
    [1]N.E Xu,W.H.Xing,Y.J.Zhao,Separation Technology and Application of Inorganic Membrane,Chemical Industrial Press,Beijing,2003.
    [2]T.Tsuru,Inorganic porous membranes for liquid phase separation.Sep.Purif.Methods.30(2001)191-220.
    [3]S.Masmoudi,R.Ben Amar,A.Larbot,H.El Feki,A.Ben Salah,L.Cot,Elaboration of inorganic microfiltration membranes with hydroxyapatite applied to the treatment of wastewater from sea product industry,Journal of Membrane Science 247(2005)1-9
    [4]M.C.Almandoz,J.Marchese,P.Pradanos,L.Palacio,A.Hernandez,,Preparation and characterization of non-supported microfiltration membranes from aluminosilicates,J.Membr.Sci.241(2004)95-103
    [5]M.R.Weir,E.Rutinduka,C.Detellier,C.Y.Feng,Q.Wang,T.Matsuura,R.Le VanMao,Fabrication,characterization and preliminary testing of all-inorganic ultra-filtration membranes composed entirely of a naturally occurring sepiolite clay mineral,J.Membr.Sci.182(2001)41-50.
    [6]S.Masmoudi,A.Larbot,H.E.Feki,R.B.Amar,Elaboration and characterization of apatite based mineral supports for microfiltration and ultrafiltration membranes,Ceram.Int.33(2007)337-344.
    [7]S.Masmoudi,A.Larbot,H.E1 Feki,R.Ben Amar,Elaboration and properties of new ceramic microfiltration membranes from natural and synthesised apatite,Desalination 190(2006)89-103.
    [8]S.Masmoudi,R.Ben Amar,A.Larbot,H.El Feki,A.Ben Salah,L.Cot,Elaboration of inorganic microfiltration membranes with hydroxyapatite applied to the treatment of wastewater from sea product industry,Journal of Membrane Science 247(2005)1-9
    [9]N.Saffaj,S.A.Younssi,A.Albizane,A.Messouadi,M.Bouhria,M.Persin,M.Cretin,A.Larbot,Elaboration and properties of YiO_2-ZnAl_2O_4 ultrafiltration membranes deposited on cordierite support,Sep.Purif.Yechnol.36(2004)107-114.
    [10]S.Masmoudi,R.B.Amar,A.Larbot,H.E.Feki,A.B.Salah,L.Cot,Elaboration of inorganic microfiltration membranes with hydroxyapatite applied to the treatment of wastewater from sea product industry, J. Membr. Sci. 247 (2005) 1-9.
    
    [11] N. Saffaj, S. A. Younssi, A. Albizane, A. Messouadi, M. Bouhria, M. Persin, M. Cretin, A. Larbot, Preparation and characterization of ultrafiltration membranes for toxic removal from wastewater, Desalination 168 (2004) 259-263.
    
    [12] L. Palacio, P. Pradanos, J.I. Calvo, G. Kherif, A. Larbot, A. Hernandez, Fouling, structure and charges of a composite inorganic microfiltration membrane, Colloids Surf., A 138 (1998) 291-299.
    [13] F. Bouzerara, A. Harabi, S. Achour, A. Larbot, Porous ceramic supports for membranes prepared from kaolin and doloma mixtures, J. Eur. Ceram. Soc. 26 (2006) 1663-1671.
    [14] N. Saffaj, M. Persin, S. A. Younsi, A. Albizane, M. Cretin, A. Larbot, Elaboration and characterization of microfiltration and ultrafiltration membranes deposited on raw support prepared from natural Moroccan clay: Application to filtration of solution containing dyes and salts, Appl. Clay Sci. 31 (2006) 110-119.
    
    [15] N. Seffaj, S. Alami Younsi, M. Persin, M. Cretin, A. Albizane, A. Larbot, Processing and characterization of TiO_2/ZnAl_2O_4 ultrafiltration membranes deposited on tubular support prepared from Moroccan clay
    [16] J. Bentama, K. Ouazzani, Z. Lakhliai, M. Ayadi, Inorganic membranes made of sintered clay for the treatment of biologically modified water, Desalination. 168 (2004) 295-299
    [17] J. Bentama, K. Ouazzani, P. Schmitzb, Mineral membranes made of sintered clay: application to crossflow microfiltration, Desalination. 146 (2002) 57-61
    [18] A. Hinkova, I. Bohacenko, Z. Bubnik, M. Hrstkova, P. Jankovska, Mineral membrane filtration in refinement of starch hydrolysates, J. Food. Eng. 61 (2004) 521-526
    [19] Y.F. Liu, X.Q. Liu, H. Wei, G.Y. Meng, Porous mullite ceramics from national clay produced by gel-casting, Ceram.Int. 27 (2001) 1 -7.
    
    [20] Yingchao Dong, Juan Diwu, Xuefei Feng, Xuyong Feng, Xingqin Liu, Guangyao Meng, Phase evolution and sintering characteristics of porous mullite ceramics produced from the flyash-Al(OH)_3 coating powders, Journal of Alloys and Compounds, in press, Available online 16 June 2007.
    [21] X.B. Zhang, Y.Z. Jiang, X.Q Liu, G.Y. Meng, Sintering kinetics of ceramic from diatomite, J. Am. Ceram. Soc, in press.
    
    [22] Y.C. Dong, S.F. Chen, X.B. Zhang, J.K. Yang, X.Q. Liu, G.Y. Meng, Fabrication and characterization of low cost tubular mineral-based ceramic membranes for micro-filtration from natural zeolite, J. Membr. Sci., in press.
    [23] Yingchao Dong, Xuyong Feng, Dehua Dong, Songlin Wang, Jianfeng Gao, Xingqin Liu,Guangyao Meng,Elaboration and chemical corrosion resistance of tubular macro-porous cordierite ceramic membrane supports,J.Membr.Sci.,in press.
    [24]H.Shao,K.Liang,F.Zhou,G.L.Wang,K Peng,Characterization of cordierite-based glass-ceramics produced from fly ash.J.Non-Cryst.Solids.337(2004)157-160.
    [25]R.Goren,C.Ozgur,H.Gocmez,The preparation of cordierite from talc,fly ash,fused silica and alumina mixtures.Ceram.Int.32(2005)53-56.
    [26]M.Erol,A.Genc,M.L.Ovecoglu,E.Yucelen,S.Kucukbayrak and Y.Taptik,Characterization of a glass-ceramic produced from thermal power plant fly ashes,J.Eur.Ceram.Soc.20(2000)2209-2214
    [27]Yong He,Weimin Cheng,Hesheng Cai,Characterization of α-cordierite glass-ceramics from fly ash Journal of Hazardous Materials B 120(2005)265-269
    [28]R.M.Smart and ER Glasser,The subsolidus phase equilibria and melting temperatures of MgO-A1203-SiO2 compositions,Ceram.Int.7(1981)90-97
    [29]F.A.Costa Oliveiraa,J.Cruz Femandes,Mechanical and thermal behaviour of cordierite-zirconia composites,Ceram.Int.28(2002)79-91
    [30]Pratibha Pandey,R.S.Chauhan,Membranes for gas separation,Prog.Polym.Sci.26(2001)853-893
    [31]R.Marcel,"Gas and vapour transport through porous media'',in Summerschool on Membrane Process,Cadarache,France,Sept.3-7(1984)
    [32]P.Uchytil,R.Petrickovic,S.Thomas,A.Seidel-Morgenstern,Influence of capillary condensation effects on mass transport through porous membranes,Separation and Purification Technology33(2003)273-281.
    [33]H.W.Brinkman,W.J.Briels,Hverweij,Molecular dynamics of yttria-satbilized zirconia,Chemical Physics Letters,247(1995)386-390
    [34]Bo Huang,S.R.Wang,R.Z,Liu,X.E Ye,H.W.Nie,X.F Sun,T.L.Wen,Performance of La_(0.75)Sr_(0.25)Cr_(0.5)Mn_(10.5)O_(3-δ)perovskite-structure anode material at lanthanum gallate electrolyte for IT-SOFC running on ethanol fuel,Journal of Power Sources 167(2007)39-46
    [35]徐铜文编著,膜化学与技术教程,合肥,中国科学技术大学出版社,2003.12
    [36]葛目荣,许莉,曾宪友,朱企新,纳滤理论的研究进展,流体机械,33(2005)35-40
    [37]A.Kargol,A mechanistic model of transport processes in porous membranes generated by osmotic and hydrostatic pressure,Journal of Membrane Science,191(2001)61-69
    [38]Z.Wang,Foundation of Separation Technology for Membrane Method,Chemical Industrial Press,Beijing,2003
    [1]J.N.Armor,Applications of catalytic inorganic membrane reactors to refinery products,J.Membr.Sci.147(1998)217-233.
    [2]N.E Xu,W.H.Xing,Y.J.Zhao,Separation technology and application of inorganic membrane,the Chemical Industrial Press,Beijing,2003.
    [3]S.Khemalkhem,A.Larbot,L.Cot et al.,Preparation and characterization of Tunisian clay based support and micro-filtration membrane and zirconia ultra-filtration membrane,ICIM8,Cicinnati,Ohio,USA.
    [4]M.R.Weir,E.Rutinduka,C.Detellier,C.Y.Feng,Q.Wang,T.Matsuura,R.Le VanMao,Fabrication,characterization and preliminary testing of all-inorganic ultra-filtration membranes composed entirely of a naturally occurring sepiolite clay mineral,J.Membr.Sci.182(2001)41-50.
    [5]R.Le Van Mao,E.Rutinduka,C.Detellier,E Gougay,V.Hascoet,S.Tavakoliyan,S.V.Hoa,T.Matsuura,Mechanical and pore characteristics of zeolite composite membranes,J.Mater.Chem.9(1999)783-788
    [6]A.H.Englert,J.Rubio,Characterization and environmental application of a Chilean natural zeolite,Int.J.Miner.Process.75(2005)21-29
    [7]G.M.Haggerty,R.S.Bowman,Sorption of chromate and other inorganic anions by organo-zeolite,Environ.Sci.Technol.,28(1994),452-458
    [8]张铨昌等著,天然沸石离子交换性能及其应用,北京,科学出版社1986
    [9]S.K.Ouki,M.Kavannagh,Treatment of metals-contaminated wastewaters by use of natural zeolite,Wat.Sci.Tech.39(1999)115-122.
    [10]V Perez Moreno,J J Castro Arellano,H Balmori Ramirez,Characterization and preparation of porous membranes with a natural Mexican zeolite,J.Phys.:Condens.Matter 16(2004)2345-2352.
    [11]X.B.Zhang,X.Q Liu,G.Y.Meng,Fabrication and characterization of tubular porous ceramic from natural zeolite,J.Porous Mater,DOI 10.1007/s 10934-006-9057-3.
    [12]Paola Castaldi,Laura Santona,Claudio Cozza,Veronica Giuliano,Carlo Abbruzzese,Valentina Nastro,Pietro Melis,Thermal and spectroscopic studies of zeolites exchanged with metal cations,Journal of Molecular Structure 734(2005)99-105
    [13]刘莺,刘学良,王俊德,商振华,粘土改性条件的研究Ⅱ.沸石的改性,环境化学,21(2002)172-176
    [14]黄培.徐南平.时钧粒子烧结法制备氧化铝微滤膜水处理技术vol.22(1996)129-133
    [15]GB 1996-80,Experimentation method of open porosity and bulk density of porous ceramics.
    [16]Y.H.Yin,W.Zhu,C.R.Xia,G.Y.Meng,Gel-cast NiO-SDC composites as anodes for solid oxide fuel cells,J.Power Sources 132(2004)36-41.
    [17]M.H.Chen,the Principle of Chemical Engineering,the Chemical Industrial Pres,Beijing,2000.
    [18]Q.B.Chang,R.R.Peng,X.Q.Liu,D.K.Peng,G.Y.Meng,A modified rate expression of wet membrane formation from ceramic particles suspension on porous substrate,J.Membr.Sci.233(2004)51-58.
    [19]王焕庭,中国科学技术大学博士学位论文(1997年),第84-86页
    [20]Z.T.Hang,S.K.Zeng,B.K.Zhong,Inorganic Membrane Technology and Application,The Chinese Petrochemical Press,Beijing,1999.
    [21].J.V.Brakel.Pore space models for transport phenomena in porous media-review and evaluation with special emphasis on capillary liquid transport.Powder Tech.11(1975)205-36
    [1]Krenar Shqau,Matthew L.Mottem,Di Yu,Henk Verweij,Preparation and properties of porous a-Al_2O_3 membrane supports,J.Am.Ceram.Soc.,89[6]1790-1794(2006)
    [2]Cavus Falamaki,Jamileh Veysizadeh,Comparative study of different routes of particulate processing on the characteristics of alumina functionally graded microfilter/membrane supports,Journal of Membrane Science 280(2006)899-910
    [3]孙华叶,吕彤,无机膜陶瓷支撑体研究进展,辽宁化工,33(2004)156-158
    [4]N.Saffaj,S.Alami Younssi,A.Albizane,A.Messouadi,M.Bouhria,M.Persin,M.Cretin,A.Larbot,Elaboration and properties of TiO_2-ZnAl_2O_4 ultrafiltration membranes deposited on cordierite support,Separation and Purification Technology,36(2004)107-114
    [5]Yingchao Dong,Xuyong Feng,Dehua Dong,Songlin Wang,Jiakui Yang,Jianfeng Gao, Xingqin Liu, Guangyao Meng, Elaboration and chemical corrosion resistance of tubular macro-porous cordierite ceramic membrane supports, Journal of Membrane Science 304 (2007) 65-75
    [6] S.M. Mirfendereski, R. Daneshpour, T. Mohammadi, Synthesis and characterization of T-type zeolite membrane on a porous mullite tube, Desalination, 200 (2006) 77-79
    [7]S. Ananthakumar, M. Jayasankar, K.G.K. Warrier, Microstructural, mechanical and thermal characterisation of sol-gel-derived aluminium titanate-mullite ceramic composites, Acta Materialia, 54 (2006) 2965-2973
    [8]K. Okada, S. Yasohama, S. Hayashi, A. Yasumori, Sol-gel synthesis of mullite long fibers from water solvent systems, J. Eur. Ceram. Soc, 18 [13] 1879-1884 (1998) .
    [9] J.E. Lee, J.W. Kim, Y.G. Jung, C.Y. Jo, and U. Paik, Effects of precursor pH and sintering temperature on synthesizing and morphology of sol-gel processed mullite, Ceram. Int. 28 [8] 935-940 (2002)
    [10] K. Okada, J.I. Kaneda, Y. Kameshima, A. Yasumori, and T. Takei, Crystallization kinetics of mullite from polymeric Al_2O_3-SiO_2 xerogels, Mater. Lett., 57 [21] 3155-3159 (2003)
    [11] Dj. Janackovic, V. Jokanovic, Lj. Kostic-Gvozdenovic, and D. Uskokovic, "Synthesis of mullite nanostructured spherical powder by ultrasonic spray pyrolysis," Nanostruct. Mat., 10 [3] 341-348(1998).
    [12] C. Kaya, J.Y. He, X. Gu, and E.G Butler, "Nanostructured ceramic powders by hydrothermal synthesis and their applications," Micro. Meso. Mater., 54 [1-2] 37-49 (2002)
    [13] M.H. Zhou, J.M. F. Ferreira, A.T. Fonseca, and J.L. Baptista, "Coprecipitation and processing of mullite precursor phases," J. Am. Ceram. Soc, 79 [7] 1756-1760 (1996)
    [14] C. Y. Chen, G. S. Lan and W. H. Tuan, Preparation of mullite by the reaction sintering of kaolinite and alumina, Journal of the European Ceramic Society, 20 (2000) 2519-2525
    [15] Young-Wook Kim, Hai-Doo Kim and Chul. Park, Processing of Microcellular Mullite, Journal of the American Ceramic Society, 88 [12] (2005) 3311-3315o
    [16] M.A. Sainz, F.J. Serrano, J.M. Amigo, J. Bastida, and A. Caballero, "XRD microstructural analysis of mullites obtained from kaolinite-alumina mixtures," J. Eur. Ceram. Soc, 20 [4] 403-412 (2000)
    [17] J. Requena, J. F. Bartolome, J. S. Moya, S. de Aza, F. Guitian, and G. Thomas, "Mullite-aluminosilicate glassy matrix substrates obtained by reactive coating," J. Eur. Ceram. Soc, 16 [2] 249-254 (1996)
    [18] J. Temuujin, K.J.D. MacKenzie, M. Schmucker, H. Schneider, J. McManus, and S. Wimperis, "Phase evolution in mechanically treated mixtures of kaolinite and alumina hydrates (gibbsite and boehmite)," J. Eur. Ceram. Soc, 20 [4] 413-421 (2000)
    [19] H.S. Tripathi, G. Banerjee, Effect of chemical composition on sintering and properties of Al_2O_3-SiO_2 system derived from sillimanite beach sand, Ceramics International 25 (1999) 19-25
    [20] S. Rahman, U. Feustel, and S. Freimann, Structure description of the thermic phase transformation sillimanite-mullite,. Eur. Ceram. Soc, 21 [14] 2471-2478 (2001)
    [21] C.H. Ruscher, Thermic transformation of sillimanite single crystals to 3:2 mullite plus melt: investigations by polarized IR-reflection micro spectroscopy,. Eur. Ceram. Soc, 21 [14] 2463-2469(2001).
    [22] Marie-Laure Bouchetou, Jean-Pierre Ildefonse, Jacques Poirier and Pierre Daniellou, Mullite grown from fired andalusite grains: the role of impurities and of the high temperature liquid phase on the kinetics of mullitization and consequences on thermal shocks resistance, Ceramics International, 31(2005) 999-1005
    [23] F. Mazel, M. Gonon, and G. Fantozzi, "Manufacture of mullite substrates from andalusite for the development of thin film solar cells," J. Eur. Ceram. Soc, 22 [4] 453-461 (2002)
    [24] Ihan A. Aksay and Joseph A. Pask , The silica-alumina system: stable and metastable equilibria at 1.0 atmosphere, Science 183 (1974) 69-71
    
    [25] X. Miao, Porous mullite ceramics from natural topaz, Materials Letters 38 (1999) 167-172
    [26] Yong He, Weimin Cheng, Hesheng Cai, Characterization of a-cordierite glass-ceramics from fly ash, Journal of Hazardous Materials B120 (2005) 265-269
    [27] S. Kumar, K.K. Singh, P. Ramachandrarao, Synthesis of cordierite from fly ash and its refractory properties, Journal of Materials Science, 19 (2000), 1263-1265.
    [28] Hua Shao, Kaiming Liang, Feng Zhou, Guoliang Wang and Fei Peng Characterization of cordierite-based glass-ceramics produced from fly ash, Journal of Non-Crystalline Solids, 337 (2004)157-160
    [29] Yingchao Dong, Xingqin Liu, Qianli Ma, Guangyao Meng, Preparation of cordierite-based porous ceramic micro-filtration membranes using waste fly ash as the main raw materials, Journal of Membrane Science, 285 (2006) 173-181.
    [30] J. MA. Rincan, M. Romero, A. R. Boccaccni, Microstructural characterisation of a glass and a glass-ceramic obtained from municipal incinerator fly ash, Journal of materials science 34 (1999) 4413-4423
    
    [31] Fei Peng, Kai-ming Liang and An-min Hu, Nano-crystal glass-ceramics obtained from high alumina coal fly ash, Fuel, 84 (4) (2005) 341-346
    [32] Z. Karoly, I. Mohai, M. Toth, F. Weber and J. Szepvolgyi, Production of glass-ceramics from fly ash using arc plasma,Journal of the European Ceramic Society,27(2-3)(2007)1721-1725.
    [33]Jae Myung Kim and Hyung Sun Kim,Processing and properties of a glass-ceramic from coal fly ash from a thermal power plant through an economic process,Journal of the European Ceramic Society,24(9)(2004)2825-2833.
    [34]Jae-Myung Kim and Hyung-Sun Kim,Glass-ceramic produced from a municipal waste incinerator fly ash with high C1 content,Journal of the European Ceramic Society,24(8)(2004)2373-2382.
    [35]L.D.Hulett JR.,A.J.Weinberger,K.J.Northcutt,and Marian Fergusone,Chemical species in fly ash from coal-burning power plants,Science,210(1980)1356- 1358
    [36]X.Huang,Properties ofmullite synthesized from fly ash and alumina mixture,Fuel.Energ.Abstracts,37[1]49-49(1996)
    [37]X.Huang,J.Y.Hwang and B.C.Mutsuddy,Properties of Mullite Synthesized from Fly Ash and Alumina Mixture,Ceram.Int.,44[2]65-(1995)
    [38]J.Y.Hwang,X.Huang and A.M.Hein,Synthesizing Mullite from Beneficiated Fly Ash,J.Met.,36-39(1994)
    [39]J.S.Jung,HC.Park,R.Stevens,Mullite ceramics derived from coal fly ash,Journal of Materials Science letters,20(2001)1089- 1091
    [40]邵伟生,李景秀,谷红兵,氧化铝工业新工艺及新技术概述,科技情报开发与经济,13(2003)136-137
    [41]曹异生,唐健,氧化铝工业现状及市场前景分析,世界有色金属,12(2003)11-15.
    [42]C.Y.Chen,G.S.Lan,W.H.Tuan,Microstructural evolution of mullite during the sintering of kaolin powder compacts,Ceramics International 26(2000)715-720.
    [43]M.Y.A.Mollah,S.Promreuk,R.Schennach,D.L.Cocke,and R.Guler,Cristobalite formation from thermal treatment of Texas lignite fly ash,Fuel,78[11]1277-1282(1999).
    [44]Xiangchong Zhong,Guangping Li,Sintering characteristics of Chinese bauxites,Ceamics International,7(1981)65-68.
    [45]J.J.K.Mackenzie,R.Shuttleworth,A phenomenological theory of sintering,Proc.Phys.Soc.London 62(1949)633-652.
    [46]J.A.Pask,Importance of starting materials on reactions and phase equilibria in the a-Al_2O_3-SiO_2 system.J.Eur.Ceram.Soc.,1996,16,101-108.
    [47]Baudin,C.and Villar,M.P.,Influence of thermal aging on microstructural development of mullite containing alkalis.J.Am.Ceram.Soc.1998,81(10),2741-2745.
    [48]E.Ryshkewitch,Compression strength of porous sintered Alumina and Zirconia,J.Am.Ceramic Soc.36(2)(1953)65-68