用户名: 密码: 验证码:
橡胶粉/SBS复合改性沥青降噪试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
废橡胶在道路工程中的应用已成为许多国家大量处理废旧轮胎的最佳选择。本文在综述已有研究基础上,制备了橡胶粉/ SBS复合改性沥青,通过对其进行针入度、软化点、延度和弹性恢复试验,验证了所制备的改性沥青达到国家相关标准要求;然后系统地分析了橡胶粉/SBS共混物组成比例对针入度、软化点、延度、弹性恢复的变化规律;利用亥姆霍兹共振模型分析了轮胎/路面共振吸声原理,从空腔摩擦噪声损耗方面分析了孔隙吸声降噪机理;根据正交表设计了橡胶粉/SBS复合改性沥青吸声系数的试验方案,采用阻抗管声学材料测量系统对马歇尔试件进行了吸声系数测试试验,在极差分析和方差分析基础上选取橡胶粉含量5wt%、SBS含量3wt%、芳烃油含量7wt%作为复合改性沥青的优选配方;最后进行试验路铺设,采用定点法、车载法分别对橡胶粉/SBS复合改性沥青和SBS改性沥青两种路面进行道路噪声对比测试,结果表明:与SBS改性沥青路面,随着车速的增加,橡胶粉/SBS复合改性沥青路面降噪效果越来越明显,平均降低噪声1.5dB左右;当车速达到120km/h时,平均降低噪声2dB左右,为降低道路交通噪声提供了一条新思路。
With the development of the auto industry, the amount of cars has increased, so the accumulation of waste tires leading to "black pollution" has brought serious harm to the world. In recent years, a lot of countries pay more and more attentions to the problem of discarded tires, especially the National Development and Reform Commission made it clear to discarded tires recycling project as one of six key projects at《"11th Five-Year Plan" comprehensive utilization of resources and guidance》in 2007, according to the "11th Five-Year Plan".
     At present, there are many ways in recycling of discarded tires, for instance, prototype restructuring, the use of thermal energy, thermal decomposition, renovation of the tire, production of renewable plastic and for the civil engineering construction. The waste rubber in road engineering has become the best choice to deal with a large number of discarded tires in many countries. Foreign-related research results show that adding a certain amount of rubber powder can effectively improve the performance of asphalt, and increase the temperature of asphalt pavement rutting resistance, anti-low-temperature cracks, anti-fatigue, anti-aging, anti-slippery ability to extend the service life of the road, reduce road noise and improve traffic safety at the same time.
     As a binder in asphalt, the pavement of the road with comfort, low noise, easy to maintain and other characteristics, has become the major types of roads in many countries, and also in China. However, the track in overloading, under heavy load conditions or pavement cracks in bad weather, geological structure as well as unreasonable conditions show ordinary asphalt pavement has not adequately meet the requirements of the use of roads. As a result, take appropriate measures to improve the performance of asphalt, has become a long-term direction in the road workers.
     In recent years, polymer modified is widely used in our country from nothing to being. At present, the domestic polymer modified asphalt blends based on a simple modification of the main, most of the research is limited to the physical properties of polymer modified asphalt changes. Study on the compound modified asphalt becomes a new trend in foreign countries, and there are many successful examples that in the polymer modified asphalt at highway and bridge construction projects. However, the study on the waste rubber powder/SBS modified asphalt has not been seen the relevant reports yet.
     In this paper, based on the research project of Department of Jilin Province on the "Application Research on the Rubber Powder Modified Asphalt”, the main research contend include:
     (1)Select the appropriate processes, and prepare the rubber powder / SBS (YH 791) composite modified asphalt; by testing the modified asphalt penetration, softening point, ductility and flexibility, verify the service performance of the rubber powder/SBS modified asphalt compound has met the basic requirement of SBS thermoplastic rubber-like polymer modified asphalt-IA and-IB standard in China's "Highway Modified Asphalt Pavement Construction Specifications", which suggest rubber powder / SBS modified asphalt is workable and provide a new train of thought for the modified asphalt.
     (2)The test results of mechanical properties of the blend sample including rubber Powder/SBS show that the mechanical properties of the mixture decrease. During the process to crash the discarded tires in mechanical shear method, the number of molecular chain decrease which reduce the average molecular weight of rubber, so that the struggle among molecular chain decreases, the degree of freedom increases, the ability to bear the ultimate stress declines, bond strength become weak and the stress relaxation increases. In addition, under the influence of the mechanical shear stress, cross-linked network of rubber Powder is damaged, which lead to a decline in mechanical properties.
     (3)The test results of mechanical properties of the blend sample including rubber Powder/SBS show that the mechanical properties of the mixture decrease. During the process to crash the discarded tires in mechanical shear method, the number of molecular chain decrease which reduce the average molecular weight of rubber, so that the struggle among molecular chain decreases, the degree of freedom increases, the ability to bear the ultimate stress declines, bond strength become weak and the stress relaxation increases. In addition, under the influence of the mechanical shear stress, cross-linked network of rubber Powder is damaged, which lead to a decline in mechanical properties.
     (4)The swelling experiments of rubber powder/SBS in the matrix asphalt show that with the increase of swelling time, the swelling rate increases; when the temperature rises, the swelling rate obviously increases. As the temperature increases, the asphalt element speed up the movement, at the same time, the activity of polymers rises. The speed of asphalt element permeating into the gap of polymer chain rises, which enhances the swelling rate. Polymer has the modification owing to its swelling. After polymer mixes with asphalt, polymer swells under the influence of the light components showing nature of the interface which is different from polymer and asphalt. The swelling of polymer is the premises of its good compatibility, which make the polymer combine with asphalt, so that the polymer evenly distributed in the asphalt. Swelling performance of the polymer show that oil separates out of asphalt , adheres to the interface of polymer and infiltrates into polymer to make it swell. Finally, the oil forms a colloidal structure similar to asphalt, which modifies the performance of the asphalt.
     (5)From the root of generating the tire/road noise, the theory to decrease noise by reducing vibration and absorbing noise is analysised, design the test program of absorption coefficient of rubber powder/SBS compound modified asphalt based on orthogonal layout, make Marshall sample in the Jilin institute of Traffic Science. At the same time, this paper conduct the test on absorption coefficients of Marshall sample using measurement system of impedance tube acoustic materials in the noise laboratory of Automotive college of Jilin University, then conduct range analysis and variance analysis based on the test date of coefficients of sound absorption. At last, this paper get the final selection of rubber content 5wt%, SBS content 3wt%, aromatic oil content 7wt% as the best formula to produce rubber powder/SBS compound modified asphalt.
     (6)Based on the research on the coefficient of sound absorption of rubber powder/SBS compound modified bitumen, lay the test road in accordance with the best formula, then conduct noise comparison test between the roads with rubber powder/SBS compound modified asphalt and SBS modified asphalt using fixed-point method and on-board method. From the test data, we can see that with the increase in speed, the effect of absorbing noise of the road with rubber powder/SBS modified asphalt become more and more obvious and reduce an average of about 1.5 dB noise, the largest mount of 2.5dB noise. Through the analysis of the test data, this paper conclude that the road with rubber powder/SBS compound modified asphalt and SBS modified asphalt have the same ability to reduce noise, which provide a new approach to reduce road traffic noise.
引文
[1].曹卫东,吕伟民.废旧轮胎橡胶在道路工程中应用的过去、现状和发展[C].橡胶沥青在路面工程中应用技术交流会,2006,海南:7-12.
    [2].曹卫东,吕伟民.废旧轮胎橡胶混合法改性沥青混合料的研究[J].建筑材料学报,2007(1):110-114.
    [3].杨克.美国的废旧轮胎回收与利用[J].沈阳化工,2000,29(1):46-48.
    [4].魏清林,武玺.废旧轮胎的回收利用[J].山西建筑,2004,30(7):126-127.
    [5].刘巨源.浅述废旧轮胎资源的综合利用[J].中国资源综合利用,2004,22.
    [6]. Bertollo S A M,Bernucci L B,Fernandes J L,et al.Mechanical properties of asphalt mixtures using recycled tire rubber produced in brazil———A laboratory evaluation[A].TRB Annual Meeting[C].Washington DC:[sn],2004.4,5.
    [7].姜伟立.废弃轮胎胶粉干法改性热拌沥青混凝土(RUMAC)的研究[D].东南大学,2000.
    [8].傅大放,惠先宝,符冠华等.废弃轮胎胶粉干法改性热拌沥青混合料[J].公路交通科技,2001,18(5):4-7.
    [9].董诚春.胶粉改性沥青的生产及其在公路建设中的应用[J].公路交通技术,2003,3:39-45.
    [10]. ASTM 2001年标准年鉴4.03卷ASTM D8,公路和铺面材料标准术语.
    [11].中华人民共和国交通行业标准,公路改性沥青路面施工技术规范(JTJ 036—98).北京:人民交通出版社,1999.
    [12].杨林江,李井轩. SBS改性沥青的生产与应用[M].北京:人民交通出版社,2001.
    [13]. Lewandowski L H.Polymer modification of paving asphalt binders[J].Rubber Chemistry and Technology,1994,67(3):447-480.
    [14].李智勇.废旧橡胶改性沥青路用性能与环境评价[D].长春:吉林大学,2007.
    [15].山本勇编译.西欧改性沥青及改性剂的现状.改质ァスファルト,1994(2):17
    [16].日本改性沥青协会.改质ァスファルト,1994(1)—1998(8)
    [17].沈金安.改性沥青与SMA路面[M].北京:人民交通出版社,1999.
    [18].何治国.浅谈橡胶粉在道路建设中的应用[J].再生胶信息,2000(6):3-7.
    [19].刘增元.国内外废橡胶资源利用趋势及胶粉应用现状[J].再生胶信息,2000(6):10-16.
    [20].程源.废胶粉应用前瞻[J].合成橡胶工业,2001,24(2):65-66.
    [21].许志鸿,陈兴伟,刘红. Superpave应用中几个重要问题的研究[J].中国公路学会2002年学术交流论文集.北京:人民交通出版社,2002:87-93.
    [22]. Bouzid Choubane, Gregory A. Sholar, Jamens A. Musselman, A Ten-year Performance Evaluation of Asphalt-Rubber Surface Mixes, TRB 78th Annual Meeting, 1999.
    [23].李兵.聚合物改性沥青在德国与法国的应用[J].交通世界,2001(9):36-37.
    [24].虞文景.改性沥青现状及发展前景(上)[J].交通世界2004(5):38-40.
    [25]. ]饭岛尚等.关于橡胶沥青的室内试验[J].土工技术资料,1985(3):27.
    [26].伊藤正秀.[筑波一号]橡胶沥青在全国的试验铺筑[J]. [日本]铺装,1987(3):22.
    [27]. Alex Visser,齐诚.用沥青橡胶技术推动中国沥青路面建设[C]. 2004改性沥青应用技术论坛论文集, 2004,深圳:352-362.
    [28].董诚春.胶粉的制法及其应用.实用橡胶手册第32章[M].北京:化学工业出版社,2001:1266-1295.
    [29].纪奎江.我国废旧橡胶生产技术现状及发展建议[J].中国轮胎翻修利用,2000(6):24-31.
    [30].钱敏等.胶粉的应用范围[J].中国资源综合利用,2002(2):14-15.
    [31].钱敏等.废轮胎怎么办?[J].再生胶信息,2001(12):1-4.
    [32].王旭东.废旧橡胶粉利用:利国、利民、利路[C].橡胶沥青在路面工程中应用技术交流会,2006,海南:39-41.
    [33].王宝仁,孙乃有.石油产品分析[M].北京:化学工业出版社,2004.
    [34].吴灿明,王旭东,李惠明,姜勇志.废旧橡胶粉在沥青混合料中应用的技术研究[C].中国公路学会2004学术年会论文集.北京:人民交通出版社,2004:45-50.
    [35].董诚春.废橡胶资源综合利用[M].北京:化学工业出版社,2003.
    [36].张力,张俊巍,付吉,宋佩元.橡胶粉沥青材料的试验研究[C].长春,吉林人民出版社,2002:112-119.
    [37].刘忠根.SMA矿料继配及配合比优化设计研究[D].西安:长安大学,2002.
    [38].张玉贞,李军.复合聚合物改性沥青技术浅论[C]. 2004改性沥青应用技术论坛论文集, 2004,深圳:363-375.
    [39].孙大权.SBS改性沥青相容性及其工程性质的研究[D].上海:同济大学,2003.
    [40]. Sun Daquan,Lu Weimin.Investigation and Improvement of Storage Stability of SBS modified asphalt,Petroleum science and technology,2003,21(5&6):910-911.
    [41].陈信忠,温贵安,张隐西.沥青的聚合物反应改性[J].石油沥青,2001,15(1):28-32.
    [42].孙大权,拾方治,周海生,吕伟民,王亚明.沥青—聚合物反应性共混改性技术研究进展[J].石油沥青,2004,18(1):6-9.
    [43]. Giavarini C,Filippis P D,Santarelli M L,et al.Stable modified bitumens.Eurasphalt& Eurobitumen congress,1996.
    [44]. Morrison G. R. Hedmark H. Hesp A. S. M. Elastic steric Stabilization of polyethylene-asphalt emulsions by using low molecular weight polybutadiene and devulcanized rubber tire,colloid&polymer science 1994,272(4):375-384.
    [45].温贵安,张勇,张隐西.橡胶反应共混改性沥青的机理[J].合成橡胶工业,2004,27(4):221-224.
    [46].陈信忠,温贵安,张隐西.橡胶改性沥青的新方法[J].公路交通科技,2001,18(4):1.
    [47].温贵安,张勇,张隐西.丁苯橡胶改性沥青的高性能化和稳定化[J].合成橡胶工业,2003,26(5):296-300.
    [48].温贵安.橡胶反应共混改性沥青的高性能化和稳定化研究[D].上海:上海交通大学,2001.
    [49]. Wen Guian,Zhangyong,Zhang Yinxi.Vulcanization characteristics of asphalt/SBS blends[J].J Appl Polym Sci,2001,82(4):989.
    [50]. Wen Guian,Zhangyong,Zhang Yinxi.Improved properties of SBS-modified asphalts with dynamic vulcanization[J].Polym Eng Sci,2002,42(5):3070.
    [51].高光涛.橡塑复合改性沥青稳定化和高性能化研究[D].上海:上海交通大学,2002..
    [52]. C.Lenoble.Performance/mincrostructure Relationship of Blends of Asphalts with Two Imcompatible Polymers.Fuel Sci.Technol.,1992,10(4-6):549-564.
    [53]. A.Ait-kadi,B.Brahimi,M.Bousmina.Polymer blends for enhanced asphalt binders.Polym.Eng.Sci.,1996,36(12):1724-1733.
    [54].张南鹭.复合改性沥青的研究[J].石油沥青,1995,9(3):17-22.
    [55].王仕峰等.高温贮存稳定的SBR/炭黑复合改性沥青[C].全国高分子材料科学与工程应用会议,2002,青岛.
    [56].王仕峰,朱玉堂,张勇,张隐西等.高温贮存稳定的沥青生产工艺,专利申请号:02111919.8,公开号:1386790.
    [57].张登良.沥青与沥青混合料[M].北京:人民交通出版社,1993.
    [58].郝培文,刘涛.利用SHRP结合料规范评价改性沥青的技术性能[J].公路交通技术,2003(1):11-13.
    [59].刘书套.高速公路环境保护与绿化[M].北京:人民交通出版社,2001.
    [60].魏建军,孔永健.多孔隙低噪声沥青路面降噪机理的研究[J].黑龙江工程学院学报(自然科学版),2004,18(1):11-13,19.
    [61].王旭东.低噪声沥青路面结构设计研究[J].公路交通科技,2003,20(1):33-37.
    [62]. H U Bahia,W P Hislop,H Zhai.Classification of Asphal Binders into Simple andComplex Binders.AAPT 1998,Vol 57:41-64.
    [63]. Ulf Isaccson , Xiahou Lu.Laboratory Investigation of Polymer Modified Bitumens.AAPT 1999,Vol 68:35-63.
    [64]. Collins,M G Bouldin,R Gelles,A Berker.Improved Performance of Paving Asphalts by Polymer Modification. AAPT 1991,Vol 60:43-79.
    [65].张争奇.改性沥青机理及应用研究[D].长安大学,1997.
    [66].黄卫东.聚合物改性沥青:显微结构、存贮稳定性、流变性能及其关系的研究[D].同济大学,2000.
    [67].黄立本,谷育生,黄敬.粉末橡胶[M].北京:化学工业出版社,2003.
    [68]. David Whiteoak.The SHELL Bitumen Handbook.1990.
    [69].杨清芝.实用橡胶工艺学[M].北京:化学工业出版社,2005.
    [70].杨清芝.现代橡胶工艺学[M].北京:中国石化出版社,1997.
    [71].张留成,瞿雄伟,丁会利.高分子材料基础[M].北京:化学工业出版社,2002.
    [72].凌绳,王秀芬,吴友平.聚合物材料[M].北京,中国轻工业出版社,2000.
    [73]. Evas C W.Powdered and Particulate Rubber Technology.London:Applied Science Publishers Ltd.,1978.
    [74].严家伋.沥青材料性能学[M].北京:人民交通出版社,1990.
    [75].张德勤,范耀华,师洪俊.石油沥青的生产与应用[M].北京:中国石化出版社,2001.
    [76].廖克俭,丛玉凤.道路沥青生产与应用技术[M]北京:化学工业出版社,2004.
    [77]. Tracl J.Depoy.Specifier’s Guid to Asphalt Modifiers.Roads & Bridges.May 1998:36.
    [78].杨林江.改性沥青及其乳化技术[M].北京:人民交通出版社,2004.
    [79].杨军等编著,聚合物改性沥青[M].北京:化学工业出版社,2006.
    [80].沈金安.高级公路沥青路面的低温开裂问题[J].石油沥青,1993(3).
    [81]. Lewandowski L H.Polymer modification of paving asphalt binders[J].Rubber Chemistry and Technologists,1994,67(3):447-480.
    [82].张争奇,张登良.改性沥青影响因素的探讨[J].国外公路,1997,17(1):38.
    [83]. Collins J H.Improved performance of paving asphalts by polymer modification[J].Journal of Association of Asphalt Paving Technologists,1990,59(6):509-525.
    [84]. Nahaas N C.Polymer modified asphalt for high performance hot mix Pavement[J]. Journal of Association of Asphalt Paving Technologists,1990,59(6):509-525.
    [85]. Brule B. Paving asphalt polymer blends relationships between composition structure and properties[J]. Journal of Association of Asphalt Paving Technologists,1988,57(1):41-46.
    [86].冯绪胜,刘洪国,郝京诚等.胶体化学[M].北京:化学工业出版社,2005.
    [87].顾雪蓉,朱育平.凝胶化学[M].北京:化学工业出版社,2005.
    [88].德鲁?迈尔斯.表面、界面和胶体—原理及应用[M].北京:化学工业出版社,2005.
    [89].沈文霞.物理化学核心教程[M].北京:科学出版社,2004.
    [90].武军,李和平.高分子物理及化学[M].北京:中国轻工业出版社,2001.
    [91].何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,2005.
    [92].金日光,华幼卿.高分子物理[M].北京:化学工业出版社,2000.
    [93].刘凤岐,汤心颐.高分子物理[M].北京:高等教育出版社,2004.
    [94].朱文涛.物理化学(上册)[M].北京:清华大学出版社,2002.
    [95].路凯冀,杨芸波.胶粉改性沥青路面减噪技术[J].交通节能与环保,2006(2):23-26.
    [96]. Meiarashi S,Ishida M.Noise Reduction Characteristics of Porous Elastic Road Surfaces.Applied Acoustics,Vol.47,No.3,1996.
    [97]. Prithvi S,Kandhal,Larry Lockett.Construction and Performance of Ultrathin Asphalt Friction Course.NCAT Report No.97-5.1997,9.
    [98].曹卫东,陈旭,吕伟民.简述国内外低噪声沥青路面研究状况[J].石油沥青,2005,19(1):50-54.
    [99].吕伟民.沥青混合料设计原理与方法[M].上海:同济大学出版社,2001.
    [100].李闯民.开级配沥青磨耗层(OGFC)的研究[J].公路,2002,3.
    [101].沈丽,邱飞程.高速公路噪声生态环境因子分析与治理[J].公路,2004(11):22-25.
    [102].隋文锋.高速公路噪声的综合治理[J].山东林业科技,2005(6):38-40.
    [103].杨满宏,李国香.机动车噪声与其结构振动偶合研究的现状及发展趋势[J].公路交通科技。1996(4).
    [104].赵剑强.公路交通与环境保护[M].北京:人民交通出版社,2000.
    [105].范跃武.低噪声混凝土路面[J].国外公路,1996,16(4):23-25.
    [106].马大猷.噪声控制学[M].北京:科学出版社,1987.
    [107].徐维红.低噪声路面的研究[D].北京:北京交通大学,2005.
    [108].刘雅萍.公路生态环境工程设计研究[D].天津:河北工业大学,2001.
    [109].其其格,闫宏伟.高速公路对通过区的环境影响研究进展[J].北华大学学报(自然科学版),2005,2(2):173-178.
    [110].刘彦林,牛增永,胡达平.沥青混凝土低噪声路面技术研究[J].市政技术,2004,22(3):139-142.
    [111].侯子义,庞明宝.低噪声沥青混凝土路面声学分析[J].公路,2004(6):22-25.
    [112].杨波,沈丹.低噪声沥青路面结构分析[J].公路工程与运输,2007(6):
    [113].洪宗辉.环境噪声控制工程[M].北京:高等教育出版社,2002.
    [114].马大猷,沈壕.声学手册[M].北京:科学出版社,1983.
    [115].方开泰.正交设计的最新发展和应用[J].数理统计与管理,1999,18(2)~(5).
    [116].任露泉等.拟水平追加试验的设计与分析[J].吉林工业大学学报,1990,20(1).
    [117].任露泉.试验优化设计与分析[M].长春:吉林科学技术出版社,2001.
    [118].方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001.
    [119].方开泰,马长兴,李久坤.正交设计的最新发展和应用[J].数理统计与管理,1999,18(3):43-50.
    [120].夏之宁,穆小静,李志良等.正交设计与均匀设计的初步比较[J].重庆大学学报(自然科学版),1999,22(5)112-117.
    [121].舒云.车用声学材料数据库开发与应用[D].长春:吉林大学,2006.
    [122].何渝生.汽车噪声控制[M].北京:机械工业出版社,1999.
    [123].马大猷.噪声与振动控制手册[M].北京:机械工业出版社,2002.
    [124].盛美萍,王敏庆,孙进才.噪声与振动控制基础[M].北京:科学出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700