基于能量原理的爆破地震效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
爆破技术在水利、矿山、交通和城建等行业发挥越来越重要的作用,爆破诱发的爆破地震负面效应,特别是爆破地震对周围建(构)筑物和设施所造成的危害,越来越受到关注和重视。爆破地震对建筑物的影响问题,涉及爆炸力学、地震学、岩石动力学和结构动力学等多个学科领域,对爆破地震效应开展深入研究,具有非常重要的理论价值和现实工程意义。
     本文从能量的角度出发,围绕爆破地震的能量分布特征、能量衰减规律、建筑物在爆破地震作用下的动力响应特性及爆破地震安全评价等问题,展开了比较深入的研究。
     在分析爆破地震波特性和建筑物受震破坏机理的基础上,将爆破地震波产生、传播及对建筑物的影响看作一种能量传递和转化的过程,构建了以能量原理为基础的爆破地震效应研究模型。
     从功率谱的物理意义出发,提出了基于功率谱的能量分析方法,利用该方法可以实现爆破振动频率构成的定量分析。将该方法与现在通用的小波变换能量分析方法作了比较,表明本文方法不仅操作简单,而且物理意义明确。利用信号处理中的窗函数,采用滑动平均法对爆破振动功率谱进行平滑化,实现了爆破振动频带范围和频带能量分布的直观显现。
     基于大量实测数据,研究了不同爆源形式的爆破地震能量分布特征及其影响因素,对比分析了爆破地震和天然地震在能量特征方面的差别。研究结果表明,对于四类钻孔爆破(隧洞掘进爆破、地下洞室下层梯段爆破、露天浅孔爆破和露天中深孔爆破)诱发的地震,能量随频率分布比较分散,不同爆源形式的爆破地震能量分布特征存在差别,随着孔径、孔深的增大,爆破地震主振能量频带趋于集中,也更倾向低频方向。
     研究了爆破地震的能量衰减特性。基于地震学相关理论,研究了爆破地震波的能量衰减规律,表明峰值能量随距离的衰减系数同振速衰减系数呈两倍关系,对于同一场次的爆破而言,爆破地震的总能量同峰值振速的平方近似成正比例。基于大量实测资料分析,研究了爆破地震能量衰减规律的影响因素,表明爆破介质夹制作用、孔径、孔深以及装药集中度的增大,都会使爆破地震初始能量值增大;地质、局部场地等非爆源因素对爆破地震能量衰减系数有显著的影响。
     基于反应谱理论,研究了爆破地震的动力响应特性。采用直接积分法对爆破地震进行反应谱分析,针对反应谱计算中的加速度输入问题,利用小波消噪方法得到准确、清晰的加速度时程曲线。对不同类型钻孔爆破的地震反应谱分析结果表明:不同爆源形式的地震反应谱存在显著差别,随着孔径、孔深及测点与爆源相对距离的增大,爆破振动标准速度反应谱峰值对应的周期逐渐增大。
     根据常见建筑物的自振特性,对比分析了建筑物在爆破地震与天然地震及不同类型爆破地震作用下的动力响应特性,发现建筑物的动力响应更多的取决于爆破地震本身的特征。利用结构动力学理论,结合典型工程实例,研究了建筑物对爆破地震中不同频率能量成分的响应特征,结果表明:建(构)筑物对于爆破振动中的不同频率能量成分存在明显的选择放大效应。
     结合建筑物能量破坏机理,对已有爆破地震安全判据进行分析,构造了基于“等效峰值能量”(EPE)的爆破地震安全评价方法,认为采用以等效速度表示的EPE指标来衡量爆破地震的危害程度是可行的,它较振速-主频相关的安全判据更能全面反映爆破地震危害的本质,并且具有很强的可操作性。
Blasting techniques have been widely used in the projects of water resource, mining, transport and city construction, etc. The negative effect of blast-induced seismic, especially the hazard to the surrounding buildings induced by blasting vibration, has been bringing the people to general attention and important regard. The effect of blast-induced seismic on buildings is a complex problem, which relates to geophysics, explosion mechanics and structure dynamics, etc. Therefore, to do further study on the problem is of both high theoretical and practical importance.
     Based on energy theory, a series of research have been done in the thesis, such as the characteristics of energy distribution and attenuation, the dynamic response of buildings induced by blasting vibration, and the safety assessment on blast-induced seismic, etc. The following achievements have been obtained:
     Firstly, characteristics of blast-induced seismic and damage mechanism of buildings under blasting vibration are analyzed. Considering the birth, transmition, and effect of blast-induced seismic as a transfering and transformating process of the energy, a model for studying effect of blast-induced seismic is established based on energy theory.
     An energy analysis method for blast-induced seismic based on power spectrum is put forward, after studying the physical meaning of power spectrum. Compared with the common analysis method based on wavelet transform, this method is not only simple in operation, but also quite clear in physical meaning. Based on moving average method, the power spectrum of blasting vibration is smoothed by the use of the window function, in order that the frequency band range and energy attribution of blasting vibration can be displayed intuitively.
     Based on a large number of measuring data, the energy distribution characteristics of seismic induced by different forms of blasting resource are studied. And difference of energy characteristic between blast-induced seismic and earthquake is compared and analyzed. The results show that the seismic induced by different types of drilling-and-blasting vary in energy distribution characteristics. As diameter and depth of the blasting hole increases, the frequency band of energy distribution becomes more focus and has the trend of moving to the lower frequency.
     Based on seismology theory, energy attenuation law of blast-induced seismic wave is studied. It turns out that the attenuation coefficient for the peak energy is of twice that for the peak particle velocity(PPV). During a same blasting, the total energy of blast-induced seismic is of direct proportion with square of the peak particle velocity. According to a great deal of measured data, some influence factors on attenuation law for the energy are analyzed. It shows that as limitative effect of free-face, hole-diameter, hole-depth and charging density increase, the initial energy value of blast-induced seismic will become greater. And such non-blasting factors as the characteristics of the rock mass and the condition of topography have notable influence on the energy attenuation coefficient.
     The response spectrum theory that is usually applied in earthquake engineering is employed to study the dynamic response characteristic of blast-induced seismic Based on the response spectrum theory of system with single degree of freedom, the response spectrum is calculated by using piecewise linear interpolation. Vibration acceleration is used as the loading parameter in response spectrum calculating, but blasting vibration velocity is the monitoring physical quantity in blasting engineering. To solve the problem, a method of de-noising by wavelet transform to obtain the accurate and clear acceleration curve from measured blasting vibration velocity data is proposed. Response spectrum analysis of blasting vibration induced by different types of drilling-and-blasting is performed with a vast amount of monitoring data. The result shows that response characteristics of vibration induced by different kinds of blasting have marked difference. Compared with the underground blasting, the response spectrum curve of the ground blasting vibration has peak points that are located in lower frequency. As the enlargement of diameter, depth of blasting holes and distance away from the explosion source, the probability of selective magnification in the structural response on blasting vibration will increase.
     According to free vibration frequency of common buildings, the dynamic response characteristics of buildings under the effect of different types of blast-induced seismic are analyzed. It shows that the dynamic response characteristics of buildings rely largely to the features of blasting vibration. Based on structure dynamic theory, the response characteristics of buildings to the different energy components of blast-induced seismic are studied with typical engineering example. The result shows that the amplification effect of the buildings to energy content with different frequency is obviously selective.
     Combining the energy damage mechanism, the different safety criterions for blast-induced seismic are analyzed. On the basis of“Equivalent Peak Energy”(EPE), a method of safety assessment on blast-induced seismic is proposed. The study suggests that it is feasible for the equivalent velocity of EPE to evaluate the damage induced by blasting vibration. The criterion based on EPE reflects the essence of blasting vibration damage more comprehensively than the safety criterion considering the effect of frequency. And it can be realized easily.
引文
[1]张雪亮,黄树棠.爆破地震效应[M].北京:地震出版社, 1981.
    [2]张正宇,张文煊,吴新霞.现代水利水电工程爆破[M].北京:中国水利水电出版社, 2003.
    [3]波林格G A.爆炸振动分析[M].刘锡荟,熊建国,译.北京:科学出版社, 1975.
    [4]亨利奇.爆炸动力学及其应用[M].熊建国,译.北京:科学出版社, 1987.
    [5]丁桦,郑哲敏.爆破震动等效载荷模型[J].中国科学:E辑, 2003, 33(1): 82-90.
    [6]黄玉锋,舒大强,陈维炎.爆破震动作用下地下洞室支护结构的动态响应分析[J].爆破, 2006, 23(1): 14-18.
    [7]李俊文,王辉,张川,等.基于有限元数值计算的爆破振动速度分析[J].矿冶, 2005,14(2): 17-20.
    [8]易长平,卢文波,等.爆破振动对新浇混凝土灌注桩影响的数值模拟[J].爆破, 2001,18(1): 31-35.
    [9]张金泉,魏海霞.爆破震动测试技术及控制措施[J].中国矿业, 2006, 15(6): 65-67.
    [10]何晓光,张敢生.爆破地震安全判据探讨[J].辽宁科技学院学报, 2005, 7(2): 26-29.
    [11]霍永基.水工结构爆破震动效应研究及安全分析[J].工程爆破, 2003, 9(4): 72-77,54.
    [12]伍振志,胡国祥,邓宗伟.爆破地震安全判据若干问题探讨[J].安全与环境工程, 2003,10(4): 64-66.
    [13]庄金钊,杨仁树,李孝林,等.结构物爆破振动安全标准的探讨[J].矿冶工程, 2003,23(2): 11-13,17.
    [14]许红涛,卢文波.几种爆破震动安全判据[J].爆破, 2002, 19(1): 8-10.
    [15]汪旭光,于亚伦.关于爆破震动安全判据的几个问题[J].工程爆破, 2001, 7(2): 88-91.
    [16]阳生权,廖先葵,等.爆破地震安全判据的缺陷与改进[J].爆炸与冲击, 2001, 21(3): 223-228.
    [17]于亚伦.工程爆破理论与技术[M].北京:冶金工业出版社,2004.
    [18] GB6722-2003,爆破安全规程[S].
    [19] Langefors U, Kihlstrom B. The modern technique of rock blasting[M]. Stockholm:AWE/GEBERS,1978.
    [20] M A萨道夫斯基.地震预报[M].陈英方等译.北京:地震出版社, 1986.
    [21]谢毓寿,王耀文.工业爆破地震效应[J].地球物理学报, 1962, 11(2): 24-31.
    [22]朱德达.我国爆破地震效应的研究[J].长沙矿山研究院季刊, 1988, 8(1): 39-45.
    [23]郭玉学,于双久.工业爆破地震效应的分析[A].土岩爆破文集(全国土岩爆破经验交流会议论文选)[C],北京:冶金工业出版社, 1980: 187-198.
    [24]吴其苏.露天深孔爆破振动观测[A].土岩爆破文集(全国土岩爆破经验交流会议论文选)[C],北京:冶金工业出版社, 1980: 199-207.
    [25]龚亚莉.爆破引起地面运动及衰减规律[J].爆炸与冲击, 1981, 1(2): 79-88.
    [26]韩子荣.金川一矿区露天地下联合开采的爆破振动安全评定[J].矿冶工程, 1985, 5(1): 8-12.
    [27]于亚伦.爆破振动质点振动轨迹的分析[J].金属矿山, 1985(8): 12-17.
    [28]李保珍.露天深孔爆破地震效应的研究[J].长沙矿山研究院季刊, 1989, 9(4): 32-37.
    [29]王明波.复杂环境下城市地铁竖井施工技术[J].铁道建筑技术, 2005(4): 71-74.
    [30]汪祥平.城区爆破振动控制孔内外分段接力起爆技术及其应用[J].铁道建筑, 2005(B08): 83-85.
    [31]刘华军.重庆某车站隧道爆破震动控制技术[J].西部探矿工程, 2005, 17(B07): 237-239.
    [32]陈庆,王宏图,胡国忠,等.隧道开挖施工的爆破振动监测与控制技术[J].岩土力学, 2005, 26(6): 964-967.
    [33]唐浩,朱传云,潘瑞勇.朝阳寺电站隧洞开挖中的爆破震动控制[J].中国农村水利水电, 2005(1): 98-99,102.
    [34]胡刚,吴云龙.爆破地震振动控制的一种方法[J].煤炭技术, 2004, 23(4): 104-106.
    [35]宫海光,刘兆礼,李新继,等.高大楼群中竖井石方爆破及震动控制[J].铁道工程学报, 2004(4): 107-113.
    [36]谢全敏,夏元友,李新平.龙滩水电站蠕变体边坡的爆破振动控制研究[J].岩石力学与工程学报, 2003,22(11): 1929-1932.
    [37]彭德红.某石料厂石材开采爆破震动测试与分析[J].爆破, 2005,22(4): 32-34.
    [38]张志呈.论工程爆破振动的方向性[J].有色金属, 1985(5): 35-40.
    [39]杨昇田.爆炸荷载下地下岩洞的应力状态[J].地下工程, 1982(11): 1-6.
    [40]杨昇田,丁兆奎.由邻近爆炸引起的围岩振动规律[J].爆炸与冲击, 1983,3(4): 33-43.
    [41]杨昇田.爆炸荷载下坑道振动规律及安全性估价[J].爆炸与冲击, 1985,5(4): 17-23.
    [42]李铮,朱瑞赓.爆炸地震波振速的特征系数与衰减指数的研究[J].爆炸与冲击, 1986,6(3): 221-229.
    [43]杨桂桐.岩体的动力特性及振动波在岩体中的传播[J].金属矿山, 1992(6): 33-38.
    [44]陈均璠,周洪文.清江隔河岩水电站高边坡开挖爆破地震效应的研究[A].国际滑坡与岩土工程学术会议论文集[C],武汉:华中理工大学出版社, 1991.
    [45]李保珍,王迪安.高程差与爆破振动强度及衰减规律之间关系的探讨[A].第六届全国工程爆破学术会议论文集[C],深圳, 1997: 778-783.
    [46]周同岭,杨秀甫,翁家杰.爆破地震高程效应的实验研究[J].建井技术, 1998,18(增): 31-35.
    [47]舒大强,李小联,等.龙滩水电工程右岸高边坡开挖爆破震动观测与分析[J].爆破, 2002,19(4): 65-67.
    [48]范磊,沈蔚.爆破振动频谱特性实验研究[J].爆破, 2001,18(4): 18-20.
    [49]李孝林,穆太升,等.频率在爆破震害中的作用及其影响因素分析[J].工程爆破, 2001,7(3): 15-18.
    [50]李孝林,王少雄,高怀树.爆破振动频率影响因素分析[J].辽宁工程技术大学学报:自然科学版, 2006,25(2): 204-206.
    [51]张立国,于亚伦.爆破振动主振频率与质点速度峰值关系的研究[J].有色金属:矿山部分, 2005,57(4): 32-34.
    [52]张立国,龚敏,于亚伦.爆破振动频率预测及其回归分析[J].辽宁工程技术大学学报:自然科学版, 2005,24(2): 187-189.
    [53]田运生,李战军,汪旭光,等.爆破开挖基坑地震波的频谱特征[J].爆破, 2005,22(4): 29-31,50.
    [54]电力工业部西北勘测设计研究院.高边坡稳定及处理技术—岩质高边坡开挖及加固措施研究[R].“八·五”国家重点科技攻关(85-208-03-02), 1995.
    [55]张永哲.爆破地震波传播特性研究[J].爆破, 2000,17(S1): 6-10.
    [56]娄建武,龙源.预裂缝减震作用下爆破地震波的频谱特征分析[J].爆破, 2005,22(3): 1-4,8.
    [57]尚晓江,丁桦.爆破近区地质结构特性对震动信号传播的影响研究[J].工程爆破, 2005,11(3): 57-61,48.
    [58]许红涛.岩石高边坡爆破动力稳定性研究[D]. [博士];武汉:武汉大学, 2006.
    [59]何军,于亚伦,梁文基.爆破震动信号的小波分析[J].岩土工程学报, 1998,20(01): 47-50.
    [60]宋光明,陈寿如,等.传播介质特性对爆破震动信号分析中小波包时频特征的影响[J].工程爆破, 2003,9(1): 64-68.
    [61]宋光明,陈寿如,等.位置条件对爆破震动信号分析中小波包时频特征的影响[J].工程爆破, 2002,8(4): 1-6.
    [62]宋光明,陈寿如,等.爆破条件对爆破震动信号分析中小波包时频特征的影响[J].工程爆破, 2002,8(3): 5-12.
    [63]宋光明.爆破振动小波包分析理论与应用研究[D]. [博士];长沙:中南大学, 2001.
    [64]凌同华,李夕兵.用小波变换识别微差爆破中的实际延迟时间[J].湖南科技大学学报:自然科学版, 2004,19(2): 21-23.
    [65]凌同华.爆破震动效应及其灾害的主动控制[D]. [博士]长沙:中南大学, 2004.
    [66]马瑞恒,李钊,王伟策,等.基于小波变换模极大的爆破震动信号奇异谱分析[J].爆炸与冲击, 2004,24(6): 529-533.
    [67]林大超,施惠基,白春华,等.爆破震动时频分布的小波包分析[J].工程爆破, 2002,8(2): 1-5,16.
    [68]娄建武,龙源,等.小波分析在结构爆破振动响应能量分析法中的应用[J].世界地震工程, 2001,17(1): 64-68.
    [69]龙源,娄建武,等.小波分析在结构物对爆破振动响应的能量分析法中的应用[J].爆破器材, 2001,30(3): 1-5.
    [70]凌同华,李夕兵.多段微差爆破振动信号频带能量分布特征的小波包分析[J].岩石力学与工程学报, 2005,24(7): 1117-1122.
    [71]凌同华,李夕兵.地下工程爆破振动信号能量分布特征的小波包分析[J].爆炸与冲击, 2004,24(1): 63-68.
    [72]凌同华,李夕兵.最大段药量对爆破振动信号频带能量分布的影响[J].采矿技术, 2003,3(4): 21-24.
    [73]张志呈,胡健,张渝疆,等.爆破地震波在地层介质中产生的能量集中效应[J].矿业研究与开发, 2004,24(5): 71-72,76.
    [74]张光雄,杨军,陈军.爆破地震波能量随距离衰减规律实例分析[J].有色金属(矿山部分), 2006,58(5): 24-27.
    [75]田运生,汪旭光,于亚伦.场地条件对建筑物爆破震动响应的影响[J].工程爆破, 2004,10(4): 66-68,65.
    [76]余永强,杨小林,王伟.矿山爆破开采对周围建筑物的影响[J].金属矿山, 2004(10): 69-72.
    [77]邹海清,宋光明.建筑物爆破震动危害机制及破坏判据的确定[J].采矿技术, 2005,5(2): 63-64,86.
    [78]陈新兵,邓正道.地基-基础-上部结构的相互作用对爆破振动的影响[J].爆破, 2006,23(2): 102-104.
    [79]曹孝君,张继春,吕和林.频率对爆破地震作用下结构的动力响应的影响研究[J].爆破, 2006,23(2): 14-19,73.
    [80]蒋跃飞,穆大耀,王晋.露天煤矿降低爆破震动对周围建筑物影响的研究[J].露天采矿技术, 2005(5): 46-48.
    [81]覃启焕.龙滩水电站通航建筑物一期开挖爆破震动控制[J].红水河, 2004,23(3): 19-21.
    [82]李德林,方向,齐世福,等.爆破震动效应对建筑物的影响[J].工程爆破, 2004,10(2): 66-69.
    [83]马建兴,刘勤,颜春军.爆破振动对建筑物影响的研究[J].矿业快报, 2004,20(5): 20-21,29.
    [84]曹明秋,陈琼,刘松伟.近地表开采爆破的地表建筑物最小安全距离[J].采矿技术, 2004,4(4): 69-69,78.
    [85]陈明辉.隧洞开挖爆破对邻近建筑物的振动影响分析[J].广东土木与建筑, 2004(5): 42-44.
    [86]姜增国,陈虎,等.复杂环境人防工程爆破拆除对周围建筑物影响[J].武汉理工大学学报, 2002,24(5): 65-67.
    [87]何姣云,吴新霞,等.大坝爆破地震的动力响应计算[J].爆破, 2002,19(4): 1-3.
    [88]吴新霞,钱胜国.三峡碾压混凝土围堰爆破地震响应计算[A].工程爆破文集[C],第七届全国工程爆破学术会议,乌鲁木齐,新疆青少年出版社, 2001: 718-724.
    [89]陈超.建构筑物爆破振动响应及其安全评估研究[D]. [博士];北京:北京科技大学, 2005.
    [90] Hao, Hong, Wu, Chengqing. Numerical study of characteristics of underground blast induced surface ground motion and their effect on above-ground structures. Part II. Effects on structural responses[J]. Soil Dynamics and Earthquake Engineering, 2005,25(1):39-53.
    [91] Ma, H. J, Quek, S. T, Ang, K. K. Soil-structure interaction effect from blast-induced horizontal and vertical ground vibration[J]. Engineering Structures, 2004,26(12):1661-1675.
    [92] Wu, Chengqing, Hao, Hong. Numerical study of characteristics of underground blast induced surface ground motion and their effect on above-ground structures. Part I. Ground motion characteristics[J]. Soil Dynamics and Earthquake Engineering, 2005,25(1):27-38.
    [93] Longerfors, Westerberg, Kihlstrom. Ground vibration in blasting[J]. Water Power, 1958:335-421.
    [94] Edwards A T, Northwood T D. Experimental studies of the effects of blasting on structures[J]. Engineer, 1960(210):538-546.
    [95] Duvalland W I, Fogelson D E. Review of criteria for estimating damage to residences from blasting vibration[R]. Washington: U S Bureau of Mines Report Investigation, 1962.
    [96] Northwood T D. Blasting vibration and building damage[J]. Engineer, 1963(215):973-978.
    [97] GB6722-86,爆破安全规程[S].
    [98] Wilton T J, Hills R L. Blasting vibration monitoring on anchored retaining walls and within boreholes[A]. eds. Proc. conf. Rock Eng. and Excavation in Urban Enviroment[C], Hong Kong, 1986, 421-427.
    [99] Stephen D B, Direk B A, Peter N C. Analysis of high frequency microseismicity recorded at an underground hardrock mine[J]. Pure and appllied geophsics, 1997(150):693-704.
    [100]唐春海,于亚伦,王建宙.爆破地震动安全判据的初步探讨[J].有色金属, 2001,53(01): 1-4.
    [101]吴德伦,叶晓明.工程爆破安全振动速度综合研究[J].岩石力学与工程学报, 1997,16(03): 266-273.
    [102]焦永斌.爆破地震安全评定标准初探[J].爆破, 1995,12(03): 45-47.
    [103] W E Mckevitt, D L Anderson, N D Nathan, et al. Hysterestic energy spectra in seismic design[A]. Pro of 7th WCEE[C], Istanbul, Turkey, 1980. 3.26-2.38.
    [104] H Akiyama. Earthquake-resistant limit-state design for building[M]. Tokyo:University of Tokyo Press,1985.
    [105] G W Housner. Limit design of structure to resist earthquake[A]. Pro of the first WCEEBerkeley[C], CA, 1956. 5.1-5.11.
    [106] G V Berg, S S Thomaides. Energy consumption by structures in strong-motion earthquake[A]. Pro of second WCEE[C]. Tokyo, Japan, 1960. 681-697.
    [107]吕西林.建筑结构抗震设计理论与实例[M].上海:同济大学出版社,2002.
    [108]娄建武,龙源,等.基于反应谱值分析的爆破震动破坏评估研究[J].爆炸与冲击, 2003,23(1): 41-46.
    [109]黄文华,徐全军,等.小波变换在判断爆破地震危害中的应用[J].工程爆破, 2001,7(1): 24-27,16.
    [110]中国生,徐国元,熊正明.基于小波变换的爆破地震信号能量分析法的应用研究[J].爆炸与冲击, 2006,26(3): 222-227.
    [111]徐国元,中国生,熊正明.基于小波变换的爆破地震安全能量分析法的应用研究[J].岩土工程学报, 2006,28(1): 24-28.
    [112]张义平.爆破震动信号的HHT分析与应用研究[D] [博士];长沙:中南大学, 2006.
    [113]邱法维.钢筋混凝土建(构)筑物的地震损伤容限设计与损伤控制研究[D]. [博士];哈尔滨:哈尔滨建筑大学, 1996.
    [114]工程地震文献资料编辑委员会.工程地震文献选集第一集[M].北京:建筑工程出版社,1959.
    [115] A S Veletsos, N M Newmark. Effect of inelastic behavior on the response of simple system to earthquake motion[A]. Pro. second WCEE[C]. Tokyo, 1960. 895-912.
    [116] S Otani. Hysteresis models of reinforced concrete for earthquake response analysis[J]. Journal Faculty of Engineering, University of Tokyo, 1981,136(2):125-156.
    [117]经杰.双重建(构)筑物基于位移的抗震设计方法研究[D]. [博士];北京:清华大学, 2002.
    [118] Clough R W, J Penzien. Dynamics of structures[M]. Newyork:McGraw-Hill Inc,1975.
    [119] Newmark N M,Rosenblueth E A. Fundamentals of earthquake engineering[M]. Engelwood Cliffs N. J:Prentice-Hall Inc,1971.
    [120] Nakamura Y, Hidaka K, Saita J, et al. Strong acceleration and damage of the 1995 Hyogo-ken-Nanbu earthquake: Japan Railway Tech, Res. Inst, 1995.
    [121]王亚勇.关于设计反应谱,时程分析法和能量法的探讨[J].建筑建(构)筑物学报, 2000,21(1): 21-28.
    [122] W Vayong, C Minxian. Dependence of structure damage on the parameters of earthquake strong motion[J]. European earthquake engineering, 1990,19(1):13-23.
    [123] Chia-Ming Uang, V V Bertero. Implications of recorded earthquake ground motions on seismic design of building structures: University of California, 1988. 10-40.
    [124] Haluk S, Alphan N. Earthquake ground motion characteristics and seismic energy dissipation[J]. Earthquake eng struct dyn, 1995,24(9):1195-1213.
    [125] H K rawinkler, A Nassar. Damage potential of earthquake ground motions[A]. Pro 4th U S nat confearthquake eng[C], Palm Springs, CA, 1995. 945-954.
    [126] C M Uang, V V Bertero. Evaluation of seismic energy in structures[J]. Earthquake eng struct dyn, 1990,19(1):77-90.
    [127] P Leger, S Dssault. Seismic energy dissipation in MDOF structures[J]. J struct eng, ASCE, 1992,118(5):1251-1269.
    [128] Peter Fajafar, Tomuz Vidic, Matej Fischinger. Seismic demand in medium and long-period structures[J]. Earthquake eng struct dyn, 1989,18(10):1133-1143.
    [129]楚泽涵.声波测井原理[M].北京:石油工业出版社,1987.
    [130]胡冗冗,王亚勇.地震动瞬时能量与结构最大位移反应关系研究[J].建筑结构学报, 2000,21(1): 71-76.
    [131]胡冗冗,王亚勇.基于瞬时输入能量的长周期结构最大位移反应推算[J].华中科技大学学报:城市科学版, 2006,23(4): 100-104.
    [132]胡冗冗,王亚勇.基于瞬时输入能量的SDOF弹塑性结构最大位移反应分析[J].世界地震工程, 2002,18(4): 155-158.
    [133]王礼立.应力波基础[M].北京:国防工业出版社,2005.
    [134]高智宇,方向,邹德麟.深孔爆破震动中出现幅值突跃的分析[J].工程爆破, 2005,11(4): 80-82.
    [135]中国生,徐国元,江文武.基于小波变换的爆破地震信号去噪的应用[J].中南大学学报:自然科学版, 2006,37(1): 155-159.
    [136]熊正明,中国生,徐国元.基于平移不变小波爆破振动信号去噪的应用研究[J].金属矿山, 2006(2): 12-14,21.
    [137]李夕兵,张义平,刘志祥,等.爆破震动信号的小波分析与HHT变换[J].爆炸与冲击, 2005,25(6): 528-535.
    [138]徐国元,赵建平.基于小波变换的爆破地震信号阈值去噪的应用研究[J].岩土工程学报, 2005,27(9): 1055-1059.
    [139]吴湘晖,张亦农.基于爆破信号的小波分析[J].采矿技术, 2005,5(1): 74-75.
    [140]林大超,施惠基,白春华,等.基于小波变换的爆破振动时频特征分析[J].岩石力学与工程学报, 2004,23(1): 101-106.
    [141]娄建武,龙源,徐全军,等.基于小波包技术的爆破地震波特征提取及预报[J].爆炸与冲击, 2004,24(3): 261-267.
    [142]宋光明,陈寿如,等.爆破振动小波包时频特征提取与发展规律[J].有色金属, 2003,55(1): 115-120.
    [143]宋光明,陈寿如,等.基于小波包分析的爆破振动危害评价初探[J].安全与环境学报, 2002,2(4): 23-26.
    [144] Paulo S. R. Diniz, Eduardo A. B. da Silva, Sergio L. Netto.数字信号处理:系统分析与设计:system analysis and design[M].门爱东,杨波,译.北京:电子工业出版社,2004.
    [145]楼顺天,刘小东,李博菡.基于MATLAB 7.x的系统分析与设计-信号处理[M].西安:西安电子科技大学出版社, 2005.
    [146] (英)D.E.纽兰.随机振动与谱分析概论[M].方同,译.北京:机械工业出版社,1980.
    [147]练友红,王先义,何刚,等.爆破振动信号的频谱分析[J].矿业安全与环保, 2004,31(1): 49-52.
    [148]李顺群,张吉明,朱朝艳,等.考虑持时作用的地震能量表达式[J].辽宁工程技术大学学报:自然科学版, 2004,23(3): 306-308.
    [149]刘贵忠,邸双亮.小波分析及其应用[M].西安:西安电子科技大学出版社,1992.
    [150]朱继梅.非稳态振动信号分析[J].振动与冲击, 2000,19(1): 86-87.
    [151]凌同华,李夕兵.爆破振动信号不同频带的能量分布规律[J].中南大学学报:自然科学版, 2004,35(2): 310-315.
    [152]蔡路军,马建军,江兵,等.考虑振动频率的爆破振动安全标准的探讨[J].黄金, 2006,27(3): 24-27.
    [153]王永青,汪旭光,等.露天矿台阶爆破振动频率对临近建筑物的影响[J].有色金属:矿山部分, 2002,54(5): 39-41.
    [154]毛志远,徐全军.考虑频率影响的爆破震动安全判据的工程实践[J].工程爆破, 2001,7(3): 19-22,14.
    [155]马芹永,王长柏.井筒冻土爆破振动测试波形回归与频谱分析[J].安徽理工大学学报:自然科学版, 2006,26(3): 22-29.
    [156]钟祖良,刘新荣,梁宁慧,等.质点振动速度与主振频率在爆破监测中的应用[J].重庆建筑大学学报, 2006,28(4): 38-41.
    [157]大崎顺彦.地震动的谱分析入门[M].吕敏申,谢礼立,译.北京:地震出版社,1980.
    [158]阳生权.爆破地震累积效应理论和应用初步研究[D]. [博士];长沙:中南大学, 2002.
    [159]宋光明.爆破地震效应与减震方法的探讨[J].世界采矿快报, 1999,15(1): 26-29.
    [160]夏爱国,刘贤伦.利用乌鲁木齐遥测地震台记录识别人工爆破与地震[J].内陆地震, 2002,16(4): 337-345.
    [161]卢文波, HustrulidW.质点峰值振动速度衰减公式的改进[J].工程爆破, 2002,8(3): 1-4.
    [162] [苏]萨瓦连斯基.地震波[M].段星北,译.北京:科学出版社,1981.
    [163]邰淑彩,孙韫玉,何娟娟.应用数理统计[M].武汉:武汉大学出版社,2005.
    [164]张新民,舒大强.预裂爆破震动规律的试验研究[J].爆破, 2001,18(3): 18-20.
    [165]史雅语,金骥良,顾毅成.工程爆破实践[M].合肥:中国科学技术大学出版社,2002.
    [166] Kaul M K. Stochastic characterization of earthquake through their response spectrum[J]. Earthquake Engineering and Structural Dynamics, 1978,6(5):497-509.
    [167] Gupta A D, Gregory F H, Bitting R L, et al. Dynamic analysis of an explosively loaded hinged rectangular plate[J]. Computers & Structures, 1987,26(1-2):339-344.
    [168] Houlston R, Slater J E, Pegg N. On analysis of structural response of ship panels subjected to air blasting loading[J]. Computer & Structure, 1985,21(1-2):273-289.
    [169] Turkmen H S. Structural response of laminated composite shells subjected to blast loading: comparison of experimental and theoretical methods[J]. Journal of Sound and Vibration, 2002,249(4):663-678.
    [170]李夕兵,凌同华.单段与多段微差爆破地震的反应谱特征分析[J].岩石力学与工程学报, 2005,24(15): 2409-2413.
    [171] Wu C Q, Hao H, Lu Y, et al. Numerical simulation of structural responses on a sand layer to blast induced ground excitations[J]. Computers & Structures, 2004,82(9-10):799-814.
    [172] Hao H, Wu C Q. Numerical study of characteristics of underground blast induced surface ground motion and their effect on above-ground structures. Part II. Effects on structural responses[J]. Soil Dynamics and Earthquake Engineering, 2005,25(1):39-53.
    [173]中村小一郎.科学计算引论:基于MATLAB的数值分析[M].梁恒,刘晓艳,译.北京:电子工业出版社,2002.
    [174]胡昌华.基于MATLAB的系统分析与设计:小波分析[M].西安:西安电子科技大学出版社, 1999.
    [175] Gilbert F K, Kenneth J G. Explosive Shocks in Air[M]. Berlin:Springer-Verlag,1985.
    [176]丁刚德,王伟策.微差爆破的爆破地震反应谱分析[J].爆破, 1997,14(3): 24-30.
    [177]吴腾芳,王凯.反应谱分析在工程微差爆破地震监测中的应用与研究[J].兵工学报, 1998,19(3): 271-274.
    [178] Wheeler R M. How millisecond delay periods may enhance or deduce blast vibration effects[J]. Mining Engineering, 1988,40(10):969-973.
    [179]胡少伟,苗同臣.结构振动理论及其应用[M].北京:中国建筑工业出版社,2005.
    [180]国家标准抗震规范管理组.建筑抗震设计规范GB50011-2001统一培训教材[M].北京:中国建筑工业出版社, 2002.