复杂网络理论在电力网中的若干应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,跨区跨国的大规模电网互联已经成为全世界范围电力系统发展的大趋势。但是电网这种能将电能输送到数百、上千公里以外的能力同样使得局部故障可能迅速传播到大区域甚至整个网络。传统的分析方法在深入分析电力网连锁故障和大停电机理等系统行为方面已经显露出一定的局限性,有必要发展新的系统分析方法来研究复杂电力网的动态行为。复杂性理论和复杂网络理论就为探索互联大电网提供了一个新视角和方法。
     本文在对包括随机网络、小世界网络和无标度网络等复杂网络理论进行概述的基础上,关注了连锁故障及其导致的重大停电事故。通过对我国电网大停电事故中特征变量概率分布的统计分析,阐述了大停电规模与频率之间呈现出的幂律关系和自组织临界特性。进一步使用R/S时间序列分析法,求得了大停电相关特征参量时间序列的Hurst指数,并对我国电网大停电的分形分维特性进行了分析。在对实际电网进行复杂网络拓扑建模的基础上,揭示了中外电网度分布的指数分布特性、介数的负幂律自相似特性和Zipf分形特性以及小世界特性。
     首先采用静态分析法,进而在动态分析法中引入节点一线路混合动态分析模式和基于故障概率法的网络流一容量模型,通过最大连通度及平均距离与移除元件比例之间的变化关系,对网络基于随机故障的鲁棒性和基于蓄意攻击的脆弱性进行了研究。实际电网度分布的不均衡性使其对于随机故障具有很高的鲁棒性,对高介数元件的蓄意攻击具有高度的脆弱性,高介数的网络元件是电网中最脆弱且最关键的部分。进而从全网角度揭示了电网节点度数和介数之间的幂律关系,对电网连锁故障中的临界行为进行了分析,并以我国华东电网为例,对网络临界行为中耐受性参数的相变点进行了理论推导。
     引入了复杂网络效能模型,提出了基于电气距离矩阵的效能评估方法,对我国华东电网和华中电网在连锁故障中的效能变化进行了仿真分析。进而引入带权重的线路介数概念,以赋权线路介数作为指标进行电网脆弱性分析,对IEEE39节点系统和华中电网的脆弱线路进行了辨识,并通过时域仿真进行了验证。
     在度分布符合指数规律的电力网中,提出了基于复杂网络理论的故障传播概率指标,在理论推导的基础上得出了实际电网的故障传播概率值,提出了通过改变网络拓扑参数、优化网络结构从而降低故障传播风险,特别是连锁故障传播风险的宏观调控方案。并对节点平均度数恒定不变,即给定费用经济约束条件下的无标度网进行了分析研究。通过故障传播概率分析法和基于元件移除的网络连通性分析法,利用函数图像法和遗传算法优化求解得出了度数恒定的无标度网的结构优化方案,即在区间(2,3]的范围内减小无标度网度分布的幂指数值,既可以降低故障传播的风险,也可增强网络的连通性,从而为无标度网的设计、规划和改造提供优化目标和理论参考。
     以浙江省电力通信网为例,对电力通信网物理路由网的复杂网络特性进行了分析研究。浙江省电力通信网的度分布满足指数规律,为局域世界网络,其地区子网均为无标度网络,且省网和各地区子网均为小世界网络。基于静态分析法的鲁棒性和脆弱性分析表明,电力通信物理路由网对于节点和边的随机故障和意外攻击具有极强的鲁棒性,而对于针对高度数节点的蓄意攻击和破坏却具有很高的脆弱性;在基于最短路径路由的通讯原则下,应该加大对电力通信网中高度数节点和高介数节点(线路)的保护。
With the rapid development of global economics, large-scaled interconnection of power grids has become an inevitable trend for power systems all over the world. While, the capability of power grid to transfer power over hundreds or thousands of miles also enables the propagation of local failures into global network. Traditional methods have already confronted the limitation in comprehending the mechanism of cascading failure. New solutions are instantly needed to simulate and study the dynamics of complex power system. The theory of complexity and complex network provide an original perspective of global network from the point of view of system level.
     Based on the summary of complex network theory, including random network, small-world network and scale-free network, the recent blackouts throughout the world and the mechanism of cascading failures draw our attention. Through the statistics and analysis of character variables of domestic power grid accidents with load loss, the power law relationship between the blackout dimension and frequency is discovered, and the theory of Self-Organized Criticality is used to explain such phenomena. Using the method of R/S Analysis, the Hurst exponents of blackout series are respectively calculated, and the fractal characteristic is also explained. With the topology modelling of real-world power grids, the exponentail law of degree distribution, the negative power law and self-similarity of betweenness, the Zipf fractal feature and small-world effect are respectively testified.
     Based on the strategies of random failure and intentional attack, both the static analysis and dynamic analysis are adopted to study the robustness and vulnerability of networks. The real-world power grids are robust to random failures and are highly vulnerable to intentional attacks on components with high betweenness due to the heterogeneous topology and degree distribution disequilibrium of power grids. The relationship between node degree and average betweenness has the feature of power law, and the phase-transition point of tolerance parameter in the critical behavior of cascading failure is derived theoretically. The computed critical value shows its consistency with the practical dynamic simulation results in east China power grid.
     With the utilization of global efficiency model, a new efficiency evaluation model with electric distance matrix is proposed, and the efficiency of east and central China power grid is evaluated. Then, a new vulnerability index called weighted line betweenness is proposed to identify the critical lines in the power grid. The simulations on IEEE 39 bus system and central China power grid prove the efficiency of this new vulnerability index.
     In power grid with exponentail degree distribution, the method of failure propagation probability over entire network is proposd. The macro-control scheme is proposed to adjust the topological parameters in order to optimize the network structure, which could reduce the risk of component failure propagation, especially the risk of cascading failure. And scale-free network with consistent average degree, namely under the economic constraint of fixed cost, is studied. The failure propagation probalility and connectivity analysis under static removal of components are respectively introduced. Through function graphs and the computation of GA algorithm, we can draw a conclusion that, decreasing the power exponent of scale-free network in the interval of (2,3], can not only decrease the risk of failure propagation, but also improve the tolerance and connectivity of scale-free networks. This structure optimization solution can provide an optimal and theoretical reference for engineers and designers.
     The research on electric power communication physical route network shows that, Zhejiang power communication network is a local-world network and its sub-networks are all scale-free networks, and these nets entirely have the character of small-world effect. The static analysis indicates that, power communication network displays topology robustness against random node and edge failures, but is fragile to intentional attacks of high degree nodes. Under the communication principle of shortest path route, the protection of components with high degree and high betweenness is of great importance.
引文
[1]戴汝为.系统科学及系统复杂性研究[J].系统仿真学报,2002,14(11):1411-1416.
    [2]成思危.复杂性科学探索 北京 民主与建设出版社 2000
    [3]方锦清.令人关注的复杂性科学和复杂性研究[J].自然杂志,2002,24(1):7-15.
    [4]Auyang S Y.Foundations of complex-system theories:in economics,evolutionary biology,and statistical physics[M].Cambridge:Cambridge University Press,1998.
    [5]张嗣瀛.复杂系统与复杂性科学简介[J].青岛大学学报,2001,16(4):25-29.
    [6]方锦清,汪小帆,刘曾荣.略论复杂性问题和非线性复杂网络的研究[J].科技导报,2002,24(2):9-12.
    [7]成思危.复杂科学与系统工程[J].管理科学学报,1999,2(2):1-7.
    [8]Latora V,Marchiori M.The architecture of complex systems[M].Oxford:Oxford University Press,2003.
    [9]汪小帆,李翔,陈关荣.复杂网络理论及其应用[M].北京,清华大学出版社,2006.
    [10]Virtual round table on ten leading questions for network research[J].The European Physical Journal B,2004,38(1):143-145.
    [11]Albert R,Barabasi A-L.Statistical mechanics of complex networks[J].Review of Modern Physics,2002,74(1):47-97.
    [12]Newman M E J.The structure and function of complex networks[J].SIAM Review,2003,45(1):167-256.
    [13]Erd(o|¨)s P,Renyi A.On the evolution of random graphs[J].Publications of the Mathematical Institute of the Hungarian Academy of Science,1960,5(1):17-61.
    [14]Watts D J,Strogatz S H.Collective dynamics of 'small-world' networks[J].Nature,1998,393(6):440-442.
    [15]Barabasi A L,Albert R.Emergence of Scaling in random networks[J].Science,1999,(286):509-512.
    [16]方锦清.网络科学的理论模型探索及其进展[J],科技导报,2006,24(12):67-72.
    [17]Amaral LA N,Acala A,Barthelemy M,et al.Classes of small-world networks[J].Proc.Natl.Acad.Sci.2000,97:1149-1152.
    [18]Wang X F,Chen G.Complex networks:small-world,scale-free and beyond[J],IEEE Circuits and Systems Magazine,2003,3:6-20.
    [19]S H Strogatz,Exploring complexnetworks,Nature,2001,410:268-276.
    [20]Jeong H,Tombor B,Albert R,Oltvai Z N and Barabasi,A-L.The large-scale organization of metabolic networks[J],Nature,2000,407:651-654.
    [21]Yook S H,Jeong H,Barabasi A.-Land Tu Y.weighted evolving networks,Phys.Rev.Lett.2001,86:5835-5838.
    [22]Watts D J.Small-worlds:The dynamics of between order and randomness[J].The American Mathematical Monthly,2000,107(7):664-668.
    [23]Newman M E J,Watts D J.Renormalization group analysis of the small-world network model[J].Phys.Lett.A,1999,263:341-346.
    [24]Albert R,Barabasi A L.Topology of evolving networks:Local events and universality[J].Phys.Rev.Lett.,2000,85:5234-5237.
    [25]Dorogovtsev S N,Mendes J F F.Scaling behaviour of developing and decaying network[J].Europhys.Lett,2000,52:33-39.
    [26]Dorogovtsev S N,Mendes J F F,Samukhin A N.Structure of growing networks with preferential linking[J].Phys Rev Lett,2000,85:4663-4636.
    [27]Liu Z H,Lai Y C,Ye N.Statistical properties and attack tolerance of growing networks with algebraic preferential attachment[J].Phys.Rev.E,2002,66:036112.
    [28] Mossa S, Barthelemy M, Stanley H E, et al. Truncation of power law behavior in scale-free network models due to information filtering[J]. Phys. Rev. Lett, 2002, 88:138701.
    [29] Li X, Chen G R. A local-world evolving network model[J]. Physica A, 2003, 328(1-2):274-286.
    [30] Bollobas B, Mathematical results on scale-free random graphs, see Bornholdt S. and Schuster H. G. (eds), Handbook of Graphs and Networks-From the Genome to Internet,Wiley-VCH,2002,1-34.
    [31] Klemm K, Eguiluz V M. Highly clustered scale-free networks[J]. Phys Rev E, 2002, 65:036123.
    [32] Takemoto K, Oosawa C. Evolving networks by merging cliques[J]. Jouunal of Computational biology, 2003,10:677-687.
    [33] Fortunato S, Flammini A, Menczer F. Scale-free network growth by ranking[J]. Phys Rev Lett, 2006, 96: 218701.
    [34] Dorogovtsev S N, Mendes J F F. Effect of the accelerating growth of communications networks on their structure[J]. Phys Rev E, 2001, 63(2):025101.
    [35] Electric Power Research Institute (EPRI)/ US Department of Defense (DoD). Complex interactive networks/system initiative: second annual report 1006089, development of analytical and computational methods for the strategic power infrastructure defense system [R]. 2001.
    
    [36] 韩祯祥,曹一家. 电力系统的安全性及防治措施[J]. 电网技术, 2004, 28(9): 1-6.
    [37] Dobson I, Carreras B A, Lynch V E et al. An initial model for complex dynamics in electric power system blackouts[C]. Hawaii International Conference on System Science, Hawaii,2001.
    [38] Carreras B A, Lynch V E, Sachtjen M L et al. Modeling blackout dynamics in power transmission networks with simple structure[C]. Hawaii International Conference on System Science, Hawaii, 2001.
    [39] Carreras B A, Lynch V E, Dobson I et al. Dynamics, criticality and self-organization in a model for blackouts in power transmission systems[C]. Hawaii International Conference on System Science, Hawaii, 2002.
    [40] Carreras B A, Newman D E, Dobson I et al. Evidence for self-organized criticality in electric power system blackouts[C]. Hawaii International Conference on System Science,Hawaii, 2001.
    [41] Carreras B A, Lynch V E, Dobson I et al. Blackout mitigation in an electric power transmission system[C]. Hawaii International Conference on System Science, Hawaii, 2003.
    [42] Dobson I, Chen J, Carreras B A et al. Examining criticality of blackouts in power system models with cascading events[C]. Hawaii International Conference on System Science,Hawaii, 2001.
    [43] Dobson I, Carreras B A, Lynch V E et al. Complex systems analysis of series of blackouts:cascading failure, criticality, and self-organization [C]. Bulk Power System Dynamics and Control-VI, Italy, 2004.
    [44] Dobson I, Carreras B A, Newman D E. A probabilistic loading- dependent model of cascading failure and possible implications for blackouts[C]. Hawaii International Conference on System Science, Hawaii, 2003.
    [45] Dobson I, Carreras B A, Newman D E. A branching process approximation to cascading load-dependent system failure[C].35th Hawaii International Conference on System Science,Hawaii,2004.
    [46]Dobson I,Carreras B A,Newman D E.A criticality approach to monitoring cascading failure risk and failure propagation in transmission systems[C].Electricity Transmission in Deregulated Markets Conference,Pittsburgh,2004.
    [47]Tamaronglak S.Analysis of power system disturbances due to relay hidden failures[D].Virginia Polytechnic and State University,Blacksburg,Virginia,1994.
    [48]Phadeke A G,Thorp J S.Expose hidden failures to prevent cascading outages[J].IEEE Computer Application in Power,1996,9(3):20-23.
    [49]Chen J,Thorp J S.Study on cascading dynamics in power transmission systems via a DC hidden failure model[C],IEE Fifth International Conference on Power System Management and Control,2002:384-389.
    [50]Dusko P.Nedic,Ian Dobson,Daniel S.Kirschen.Criticality in a Cascading Failure Blackout Model[J]Electrical Power and Energy System 28(2006):627-633.
    [51]Carlson J M,Doyle J.Highly optimized tolerance:a mechanism for power laws in designed systems[J].Physical Review E,1999,60(2):1412-1427.
    [52]Chen J,McCalley J D.A cluster distribution as a model for estimating high-order event probabilities in power systems[C].Eighth International Conference on Probability Methods Applied to Power Systems,Ames Iowa,2004.
    [53]Surdutovich G,Cortez C,Vitilina R et al.Dynamics of "small world" networks and vulnerability of the electric power grid[C].Ⅷ Symposium of Specialists in Electric Operational and Expansion Planning,2002.
    [54]孟仲伟,鲁宗相,宋靖雁.中美电网的小世界拓扑模型比较分析[J].电力系统自动化,2004,28(15):21-24.
    [55]Kinney R,Crucitti P,Albert R et al.Modeling cascading failures in the North American power grid[EB/OL],http://arXiv:cond-mat/0410318.
    [56]Motter A E,Lai Y C.Cascade-based attacks on complex networks[J].Physical Review E,2002,66(2):065102.
    [57]Lai Y C,Motter A E,Nishikawa T.Attacks and cascades in complex networks[J].Lecture Notes in Physics,2004,650:299-310.
    [58]Pala Crucitti,Vito Latora,Massimo Marchiori.A topological analysis of the Italian electric power grid[J].Physica A,2004,338:92-97.
    [59]Ake J Holmgren.Using Graph models to analyze the vulnerability of electric power networks[J].Risk Analysis,26(4):955-969.
    [60]丁明,韩平平.基于小世界拓扑模型的大型电网脆弱性评估[J].中国电机工程学报,2005,25(25):118-122.
    [61]曹一家,江全元,丁理杰.电力系统大停电的自组织临界现象[J].电网技术,2005,29(15):1-5.
    [62]于群,郭剑波.中国电网停电事故统计与自组织临界性特征[J].电力系统自动化,2006,30(2):16-21.
    [63]易俊,周孝信.考虑系统频率特性以及保护隐藏故障的电网连锁故障模型[J].电力系统自动化,2006,30(16):1-5.
    [64]梅生伟,翁晓峰,薛安成,等.基于最优潮流的停电模型及自组织临界性分析[J].电力系统自动化,2006,30(13):1-5.
    [1]韩祯祥,曹一家.电力系统的安全性及防治措施[J].电网技术,2004,28(9):1-6.
    [2]卢强.我国电力系统灾变防治与经济运行的重大科学问题的研究项目介绍[J].电力系统自动化,2000,24(1):1.
    [3]徐立子.国际标准与电网调度自动化[J].中国电力,2003,36(7):27-30.
    [4]卢卫星,舒印彪,史连军.美国西部电力系统1996年8月10日大停电事故[J].电网技术,1996,20(9):40-42.
    [5]Kosterev D N,Taylor C W,Mittelstadt W A.Model validation for the August 10,1996WSCC system outage[J].IEEE Trans on Power Systems,1999,14(3):967-979.
    [6]U.S.-Canada power system outage task force.Final report on the August 14,2003 blackout in the United States and Canada:causes and recommendations[R].2004.
    [7]唐葆生.伦敦地区大停电及其教训[J].电网技术,2003,27(11):1-5.
    [8]甘德强,胡江溢,韩祯祥.2003年国际若干停电事故思考[J].电力系统自动化,2004,28(3):1-5.
    [9]赵希正.强化电网安全 保障可靠供电—美加“8.14”停电事故给我们的启示[J].电网技术,2003,27(10):1-7.
    [10]李春艳,孙元章,陈向宜,等.西欧“11.4”大停电事故的初步分析及防止我国大面积停电事故的措施[J].电网技术,2006,30(24):16-21.
    [11]郭剑波,印永华,姚国灿.1981-1991年电网稳定事故统计分析[J].电网技术,1994,18(2):58-61.
    [12]郭剑波.“八五”期间全国电网稳定事故统计分析[J].电网技术,1998,22(2):72-74.
    [13]屈靖,郭剑波.“九五”期间我国电网事故统计分析[J],电网技术,2004,28(21):60 -63.
    [14]于群,郭剑波.中国电网停电事故统计与自组织临界性特征[J].电力系统自动化,2006,30(2):16-21.
    [15]于群,郭剑波.我国电力系统停电事故自组织临界性的研究[J].电网技术,2006,30(6):1-5.
    [16]P Bak et al,Self-organized criticality,Scientific American 1991,264(1),26-33
    [17]Dobson I,Carreras B A,Lynch V E et al.An initial model for complex dynamics in electric power system blackouts[C].Hawaii International Conference on System Science,Hawaii,2001.
    [18]S.A.Kauffman.Origins of Order:Self-Organization and Selection in Evolution,Oxford,Oxford University Press.1993 1-709.
    [19]B.B.Mandelbrot.The Fractal Geometry of Nature.San Francisco,W.H.Freeman and Co 1982.
    [20]汪富泉,李后强.分形几何与动力系统.哈尔滨:黑龙江教育出版社,1993
    [21]张济忠 分形[M]清华大学出版社,1995.
    [22]Feder J.Fractals[M].New York:Plenum Press.1988.149-199.
    [23]谢和平,薛秀谦.分形应用中的数学基础与方法[M]科学出版社,1997.
    [24]Mandelbrot B B.The variation of certain speculative prices[J].J Business,1963,(36):394-419.
    [25]Hurst H E,Black R P,Simaike Y M.1965.Long-term Storage:an Experimental Study[M].London:Constable,1-155.
    [26]Hurst H E.Long-term capacity of reservoirs[J].Trans Amer Soc Civ Eng,1951,(116):770-808.
    [27]Bassingthwaithte J B,Raymond G.M.Evaluating rescaled range analysis for time series[J].Annals of Biomedical Engineering,1994,22:432-444.
    [28]http://www.nerc.com/~dawg/database.html.
    [29]M.J.Cannon,D.B.Percival,D.C.Caccia,et al.Evaluating called windowed variance methods for estimating the Hurst coefficient of time series,Physica A,1997,241:606-626.
    [1]Virtual round table on ten leading questions for network research[J].The European Physical Journal B,2004,38(1):143-145.
    [2]Albert R,Barabasi A-L.Statistical mechanics of complex networks[J].Review of Modern Physics,2002,74(1):47-97.
    [3]Newman M E J.The structure and function of complex networks[J].SIAM Review,2003,45(1):167-256.
    [4]Holme P.Edge overload breakdown in evolving networks[J].Physical Review E,2002,66(2):036119.
    [5]Holme P,Kim B J.Vertex overload breakdown in evolving networks[J].Physical Review E,2002,65(1):066109.
    [6]Holme P,Kim B J,Yoon C N et al.Attack vulnerability of complex networks[J].Physical Review E,2002,65(1):056109.
    [7]Barrat A,Weight M.On the properties of small world networks[J].Euro.Phys.J.B,2000,13:547-560.
    [8]Newman M E J J.The structure and function of networks[J].Computer Physics Communications,2002,147:40-45.
    [9]Barabasi A L,Albert R.Emergence of Scaling in random networks[J].Science,1999,(286):509-512.
    [10]孟仲伟,鲁宗相,宋靖雁.中美电网的小世界拓扑模型比较分析[J].电力系统自动化,2004,28(15):21-24.
    [11]Pala Crucitti,Vito Latora,Massimo Marchiori.A topological analysis of the Italian electric power grid[J]. Physica A, 2004, 338: 92-97.
    [12] Kinney R, Crucitti P, Albert Ret al. Modeling cascading failures in the North American power grid[EB/OL]. http://arXiv:cond-mat/0410318.
    [13] Motter A E, Lai Y C. Cascade-based attacks on complex networks[J]. Physical Review E,2002, 66(2): 065102.
    [14] Lai Y C, Motter A E, Nishikawa T. Attacks and cascades in complex networks[J]. Lecture Notes in Physics, 2004, 650: 299-310.
    [15] Ake J Holmgren. Using Graph models to analyze the vulnerability of electric power networks[J]. Risk Analysis, 26(4):955-969.
    [16] Surdutovich G, Cortez C, Vitilina R et al. Dynamics of "small world" networks and vulnerability of the electric power grid[C]. VIII Symposium of Specialists in Electric Operational and Expansion Planning, 2002.
    [17] Amaral L A N, Scala A, Bartbelemy M et al. Classes of behavior of small-world networks[J]. Proceedings of the National Academy of Sciences, 2000, 97: 11149-11152.
    [18] Kuperman M, Abramson G Small world effect in an epidemiological model [J]. Phys. Rev.Lett, 2001, 86(13):2 909- 2 912.
    [19] Pastor Satorras R, Vespignani A. Epidemic dynamics in finite size scale-free networks [J].Phys. Rev. E, 2002, 89(10):108701-l~108701-4.
    [20] Newman M E J, Watts D J. Scaling and percolation in the small-world network model[J]. Physical Review E, 1999, 60(2): 7332-7342.
    [1]Carlson J,Doyle J.Complexity and Robustness[J].PNAS,2002,99(Suppl.1):2539-2545.
    [2]Carlson J,Doyle J.Highly optimized tolerance:Robustness and power laws in complex systems[J].Phys.Rev.Lett,2000,84(11):2529-2532.
    [3]Albert R,Jeong H,Barabasi A L.Attack and error tolerance in complex networks[J].Nature,2000,406:387-482.
    [4]Broder A,Kumar R,Maghoul F et al.Graph structure in the web[J].Computer Networks,2000,33:309-320.
    [5]Albert R,Barabaisi A-L.Statistical mechanics of complex networks[J].Review of Modern Physics,2002,74(1):47-97.
    [6]Newman M E J.The structure and function of complex networks[J].SIAM Review,2003,45(1):167-256.
    [7]Moreno Y,Gomez J B,Pacheco A F.Instability of scale-free networks under node-breaking avalanches.Europhys.Lett.,2002,59(4):630-636.
    [8]Moreno Y,Pastor-Satorras R,Vazquez A,Vespignani A.Critical load and congestion instabilities in scale-free networks.Europhys.Lett.,2003,62(1):292-298.
    [9]Tamaronglak S.Analysis of power system disturbances due to relay hidden failures[D].Virginia Polytechnic and State University,Blacksburg,Virginia,1994.
    [10]Phadeke A G,Thorp J S.Expose hidden failures to prevent cascading outages[J].IEEE Computer Application in Power,1996,9(3):20-23.
    [11]Liang Zhao,Kwangho Park,Ying-Cheng Lai.Attack vulnerability of scale-free networks due to cascading breakdown[J].Physical Review E,2004,70(2):035101.
    [1]Latora V,Marchiori M.Efficient behavior of small-world networks[J].Physical Review Letter,2001,87:198701.
    [2]Crucitti P,Latora V,Marchiori M et al.Efficiency of scale-free networks:error and attack tolerance[J].Physica A,2003,320:622-642.
    [3]Crucitti P,Latora V,Marchiori M.Model for cascading failures in complex networks[J].Physical Review E,2004,69(1):045104.
    [4]Kaneko K.Overview of coupled map lattices[J].Chaos,1992,2(3):279-282.
    [5]Wang X F,Xu J.Cascading failures in coupled map lattices[J].Physical Review E,2004,70:056113.
    [6]Xu J,Wang X F.Cascading failures in scale-free coupled map lattices[J].Physica A,2005,349:685-692.
    [1]韩水,苑舜,张近珠,国外典型电网事故分析,中国电力出版社,2005,80-82,126-128
    [2]David P.Chassin,Christian Posse.Evaluating North American electric grid reliability usingt he Barabasi-Albert network model[J].Physica A,2005,355(2-4):667-677
    [3]Paolo Crucitti,Vito Latora,Msssimo Marchiori.A model for cascading failures in complex networks[J].Physical Review E,2004,69(1):045104
    [4]Reka Albert,Istvan Albert,Gray L.Nakarado.Structural Vulnerability of the North American power grid.Phys.Rev E,69,025103(2004).
    [5]Albert R,Barabasi A-L.Statistical mechanics of complex networks[J].Review of Modern Physics,2002,74(1):47-97.
    [6]戴冠中,王林,覃森.复杂系统的Scale-free性及其宏观调控问题[J]科技导报.Vol25(05):11-15.2006.
    [7]Albert R,Barabasi A-L.Statistical mechanics of complex networks[J].Review of Modern Physics,2002,74(1):47-97.
    [8]Newman M E J.The structure and function of complex networks[J].SIAM Review,2003,45(1):167-256.
    [9]Cohen Reuven,Erez Keren,ben-Avraham Daniel,Havlin Shlomo.Resilience of the Internet to Random Breakdowns[J]Physical Review Letters,2000,85(21):4626.
    [10]Alello R,Chung F,Lu L.A random graph model for massive graphs.In Proc 32nd ACM Symp on the Theory of Computing,2000:171-180.
    [1]韦乐平.光同步数字传送网[M].北京:人民邮电出版社,1998:23-27
    [2]部熙章.数字网同步技术[M].北京:人民邮电出版社,1995:56-59
    [3]杨世平.张引发.光同步数字设备与工程应用[M].北京:人民邮电出版社,1998:
    [4]Li X,Chen G R.A local-world evolving network model[J].Physica A,2003,328(1-2):274-286.