基于地质要素的金衢盆地环境数值模型的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球表层环境是在基础地质格架上演化形成的,地球深部构造格局、表层岩石类型、土壤类型等地质要素制约和影响着表层环境的发展和演化。以往研究中,除部分全球性环境变化问题外,一般的区域性环境问题研究,极少考虑基础地质要素对环境的影响,难以全面的描述和分析环境变化的成因和发展趋势。本文以金衢盆地为试验研究区,围绕区域内土地利用/土地覆被计算机自动分类、基础地质要素与环境相关性分析、综合环境评价指标建立、基础地质要素与其他环境影响要素对环境变化的影响对比分析、环境变化分析数值模型建立等专题,以Landsat TM/ETM+影像、基础地质、地形地貌、气候和社会经济等数据为基础,建立了用于综合环境分析的数值模型。首先,根据TM/ETM+影像上各多光谱波段对地物光谱的吸收和反射特性,提取了植被指数、水体指数、城镇指数和缨帽变换湿度指数等专题数据;引入定量遥感方法,从TM/ETM+热红外波段上,提取了地表温度数据;利用自行设计的影像综合分类方法,获得了研究区土地利用/土地覆被数据。其次,分析了断裂构造与地表温度、植被覆盖度和土壤湿度三个环境特征要素之间的相关性,总结了断裂、岩性和土壤等地质要素对环境变化的影响机理。第三,采用因子分析方法,获得了用于评价综合环境状况的评价指标,并对研究区1988年、2000年两个时期的环境状况作了定量评价。第四,对研究时段内基础地质、地形地貌、气候和社会经济等环境影响要素作了定量分析,对比了各要素对环境变化的影响驱动力大小。最后,建立了环境影响要素与综合环境评价指标之间的数值模型,分析了研究区未来环境的可能变化趋势。
     主要取得了以下5个方面的进展和结论:
     1)根据研究区地形地貌和地物分布特征,提出了一种基于决策树法、最大似然法、地形坡度、水体指数、植被指数和城镇指数的Landsat TM/ETM+遥感影像综合分类方法。方法以决策树为基础,利用地形坡度数据,消除了由于地形坡度引起的林地和耕地之间的同谱异物现象;使用水体指数、植被指数和城镇指数,提取了水体、耕地、山区裸露地;采用最大似然法,区分了城镇用地和盆地区裸露地。
     2)针对研究区断裂系统地表温度场分析,提出了基于均值统计运算的分段均值法。方法根据距离断裂带的远近,将断裂带两侧一定区域作等间距划分,通过统计不同等分带平均地表温度的变化,获得地表温度场的分布特征和各断裂带对地表温度场的大致影响宽度。研究认为,在特定范围内,距离研究区各断裂带越近,地表温度越高;研究区江山-绍兴断裂带、球川-萧山断裂带、常山-漓渚断裂带、淳安-温州断裂带、松阳-平阳断裂带和衢州-天台断裂带对地表温度场的大致影响宽度分别为16km、3km、5km、11km、4km和13km。
     3)依据热红外遥感影像上热异常具有特征几何尺寸的特点,提出了基于尺度分析的热红外遥感热异常信息增强方法。研究中,方法有效地降低了背景干扰信号,突出了来自地下的热异常信息,获得了研究区热异常平面分布形态和特征:地表热异常沿断裂带分布较为突出,呈线性特征,主要沿北东走向的江山-绍兴断裂带和常山-漓渚断裂带两侧分布;在淳安-温州断裂带与衢州-天台断裂带交叉位置,热异常特征明显。
     4)分析总结了断裂、岩性和土壤对环境的影响机理。研究区各深、大断裂带周围,岩石破碎程度高,沿着断裂破碎带向上传导的地下热流,在地表形成热异常区域,影响地表热环境。不同岩石类型的风化方式和成土特性,影响土壤类型和特点、地表生境的复杂及困难程度、水文特性等,在地质基础方面对环境产生巨大影响。土壤因母岩的结构和成分的差异,具有不同的孔隙度、厚度和侵蚀特性,形成不同的湿热环境,影响地表植被生长。
     5)利用因子分析方法,分析了反映自然生态环境、地表热环境和农业环境的植被指数、地表温度和土壤湿度三个环境特征要素,获得了用于评价综合环境状况的评价指标。并用该指标定量评价了研究区1988年至2000年这13年中环境的变化状况:研究区环境发生了较大的变化。整体而言,环境逐渐好转。但环境相对较差的区域,由丘陵山地区域向盆地区域转移。
     6)对比分析了基础地质、地形地貌、气候和社会经济要素对研究区环境变化的影响驱动力大小,建立了环境影响要素与综合环境评价指标之间的数值关系模型。分析结果表明,研究时段内,引起研究区环境变化的主要原因是区域气候的变化,其次是基础地质和地形地貌因素的影响,再其次是社会经济的发展变化。在一个较短的时间内,基础地质和地理环境相对稳定,环境易受土壤侵蚀、蒸发量、降水量、气温、年末总人口和国内生产总值等要素的影响。
The formation and the evolution of the earth's surface environment are based on the basic geological structural pattern.The geological structures in the deep earth,lithology of the land surface,and the soil types will restrict and influence the development of the environment. However,for the global or regional environment problems,few studies considered the influence of the geological factors.In this paper,focused on the topics of land use/cover image classification,relation analysis between the basic geological factors and the environment, integrated environment evaluation index(IEEI) creation,environment change driving force comparison among different influencing factors,numerical environment modeling,and so on, taken Jinqu basin,located in Zhejiang Province of China,as the case study area,and used Landsat TM/ETM+ images,basic geological data(fault,lithology,and soil),topographical data (DEM and slope),meteorological data(rainfall,evaporation and temperature),and social-economical data(population and GDP),a numerical model for integrated environment analysis was introduced.At first,the NDVI(Normalized Difference Vegetation Index),NDWI (Normalized Difference Water Index),NDBI(Normalized Difference Build-up Index) and tasseled cap transformation wetness was extracted,according to the spectral characteristics of each multi-spectral band of the TM/ETM+ images;the land surface temperature(LST) was calculated from the thermal infrared band of the TM/ETM+ images;and the land use/cover types was classified by using the integrated classifier that designed by the author.Secondly,the relation between the faults and the environment indicating factors(NDVI,LST,and soil moisture) was analyzed,and the influencing mechanism of the geological factors to the environment change was summarized.Thirdly,an integrated environment evaluation index (IEEI) that can be used to evaluate the conditions of the environment was obtained,by using the factor analysis;the environment conditions of the study area on 1988 and 2000 were quantitatively evaluated.Fourthly,the change of the environment influencing factors,including basic geological factors,topographical factors,meteorological factors,and social-economical factors were quantitatively analyzed,and their driving force to the environment change was compared.Finally,a numerical model between the environment influencing factors and the IEEI was created,and the trend of the environment change in the near future was analyzed.
     The main evolves and results are like follows:
     1) An integrated classification method for Landsat TM/ETM+ images that combined decision tree with maximum likelihood classifier,slope,NDWI,NDVI and NDBI was introduced,according to the distribution characteristics of the topography,geomorphology and land surface objects.In the study,the integrated classifier taken the decision tree as basic classification algorithm,reduced the phenomena of objects with similar spectrum between the vegetations of living on forest and agricultural land,by using the slope data;extracted the water,agricultural land,and mountainous bare land,with the ancillary data of NDVI,NDWI and NDBI;and distinguished urban and bare land on plain,by using the maximum likelihood classifier.
     2) The Subsection Mean Method(SMM) based on the mean statistic algorithm was introduced,in allusion to the land surface temperature field analysis of the fault system.It chooses a given area on both sides of the fault as the analysis area,partitions the area into numbers of parts according as the distance to the fault,calculates the mean land surface temperature(LST) and the mean distance of each subsection,and plots the correlation curve of the mean LST and the mean distance.Then obtain the rough influencing width of the fault to the land surface thermal field on the correlation curve.The results indicated that,the nearer to the faults of the study area,the higher is the LST.And the rough influencing width of Jianshan-Shaoxing fault,Qiuchan-Xiaoshan fault,Changshan-Lizhu fault,Chun'an-Wenzhou fault,Songyang-Pingyang fault,and Quzhou-Tiantai fault is 16,3,5,11,4,and 13 kilometers, respectively.
     3) A thermal infrared anomaly characterization method based on scale analysis was introduced,according to the characteristics of the object,including thermal anomaly represented by pixel or pixel congregations on the thermal infrared remote sensing image,that it has special geometric scale.It effectively reduced the background interference information, enlarged the thermal anomalies from the subsurface,and objectively characterized the planar distribution shapes and characteristics of the thermal anomalies around the faults of the study area:The anomalies were linearly distributing along both sides of Jiangshan-Shaoxing fault and Changshan-Lizhu fault,and were concentrating upon the intersectional area of Chun'an-Wenzhou fault with Changshan-Lizhu fault and Quzhou-Tiantai fault.
     4) The influencing mechanism of the geological factors to the environment was analyzed and summarized.In the study area,the thermal flow transmitting from the subsurface,along the faults,result in land surface thermal anomaly,and influence the land surface thermal environment.The weathering pattern of the lithology influences soil types and their features, complexity and difficulty of the land surface ecological environment,and hydrological features. So the lithology greatly influences the environment on the basic geological conditions. Moreover,due to the structures and components of the mother rocks,the soils with different cavity,thickness,and weather feature result in different moisture and temperature conditions for vegetation living.
     5) Three thematic data of NDVI,LST and soil moisture that can reflect the natural ecological environment,land surface thermal environment,and agricultural environment was analyzed,and the IEEI that can be used to evaluate the integrated environment was obtained, by using the factor analysis.The comparison result,between the two indices of 1988 and 2000, indicated that the environment of the study area suffered great change.Holistically speaking, the integrated environment was getting better.But,the relatively worse area was transferring from the mountainous area to the plain.
     6) The driving force of the basic geological factors,topographical factors,meteorological factors,and social-economical factors to the environment was compared,and a numerical relation model between the environment influencing factors and the IEEI was created.The results indicated that,during the study period,the primary reason of influencing the environment is the climate change.The second reason is the geological and topographical evolution.And the third reason is the social-economical development.In a short time period, the basic geological and geographical environment is relatively stable,so the environment will be easily influenced by the factors of soil erosion,evaporation,rainfall,temperature, population and GDP.
引文
[1]白润才,殷伯良,孙庆宏.BP神经网络模型在城市环境质量评价中的应用[J].辽宁工程技术大学学报(自然科学版),2001,20(3):373-375.
    [2]陈梅花,邓志辉,贾庆华.地震前卫星红外异常与发震断裂的关系研究——以2001年昆仑山8.1级地震为例[J].地震地质,2003,25(1):100-108.
    [3]陈诗越,王苏民,金章东等.晚新生代以来青藏高原中部环境演化过程的地球化学证据[J].地质学报,2004,78(2):234-241.
    [4]陈顺云,马瑾,刘培洵等.突出地表热辐射场中现今构造活动信息的均值梯度法[J].地震地质,2005,27(4):661-668.
    [5]陈顺云,刘培洵,刘力强等.地表热红外辐射的小波分析及其在现今构造活动研究中的意义[J].地球物理学报,2006,49(3):824-830.
    [6]陈晓峰,张增祥,彭旭虎等.基于地理信息系统的数字环境模型研究[J].遥感学报,1998,2(4):305-309.
    [7]戴文晗.西安地区隐伏构造.热红外场遥感信息及三维建模与应用[J].遥感信息应用技术,2005,1:40-43.
    [8]段志明,李勇,沈战武等.青藏高原腹地温泉地区新生代生态环境演化与高原表面隆升过程分析[J].中国地质,2007,34(4):688-696.
    [9]葛碧如.塔里木盆地隐伏构造的热红外遥感信息分析[J].遥感技术与应用,1991,6(2):1-6.
    [10]葛碧如,腾吉文,郑新江等.热红外遥感鄂尔多斯高原隐伏地质构造[J].地球物理学进展,1996,11(2):16-34.
    [11]宫阿都,江樟焰,李京等.基于Landsat TM图像的北京城市地表温度遥感反演研究[J].遥感信息,2005,3:18-30.
    [12]胡宝清,寥赤眉,严志强等.基于RS和GIS的喀斯特石漠化驱动机制分析—以广西都安瑶族自治县为例[J].山地学报,2004,22(5):583-590.
    [13]胡圣标,邱楠生,熊亮萍等.浙江省大地热流及地温场特征.东南大陆岩石圈结构与地质演化[M].冶金工业出版社(北京),1993,pp.257-263.
    [14]江振蓝,沙晋明,杨武年.基于GIS的福州市生态环境遥感综合评价模型[J].国土资源遥感,2004,61(3):46-48.
    [15]濮国梁,杨武年,袁配新等.岷江中上游流域生态环境的遥感动态监测分析[J].遥感信息应用技术,2003(1):19-21.
    [16]刘纪远,庄大方,张增祥等.中国土地利用时空数据平台建设及其支持下的相关研究[J].地球信息科学,2002,4(3):3-7.
    [17]刘纪远,张增祥,庄大方等.20世纪90年代中国土地利用变化时空特征及其成因分析[J].地理研究,2003,22(1):1-12.
    [18]刘培君,张琳,艾里西尔库尔班等.卫星遥感估测土壤水分的一种方法[J].遥感学报,1997,2(1):135-138.
    [19]刘培洵,刘力强,陈顺云等.从红外遥感图像提取地下热信息的透热指数法[J].地震地质,2004,26(3):519-527.
    [20]刘晓莉,李梦婷.基于Matlab的神经网络在城市环境质量评价中的应用[J].佛山科学技术学院学报(自然科学版),2005,23(1):41-44.
    [21]卢善龙,沈晓华,邹乐君等.用于地表温度场与断裂构造关系分析的分段均值法—以江山-绍兴断裂金衢段为例[J].地质学报,2008a.(录用待刊)
    [22]卢善龙,沈晓华,邹乐君等.基于尺度分析的热红外遥感热异常信息增强方法—以江山-绍兴断裂金衢段为例[J].地球物理学报,2008b.(录用待刊)
    [23]莫多闻,李非,李水城.甘肃葫芦河流域中全新世环境演化及其对人类活动的影响[J].地理学报,1996,51(1):59-69.
    [24]牛洁,张虎才,常风琴等.柴达木察尔汗贝壳堤剖而Sr同位素及其环境意义[J].高校地质学报,2007,13(1):14-22.
    [25]彭望碌等.遥感数据的计算机处理与地理信息系统[M].北京师范大学出版社(北京),1991,pp.132-143.
    [26]乔平林,张继贤,燕琴等.利用TM6进行土壤水分的监测研究[J].测绘通报,2003,7:14-15.
    [27]覃志豪,李文娟,Zhang等.单窗算法的大气参数估计方法[J].国土资源遥感,2003,56:37-43.
    [28]覃志豪,李文娟,徐斌等.陆地卫星TM6波段范围内地表比辐射率的估计[J].国土资源遥感,2004,61:29-36.
    [29]田雨,林宗坚,李成名等.基于遥感和GIS的区域生态环境分类研究[J].测绘科学,2004,29(1):26-28.
    [30]王德炉,朱守谦,黄宝龙.贵州喀斯特石漠化类型及程度评价[J].生态学报,2005,25(5):1057-1063.
    [31]汪品先.我国的地球系统科学研究向何处去[J]?世界科学,2006,6:2-7.
    [32]王桥,杨一鹏,黄家柱等.环境遥感[M].科学出版社(北京),2005,pp.334-335.
    [33]王思远,张增祥,赵晓丽等.遥感与GIS技术支持下的湖北省生态环境综合分析[J].地球科学进展,2002,17(3):426-431.
    [34]王晓鹏,曾永年,丁生喜,等.基于改进主成分分析方法的复杂环境系统质量评价模型[J].系统工程理论与时间,2005,11:112-118.
    [35]吴开亚,李如忠,陈晓剑.区域生态环境评价的灰色关联投影模型[J].长江流域资源与环境,2003,12(5):473-478.
    [36]向东进,李宏伟,刘小雅.使用多元统计分析[M].中国地质大学出版社(武汉),2005.
    [37]谢强.岷江上游地区生态环境现状遥感解译分析[J].四川环境,2002,21(1):51-53.
    [38]徐函秋.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J].遥感学报,2005,9(5):589-895.
    [39]徐建春,赵英时,刘振华.利用遥感和GIS研究内蒙古中西部地区环境变化[J].遥感学报,2002,6(2):142-149.
    [40]姚春生,张增祥,汪潇.使用温度植被干旱指数法(TVDI)反演新疆土壤湿度[J].遥感技术与应用,2004,19(6):473-478.
    [41]伊海生,林金辉,周恳恳等.青藏高原北部新生代湖相碳酸盐岩碳氧同位素特征及古环境意义[J].古地理学报,2007,9(3):303-312
    [42]余金生,李裕伟.地质因子分析[M].地质出版社(北京),1985.
    [43]张金区.珠江三角洲地区地表热环境的遥感探测及时空演化研究[D]:[博士学位论文]广州:中国科学院广州地球化学研究所,2006.
    [44]张文彤,董伟.SPSS统计分析高级教程[M].高等教育出版社(北京),2004.
    [45]张增祥,杨存建,田光进.基于多源空间资料的中国生态环境综合评价与分析[J].遥感学报,2003,7(1):58-66.
    [46]张增祥.我国资源环境遥感监测技术及其进展[J].水利信息化,2004,11:52-54.
    [47]赵英时等.遥感应用分析原理与方法[M].科学出版社,2004.
    [48]浙江年鉴.浙江人民出版社(杭州),1987.
    [49]浙江年鉴.浙江人民出版社(杭州),1999.
    [50]浙江省地质矿产局,浙江省区域地质志[Z].浙江省地矿局地质科研所,1991.
    [51]周树青,黄海平,林畅松等.生物标志化合物、早期生命和古环境[J].地质论评,2007,53(3):389-396.
    [52]祖辅平,李成,王彬.金衢盆地的沉积相[J].沉积学报,2004,22(3):417-424.
    [53]Anderson,J.R.,Hardy,E.E.,Roach,J.T.,et al.A Land Use and Land Cover Classification System for Use with Remote Sensor Data.Geological Survey Pro-fessional Paper 964[G].A revision of the land use classifi-cation system as presented in U.S.Geological Survey Circular 671.United States Government Printing Office,Washington,1976.
    [54]Andreas,M.,Allan,A.Incorporating geology and geomorphology in land management decisions in developing countries:A case study in Southern Costa Rica[J].Geomorphology,2007,87:68-89.
    [55]Argent,R.M.An overview of model integration for environmental applications-components,frameworks and semantics[J].Environmental Modelling and Software,2004,19:219-234.
    [56] Bellmann, K. Towards to a system analytical and modeling approach for integration of ecological, hydrological, economical and social components of disturbed regions [J]. Landscape and Urban Planning, 2000, 51: 75-87.
    [57] Berberoglu, A., Lloyd, C.D., Atkinson, P.M., and Curran, P.J. 2000. The integration of spectral and textural information using neural networks for land cover mapping in the Mediterranean. Computer and Geoscience, Vol.26, pp. 385-396.
    [58] Bolstad, P.V., Lillesand, T.M. Rapid maximum likelihood classification [J]. Photogrammetric Engineering and Remote Sensing, 1991, 57: 67-74.
    [59] Bryan, B.A. Physical environmental modeling, visualization and query for supporting landscape planning decisions [J]. Landscape and Urban Planning, 2003, 65: 237-259.
    [60] Chander, G, Markham, B. Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges [J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41 (11): 2674-2677.
    [61] Chang, T.J., Hsu, M.H., Teng, W.H., et al. A GIS-assisted distributed watershed model for simulating flooding and inundation [J]. Journal of American Water Resources Association, 2000, 36: 975-988.
    [62] Chen, K., Blong, R., Jacobson, C. MCE-RISK: Integrating multicriteria evaluation and GIS for risk decision-making in natural hazards [J]. Environmental Modellling and Software, 2001, 16: 387-397.
    [63] Chen, X.L., Zhao, H.M., Li, P.X., et al Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes [J]. Remote Sensing of Environment, 2006a, 104: 133-146.
    [64] Chen, Y.H., Shi, P.J., Li, X.B., et al. A combined approach for estimating vegetation cover in urban/ suburban environments from remotely sensed data [J]. Computers and Geosciences, 2006b, 32: 1299-1309.
    [65] Cihlar, J., Xiao, Q., Chen, J., Beaubien, J., Fung, K., and Latifovic, R. 1998. Classification by progressive generalization: A new automated methodology for remote sensing multichannel data. International Journal of Remote Sensing, Vol.19, No.14, pp. 2685-2704.
    [66] Crist, E.P. and Cicone, R.C. A physically-based transformation of Thematic Mapper data - the TM Tasseled Cap [J]. IEEE Transactions on Geosciences and Remote Sensing, 1984, GE-22: 256-263.
    [67] Daneshfar, B., Benn, K. Spatial relationships between natural seismicity and faults, southeastern Ontario and north-central New York state [J]. Tectonophysics, 2002, 353 (1-4), 31-44.
    [68] Dymond, C.C., Mladenoff, D.J., Radeloff, V.C.Phenological differences in Tasseled Cap indices improve deciduous forest classification [J]. Remote Sensing of Environment, 2002, 80: 460-472.
    [69] Elnazir, R., Feng, X.Z., Cheng, Z. Satellite remote sensing for urban growth assessment in Shaoxing City, Zhejiang Province [J]. Journal of Zhejiang University SCIENCE, 2004, 5(9): 1095-1101.
    [70] Enea, M., and Salemi, G. Fuzzy approach to the environmental impact evaluation [J]. Ecological Modelling, 2001, 135:131 -147.
    [71] ENVI Uer's Guide, ENV1 Online Help [CP/DK], 2006.
    [72] Erol, H., and Akdeniz, F. 1998. A new supervised classification method for quantitative analysis of remotely-sensed multi-spectral data. International Journal of Remote Sensing, Vol.19, No.4, pp. 775-782.
    [73] Feoli, E., Vuerich, L.G., Zerihun, W. Evaluation of environmental degradation in northern Ethiopia using GIS to integrate vegetation, geomorphological, erosion and socio-economic factors [J]. Agriculture, Ecosystems and Environment, 2002, 91: 313-325.
    [74] Focardi, S., Loiselle, S.A., Mazzuoli, S., Bracchini, L., Dattilo, A.M., Rossi, C. Satellite-based indices in the analysis of land cover for municipalities in the province of Siena, Italy [J]. Journal of Environmental Management, 2008, 86: 383-389.
    [75] Franklin, S.E., Peddle, D.R., Moulton, J.E. Spectral / geomorphometric discrimination and mapping of terrain: A study in Gros Morne National Park [J]. Canadian Journal of Remote Sensing, 1989, 15 (1): 28-42.
    [76] Friedl, M.A., Brodley, C.E. Decision tree classification of land cover from remotely sensed data [J]. Remote Sensing of Environment, 1997, 61: 399-409.
    [77] Gao, B.C. NDWI - a normalized difference water index for remote sensing of vegetation liquid water from space [J]. Remote Sensing of Environment, 1996, 58: 257-266.
    [78] Genzano, N., Aliano, C, Filizzola, C, et al. A robust satellite technique for monitoring seismically active areas: the case of Bhuj - Gujarat earthquake. Tectonophysics, 2007, 431: 197-210.
    [79] Giannetti, F., Montanarella, L., Salandin, R. Integrated use of satellite images, DEMs, soil and substrate data in studying mountainous lands [J]. International Journal of Applied Earth Observation and Geoinformation, 2001, 3 (1): 25-29.
    
    [80] Gutman, G Contribution of the NASA Land-Cover/Land-Use Change Program to the Northern Eurasia Earth Science Partnership Initiative: An overview [J]. Global and Planetary Change, 2007, 56: 235-247.
    
    [81] Haack, B., English, R. National land cover mapping by remote sensing [J]. World development, 1996, 24 (5): 845-855.
    [82] Hardisky, M. A., Klemas, V., Smart, R. M. The influences of soil salinity, growth form, and leaf moisture on the spectral reflectance of Spartina alterniflora canopies [J]. Photogrammetric Engineering and Remote Sensing, 1983, 49, 77-83.
    [83] Harris, A.J.L., Flynn, L.P., Keszthelyi, L., et al. Calculation of lava effusion rates from Landsat TM data [J]. Bull Volcanol, 1998, 60: 52-71.
    [84] Huang, C.Q., Wylie, B., Yang, L.M., et al. Derivation of a Tasseled Cap transformation based on Landsat 7 at satellite reference [J]. International Journal of Remote Sensing, 2002, 23(8): 1741-1748.
    
    [85] Hutchinson, C.F. Techniques for combining Landsat and ancillary data for digital classification improvement [J]. Photogrammetric Engineering and Remote Sensing, 1982,48(1): 123-130.
    
    [86] Jimenez-Munoz, J.C., Sobrino, J.A. A generalized singlechannel method for retrieving land surface temperature from remote sensing data [J]. Journal of Geophysical Research, 2003, 108, NO. D22,4688.
    
    [87] Kartikeyan, B., Sarkar, A., and Majumder, K. 1998. A segmentation approach to classification of remote sensing imagery. International Journal of Remote Sensing, Vol.19, No.9, pp. 1695-1709.
    [88] Cohen, Y., and Shoshany, M. 2002. A national knowledge-based crop recognition in Mediterranean environment. International Journal of Applied Earth Observation and Geoinformation, Vol.4, pp. 75-87.
    [89] Kauth, R.J., Thomas, GS.The tasseled cap - a graphic description of the spectral temporal development of agricultural crops as seen by Landsat [J]. Proceedings, Symposium on Machine Processing of Remotely Sensed Data, West Lafayette, IN: LARS, 1976, pp. 41-51.
    [90] Klungboonkrong, P., Taylor, M.A.P. A microcomputer-based system for multicriteria environmental impacts evaluation of urban road networks [J]. Computers, Environmental and Urban Systems, 1998, 22 (5): 425-446.
    [91] Landsat Project Science Office. Landsat 7 Science Data User's Handbook. Goddard Space Flight Center, NASA, Washington, DC (last update: June 24, 2005). URL: http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_toc.html.
    [92] Li, A.N., Wang, A.S., He, X.R., et al. Integrated evaluation model for eco-environmental quality in mountainous region based on remote sensing and GIS [J]. Wuhan University Journal of Natural Sciences, 2006, 11 (4): 969-976.
    [93] Li, A.N., Wang, A.S., Liang, S.L., et al. Eco-environmental vulnerability evaluation in mountainous region using remote sensing and GIS—A case study in the upper reaches of Minjiang River, China [J]. Ecological Modeling, 2006, 192: 175-787.
    [94] Loveland, T.R. The International Geosphere Biosphere Programme data and information system global land cover data set (DISCover) [J]. Acta Astronautica, 1991, 41 (4-10): 681-689.
    [95] Lu, S.L., Shen, X.H., Zou, L.J. Land cover change in Ningbo and its surrounding area of Zhejiang Province, 1987-2000 [J]. Journal of Zhejiang University SCIENCE A, 2006, 7 (4): 633-640.
    [96] Lu, S.L., Shen, S.H., Zou, L.J., et al. An integrated classification method for Thematic Mapper imagery of plain and highland terrains. Journal of Zhejiang University SCIENCE A, 2008, 9 (6): 858-866.
    [97] Lynden, GW.J., Mantel, S. The role of GIS and remote sensing in land degradation assessment and conservation mapping: some user experiences and expectations [J]. International Journal of Applied Earth Observation Geoinformation, 2001, 3: 61-68.
    [98] Maki, M., Ishiahra, M., Tamura, M. Estimation of leaf water status to monitor the risk of forest fires by using remotely sensed data [J]. Remote Sensing of Environment, 2004, 90, 441-450.
    [99] Matejicek, L., Engst, P., Janour, Z. A GIS-based approach to spatio-temporal analysis of environmental pollution in urban areas: A case study of Prague's environment extended by LIDAR data [J]. Ecological Modelling, 2006, 199: 261-277.
    [100] McFeeters, S.K. The use of Normalized Difference Water Index (NDW1) in the delineation of open water features [J]. International Journal of Remote Sensing, 1996, 17 (7): 1425-1432.
    [101] Mclver, D.K., Friedl, M.A. Using prior probabilities in decision-tree classification of remotely sensed data [J]. Remote Sensing of Environment, 2002, 81: 253-261.
    [102] Mouginis-Mark, P.J., Garbeil, H., Flament, P. Effects of viewing geometry on AVHRR observation of volcanic thermal anomalies [J]. Remote Sensing Environment, 1994, 48: 51-60.
    [103] Nelson, S.A., Soranno, P.A., Qi, J.G. Land-cover change in upper Barataria basin estuary, Louisana, 1972-1992: Increases in wetland area [J]. Environment Management, 2002, 29 (5): 716-727.
    [104] Ouzounov, D., Freund, F. Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data. Advances in Space Research, 2004, 33: 268-273.
    [105] Pal, M., Mather, P.M. An assessment of the effectiveness of decision tree methods for land cover classification [J]. Remote Sensing of Environment, 2003, 86: 554-565.
    [106] Pulinets, S.A., Dunajecka, M.A. Specific variations of air temperature and relative humidity around the time of Michoacan earthquake M 8.1 Sept. 19, 1985 as a possible indicator of interaction between tectonic plates [J]. Tectonophyics, 2007, 431: 221-230.
    [107] Qiang, Z.J., Dian, C.G., Wang, X.J., et al. Satellite thermal infrared anomalous temperature increase and impending earthquake precursor [J]. Chinese Science Bulletin, 1992,37: 1642-1646.
    [108] Qin, Z., Karnieli, A., Berliner, P. A mono-algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region [J]. International Journal of Remote Sensing, 2001, 18, 583-594.
    [109] Qu, C.Y., Shen, X. J., Ma, J. Formation cause of thermal infrared high temperature belt along Honghe fault and its relation to earthquakes [J]. ACTA SEISMOLOGICA SINICA, 2006, 19(1): 93-99.
    [110] Reed, B. Applications of the U.S. Geological Survey's global land cover product [J]. Acta astronautica, 1997, 41 (4-10): 671-680.
    [111] Rogan, J., Franklin, J., Roberts, D.A. A comparison of methods for monitoring multitemporal vegetaion change using Thematic Mapper imagery [J]. Remote Sensing of Environment, 2002, 80: 143-156.
    [112] Sandholt, I., Rasmussen, K., Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status [J]. Remote Sensing of Environment, 2002, 79: 213-224.
    [113] Shrestha, D.P., Zinck, J.A. Land use classification in mountainous areas: Integration of image processing, digital elevation data and field knowledge (application to Nepal) [J]. International Journal of Applied Earth Observation and Geoinformation, 2001, 3(1): 78-85.
    [114] Shrimali, S.S., Aggarwal, S.P., Samra, J.S. Prioritizing erosion-prone areas in hills using remote sensing and GIS - a case study of the Sukhna Lake catchment, Northern India [J]. International Journal of Applied Earth Observation and Geoinformation, 2001, 3(1): 54-60.
    [115] Simas, T., Nunes, J.P., Ferreira, J.G. Effects of global climate change on coastal salt marshes [J]. Ecological Modelling, 2001, 139: 1-15.
    [116] Singh, D., Meirelles, M.S.P., Costa, G.A., et al. Environmental degradation analysis using NOAA/AVHRR data [J]. Advances in Space Research, 2006, 37: 720-727.
    [117] Snyder, W.C., Wan, Z., Zhang, Y., et al. Classification-based emissivity for land surface temperature measurement from space [J]. International Journal of Remote Sensing, 1998, 19 (14): 2753-2774.
    [118] Su, Z.B., Yacob, A., Wen, J., et al. Assessing relative soil moisture with remote sensing data: theory, experimental validation, and application to drought monitoring over the North China Plain [J]. Physics and Chemistry of the Earth, 2003, 28: 89-101.
    [119] Telesca, L., Lasaponara, R. Quantifying intra-annual persistent behaviour in SPOT-VEGETATION NDVI data for Mediterranean ecosystems of southern Italy [J]. Remote Sensing of Environment, 2006, 101: 95-103.
    [120] Tramutoli, V., Bello, D., Pergola, G.N., et al. Robust satellite technique for remote sensing of seismically active areas [J]. Annali Di Geofisica, 2001, 44: 295-312.
    [121] Tronin, A.A., Hayakawa, M., Molchanov, O.A. Thermal IR satellite data application for earthquake research in Japan and China [J]. Journal of Geodyanamics, 2002, 33: 519-534.
    [122] Tucker. Red and photographic infrared linear combinations for monitoring vegetation [J]. Remote Sensing of Environment, 1979,8: 127-150.
    [123] Valor, E. and Caselles, V. Mapping land surface emissivity from NDVI: Application to European, African, and South American areas [J]. Remote sensing of Environment, 1996, 57 (3): 167-184.
    [124] Van de Griend, A.A., Owe, M. On the relationship between thermal emissivity and the normalized different vegetation index for natural surfaces [J]. International Journal of Remote Sensing, 1993, 14(6), 1119-1131.
    [125] Vivoni, E.R., Gebremichael, M., Watts, C.J., et al. Comparison of ground-based and remotely-sensed surface soil moisture estimates over complex terrain during SMEX04 [J]. Remote Sensing of Enivronment, 112: 314-325.
    [126] Waele, J.D., Gregorio, F.D., Wartiti, M.E., et al. Geo-environmental risk in the upper valley of the Oued Sebou (Fe's, Central Morocco): a preliminary approach [J]. Journal of African Earth Sciences, 2004, 39: 491-500.
    [127] Wang, G.X., Wang, Y.B., Li, Y.S., et al. Influences of alpine ecosystem responses to climatic change on soil properties on the Qinghai-Tibet Plateau, China [J]. Catena, 2007, 70:506-514.
    [128] Wang, Y.Q., Civco, D.L. Evidential reasoning-based classification of multi-source spatial data for improved land cover mapping [J]. Canadian Journal of Remote Sensing, 1994, 20(4): 381-393.
    [129] Watson, I.M., Realmuto, V.J., Rose, W.I., et al. Thermal infrared remote sensing of volcanic emissions using the moderate resolution imaging spectroradiometer [J]. Journal of Volcanology and Geothermal Research, 2004, 135: 75-89.
    [130] Weng, Q.H. Environmental impacts of land use and land cover change in the Zhujiang delta, China: An analysis using an integrated GIS, remote sensing, and spatial modeling approach [D]. [PhD Dissertation], University of Arizona, 1999.
    [131] Weng, Q.H. Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modeling [J]. Journal of Environmental Management, 2002, 64:273-284.
    [132] Wilkinson, GG. Are remotely sensed image classification techniques improving? Results of a long term trend analysis [J]. IEEE Workshop on 27-28 Oct. 2003, pp.30-34.
    [133] Wu, H., Tao, H.P., Lu, Y. Evaluation of eco-environmental frangibility based on remote sensing and geographic information system [J]. Wuhan University Journal of Natural Sciences, 2007, 12 (4): 715-720.
    [134] Xu, M., Watanachaturaporn, P., Varshney, P.K., and Arora, M.K. 2005. Decision tree regression for soft classification of remote sensing data. Remote Sensing of Environment, Vol.97, pp. 322-326.
    [135] Yang, S.T., Peng, X.W. Analysis and Evaluation of soil erosion in Guiyang, China Using remote sensing [J]. Geoscience and Remote Sensing Symposium, 2003. 1GARSS '03. Proceedings. 2003 IEEE International, 4: 2471 -2473.
    [136] Yue, T.X., Fan, Z.M., Liu, J.Y. Changes of major terrestrial ecosystems in China since 1960 [J]. Global and Planetary Change, 2005, 48: 287-302.
    [137] Zha, Y, Gao, J., Ni, S. Use of normalized difference build-up index in automatically mapping urban areas from TM imagery [J]. International Journal of Remote Sensing, 2003, 24 (3): 583-594.
    [138] Zhang, B., Valentine, I., Kemp, P., et al. Predictive modeling of hill-pasture productivity: integration of a decision tree and a geographical information system [J]. Agricultural Systems, 2006a, 87: 1-17.
    [139] Zhang, J.Q., Wang, Y.P., Li, Y. A C++ program for retrieving land surface temperature from the data of Landsat TM/ETM+ band6 [J]. Computers and Geosciences, 2006b, 32: 1796-1805.
    [140] Zinck, J.A., Lopez, J., Metternicht, G.I., et al. Mapping and modeling mass movements and gullies in mountainous areas using remote sensing and GIS techniques [J]. International Journal of Applied Earth Observation and Geoinformation, 2001, 3 (1): 43-53.