用户名: 密码: 验证码:
人工耳蜗植入者汉语声调前注意加工及与耳蜗植入相关的耳蜗电刺激的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:1与正常的听觉系统相比,人工耳蜗系统仍然提供不了完整的信息,特别是音调(乐音)信息,所以人工耳蜗植入者对汉语声调识别不很理想。事件相关电位(event related potentials,ERP)能够提供大脑皮层水平对声音刺激加工的信息,失匹配负波(mismatch negativity,MMN)是一种对刺激信号的前注意加工的事件相关电位,是大脑在对刺激尚未有意识注意前的加工阶段,是一个自动察觉和加工过程。本实验应用事件相关电位中的失匹配负波作为研究指标,比较语前聋人工耳蜗植入者和正常人对汉语声调识别时听觉中枢前注意加工的区别。同时比较两种范式的失匹配负波(oddball和control)的作用。2本文将介绍在人工耳蜗植入术中测试人工耳蜗电极串中每一个电极放电时引起面神经刺激症状的电流阈值,寻找出规律性,探讨产生这种规律的原因。3本文还探讨鼓岬电刺激在声刺激测试无反应或反应不好的人工耳蜗植入者选择中的应用。
     方法:1耳蜗植入者选在北京协和医院耳鼻喉科进行手术的植入者,声音刺激材料为汉语四声调字,每个声调25个,共100个汉字,另外还有一种纯音,组成四个不同刺激组合,一个control block和三个oddball block。事件相关电位采用NeuroScan公司生产的EEG放大器,电极帽,采集分析软件Scan4.3进行,得出人工耳蜗植入者和正常人的两种MMN:oddball-MMN和control-MMN。2面神经反应阈值是在术中用人工耳蜗神经反应遥测设备(NRT)及面神经监测仪,记录不同强度的电刺激的面神经反应阈值,并进行分析,探寻不同电极刺激时面神经反应阈值变化的规律。3鼓岬电刺激选择1995年~2007年在北京协和医院植入人工耳蜗的鼓岬电刺激的患者进行分析,对这些对声刺激反应不佳的人工耳蜗植入者,在鼓岬电刺激指导下进行了人工耳蜗植入的患者术后效果进行总结,对鼓岬电刺激的意义作出评价。
     结果:1人工耳蜗植入者和正常人均能得到明显的MMN。oddball MMN:正常人和人工耳蜗植入者的oddball-MMN均含有两个负波,人工耳蜗植入者oddballMMN的第一个负波与正常人相比潜伏期明显提前,人工耳蜗植入者oddball MMN第二个负波的潜伏期与正常人相比也有提前的现象,但不如第一个负波差异显著性大。control MMN:正常人control MMN的第一个负波缺失;人工耳蜗植入者control-MMN的第一个负波仍然存在;正常人对三种声调加工的control MMN(相当于第二个负波)振幅具有显著的差异,而人工耳蜗植入者三种声调的control-MMN第二个负波振幅差异不具显著性。2面神经反应阈值:通过增加或是减少电刺激的强度,所有的人工耳蜗植入者都能够测试到面神经对人工耳蜗不同电极的电刺激反应阈,从我们的实验可以看到三种类型的反应阈变化趋势:(1)渐降型。(2)前段渐降,后段平稳,有一个明显的拐点。(3)前段渐降,后段平稳,有一个明显的拐点,但全程有波动。3鼓岬电刺激:声刺激测试效果不佳的患者均成功在鼓岬电刺激结果的指导下进行了人工耳蜗植入,术中、术后NRT测试均有反应,行为测听效果满意。
     结论:1人工耳蜗植入者和正常人都能够得到明显的对声调差异进行加工的MMN,证明人工耳蜗植入者和正常人都能够在前注意阶段对汉语声调进行加工。但从对总平均的波形观察和对统计结果的分析来看,人工耳蜗植入者的波形不规则,对声调之间的辨别统计分析没有明显的差异,说明人工耳蜗植入者与正常人相比对声调信息的加工困难,加工能力下降。在正常人中,因为control MMN与oddball MMN相比排除了声调物理属性差异对MMN的影响,真正反映以记忆为基础前注意加工,能够对声调的不同进行区分,说明在研究汉语声调的前注意加工时,control范式比oddball范式更加具有灵敏性,更能客观评价中枢前注意加工过程,避免了oddball造成的错估,更具有实用价值。2人工耳蜗电极由末端到顶端放电时,面神经电刺激反应阈值有减低的趋势,并且减低的方式有所不同,说明人工耳蜗电极在蜗管内时,顶端电极离面神经更近,直电极在蜗管内行进不规则。3声刺激测试反应不好,但能够合作的人工耳蜗植入者植入耳的选择,鼓岬电刺激能够提供有意义的参考。
Objective:1 Compared to normal auditory system,cochlear implant can not provide enough information,especially tonal information,so tonal discrimination is not so good in cochlear implant recipients.ERP can offer processing information to acoustic stimulation in cerebral cortex, MMN is an event related potentials of preattentive processing to stimulation signal,is Cerebullar processing of stimulation before attention,is a course of automatic detection and processing. Using mismatch negativity(MMN) of event related potentials(ERPs) as an index in our experiment,compared differences of pre-attentive auditory processing of Chinese tones between prelingual cochlear implant(CI) recipients and matched controls.At the same time,we compared the functions of two kinds of MMN.2 tested the threshold for cochlear implant electrodes stimulating the facial nerve,and investigate the change and the regularity of the change.3 To report and discuss the use of promontory stimulation test in cochlear implant candidates with poor response to acoustic stimulation test.
     Methods:1 cochlear implant recipients are those who were operated at Department of Otolaryngology and Head Neck Surgery of Peking Union Medical College Hospital.Auditory materials included four Chinese tones and a pure tone,we used 25 group of Chinese character as these,100 Chinese characters totally,made up four stimulation blocks,a control block and three oddball blocks.event related potentials were recorded and analyzed by a NeuroScan SynAmps EEG amplifier and Acquire software Scan4.3.Oddball MMNs and control MMNs of CI users and normal subjects were obtained by different subtracting,there were two kinds of MMNs obtained in cochlear implant recipients and normal subjects,oddball MMN and control MMN.2 Used the neural response telemetry(NRT) equipment of cochlear implant and facial nerve monitor to record the threshod for the response of facial nerve to different intensive electric stimulation.Through analysis,try to find the changing regularity according to different intensive electric stimulation.3 Selected twelve recipients of cochlear implant performed and mapped in PUMCH from 1995 to 2007,who adopted promontory stimulation test.We summarized the postoperative results of these cochlear implant recipients who performed poorly in acoustic stimulation and were operated under the direction of promontory stimulation test,and discussed the role of promontory stimulation test in cochlear implantation.
     Result:1 Obvious MMNs could be obtained from Cochlear implant recipients and normal subjects.Oddball MMN:oddball MMNs of normal person and cochlear implant recipients all had two negative waves,Latency of the first wave of oddball MMN was shorter in Cochlear implant recipients than in normal subjects,latency of the second wave was also shorter in Cochlear implant recipients than normal subjects,but the difference was not as significant as the first wave. Control MMN:in control paradigm,the first negative wave disappeared in normal subjects;In control MMNs of cochlear implant recipients,changes of the first wave are not as significant as normal subjects.In normal subjects,there were significant differences for the amplitudes of control MMN(corresponding to the second wave) about three Chinese tones block,but there were no difference in cochlear implant recipients.2 through increasing or decreasing the intension of electric stimuli,the threshold of facial nerve for electric stimuli could be obtained from all electrodes of all cochlear implant recipients,there were three kinds of variation trends of threshold:(1) Decreasing type.(2) Decreasing in anterior segment,stable in posterior segment, there is a obvious knee point.(3) Decreasing in anterior segment,stable in posterior segment, there is a obvious knee point too,but fluctuating in whole range.3 According to the results of promontory stimulation test,patients who had poorly acoustic stimulation tests were performed of cochlear implantion successfully;intraoperation and postoperation NRT test could be proceeded well;postoperative speech perception tests were satisfying.
     Conclusion:1 There were evident MMN in processing different Chinese tones in CI users and normal person,this indicated that CI users and normal person both can process Chinese tones in preattentive period.But from the waveforms of grand average and the results of statistical analysis, we could find the waveforms of CI users are irregular,and there were not significant differences in processing different Chinese tones in statistical analysis.Compared to normal person,the processing of CI users was more difficult than that of normal person,and the ability of processing in CI users was decreased.In normal subjects,compared to oddball MMN,control MMN eliminated the effect of acoustic physical characteristics,could reflect the real memory-based pre-attentive processing,it could reflect the differences in processing different Chinese tones.In experiments of preattentive process for Chinese tones,control paradigm is more sensitive than oddball paradigm,is more objective in evaluating the function of preattentive process,because it avoids the misestimation of the MMN as oddball paradigm,we believe control MMN is more valuable in practice.2 From the end to the tip of cochlear implant electrodes,there is decreasing trend of the facial nerve response thresholds to electric stimulation,but the decreasing styles are different.This can indicated that tip electrodes are closer to facial nerve,and the courses of straight electrodes in cochlear ducts are more irregular.3 cochlear implant candidates with poor response to acoustic stimulation test can get benefit from promontory stimulation test.
引文
Matthias Wittfoth , Angelika Wolf , Joachim Muller and Anja Hahne Music perception in cochlear implant users: an event-related potential study Stefan Koelsch, Clinical Neurophysiology Volume 115, Issue 4, April 2004, Pages 966-972
    
    Limb CJ. Cochlear implant mediated perception of music. Curr Opin Otolaryngol Head Neck Surg. 2006 0ct;14(5):337-40.
    
    Vongpaisal T, Trehub SE, Schellenberg EG. Song recognition by children and adolescents with cochlear implants. J Speech Lang Hear Res. 2006 Oct;49(5):1091-103.
    
    Huang TS, Wang NM, Liu SY Nucleus 22-channel cochlear mini-system implantations in Mandarin-speaking patients, Am J Otol. 1996 Jan;17(1):46-52.
    
    Huang TS, Wang NM, Liu SY. Tone perception of Mandarin speaking postlingually deaf implantees using the Nucleus 22-Channel Cochlear Mini System. Ann Otol Rhinol Laryngol Suppl. 1995 Sep;166:294-8.
    
    Peng SC, Tomblin JB, Cheung H, Lin YS, Wang LS. Perception and production of mandarin tones in prelingually deaf children with cochlear implants. Ear Hear. 2004 Jun;25(3):251-64.
    
    Faulkner, A., Rosen, S., & Smith, C. Effects of the salience of pitch and periodicity information on the intelligibility of four-channel vocoded speech: Implications for cochlear implants. The Journal of the Acoustical Society of America, 2000 Oct; 108(4): 1877-1887.
    
    Wei CG, Cao K, Zeng FG. Mandarin tone recognition in cochlear implant subjects. Hear Res. 2004 Nov;197(1-2):87-95.
    
    Xu L, Li Y, Hao J, Chen X, Xue SA, Han D. Tone production in Mandarin-speaking children with cochlear implants: a preliminary study. Acta Otolaryngol. 2004 May;124(4):363-7.
    Naatanen R, Winkler I. The concept of auditory stimulus representation in cognitive neuroscience. Psychol Bull. 1999 Nov; 125(6): 826-59.
    Naatanen, R. Mismatch negativity outside strong attentional focus: A commentary on woldorff et al. (1991). Psychophysiology, 1991; 28: 478-84.
    woldorff M et al. The effects of channel-selective attention on the mismatch negativity wave elicited by deviant tones. Psychophysiology, 1991; 28; 30-42.
    
    Singh S, Liasis A, Rajput K, Towell A, Luxon L. Event-related potentials in pediatric cochlear implant patients. Ear Hear. 2004 Dec;25(6):598-610.
    Giard, M. H., Perrin, F., Pernier, J., & Bouchet, P. Brain generators implicated in the processing of auditory stimulus deviance: a topographic event-related potential study. Psychophysiology, 1990 Nov;27(6):627-40.
    Levanen, S., Ahonen, A., Hari, R., McEvoy, L., & Sams, M. Deviant auditory stimuli activate human left and right auditory cortex differently. Cerebral Cortex, 1996 Mar-Apr;6(2): 288-96.
    
    Naatanen, R., Paavilainen, P., Alho, K., Reinikainen, K., & Sams, M. Do event-related potentials reveal the mechanism of the auditory sensory memory in the human brain? Neuroscience Letters, 1989 Mar 27;98(2):217-21.
    
    Naatanen, R., Jiang, D., Lavikainen, J., Reinikainen, K., & Paavilainen, P. Event-related potentials reveal a memory trace for temporal features. Neuroreport, 1993 Dec 13;5(3):310-2.
    
    Cheour, M., Leppanen, P. H., Kraus, N. Mismatch negativity (MMN) as a tool for investigating auditory discrimination and sensory memory in infants and children. 2000 Jan;111(1):4-16..
    
    Thomas Jacobsen, Erich Schroger, Thorsten Horenkamp and Istvan Winkler. Mismatch negativity to pitch change: varied stimulus proportions in controlling effects of neural refractoriness on human auditory event-related brain potentials Neuroscience Letters Volume 344, Issue 2, 26 June 2003, Pages 79-82.
    
    Jacobsen T, Schroger E. Measuring duration mismatch negativity. Clinical Neurophysiology Volume 114, Issue 6, June 2003, Pages 1133-1143
    
    KrausN, MiccoAG, Koch DB, McGee T, Carrell T, Sharma A, Wiet RJ, Weingarten CZ. The mismatch negativity cortical evoked potential elicited by speech in cochlear-implant users. Hear Res. 1993 Feb;65(1-2): 118-24.
    
    Groenen P, Snik A, van den Broek P. On the clinical relevance of mismatch negativity: results from subjects with normal hearing and cochlear implant users. Audiol Neurootol. 1996 Mar-Apr;1(2):112-24.
    
    Koelsch S, Wittfoth M, Wolf A, Muller J, Hahne A. Music perception in cochlear implant users: an event-related potential study. Clin Neurophysiol. 2004 Apr;115(4):966-72.
    
    Kelly AS, Purdy SC, Thorne PR. Electrophysiological and speech perception measures of auditory processing in experienced adult cochlear implant users. Clin Neurophysiol. 2005 Jun;116(6):1235-46. Epub 2005 Apr 26.
    
    Meng X, Sai X, Wang C, Wang J, Sha S, Zhou X. Auditory and speech processing and reading development in Chinese school children: behavioural and ERP evidence. Dyslexia. 2005 Nov;11(4):292-310.
    
    Chandrasekaran B, Gandour JT, Krishnan A. Neuroplasticity in the processing of pitch dimensions: A multidimensional scaling analysis of the mismatch negativity. Restor Neurol Neurosci. 2007;25(3-4):195-210.
    
    Naatanen, R., Gaillard, A. and Mantysalo, S., Early selective attention reinterpreted. Acta Psychol 1978 Jul;42(4):313-29.
    
    Korpilahti P, Krause CM, Holopainen I, Lang AH. Early and late mismatch negativity elicited by words and speech-like stimuli in children. Brain Lang. 2001 Mar;76(3):332-9.
    Naatanen, R., Tervaniemi, M. Sussman, E. Paavilainen P. and Winkler I., 'Primitive intelligence' in the auditory cortex, Trends Neurosci. 24 (2001), pp. 283-288.
    
    Ponton, C. W., &Don, M. The mismatch negativity in cochlear implant users. Ear and Hearing, 1995 Feb;16(1):131-46.
    
    Ponton, C. W., Eggermont, J. J., Don, M., Waring, M. D., Kwong, B., Cunningham, J. et al. Maturation of the mismatch negativity: effects of profound deafness and cochlear implant use. Audiology & Neuro - otology, 2000 May-Aug;5(3-4):167-85.
    
    F. Pulvermuller, B. Mohr and H. Schleichert, Semantic or lexico-syntactic factors: what determines word-class specific activity in the human brain?, Neurosci. Lett. 275 (1999), pp. 81-84.
    
    Ramsden R, Greenham P, 0'Driscoll M, et al. Evaluation of bilaterally implanted adult subjects with the nucleus 24 cochlear implant system. Otol Neurotol. 2005 Sep;26(5):988-98.
    
    Schon F, Muller J, Helms J. Speech reception thresholds obtained in a symmetrical four-loudspeaker arrangement from bilateral users of MED-EL cochlear implants. Otol Neurotol. 2002 Sep;23(5):710-4.
    van Hoesel RJ, Tyler RS.Speech perception, localization, and lateralization with bilateral cochlear implants. J Acoust Soc Am. 2003 Mar;113(3):1617-30.
    
    Ullauri A, Crofts H, Wilson K, Titley S. Bimodal benefits of cochlear implant and hearing aid (on the non-implanted ear): a pilot study to develop a protocol and a test battery. Cochlear Implants Int. 2007 Mar; 8(1): 29-37.
    
    Au DK, Hui Y, Wei WI. Superiority of bilateral cochlear implantation over unilateral cochlear implantation in tone discrimination in Chinese patients Am J Otolaryngol. 2003 Jan-Feb; 24(1): 19-23.
    Naatanen R, Tervaniemi M, Sussman E, Paavilainen P, Winkler I. Primitive intelligence in the auditory cortex. Trends Neurosci 2001;24:283-8.
    
    Naatanen R, Paavilainen P, Tiitinen H, Jiang D, Alho K. Attention and mismatch negativity. Psychophysiology 1993;30:436-50.
    
    Naatanen R, Winkler I. The concept of auditory stimulus representation in cognitive neuroscience. Psychol Bull 1999;125:826-59.
    
    Naatanen R. The mismatch negativity: a powerful tool for cognitive neuroscience. Ear Hear 1995; 16:6-18.
    
    Picton TW, Alain C, Otten L, Ritter W, Achim A. Mismatch negativity: different water in the same river. Audiol Neurootol 2000;5:l 11-39.
    
    Naatanen R. Attention and Brain Function, Erlbaum, Hillsdale, NJ, 1992.
    
    Braff DL, Geyer MA. Sensorimotor gating and schizophrenia. Human and animal model studies. Arch Gen Psychiatry. 1990 Feb;47(2):181-8.
    
    Sams M, Paavilainen P, Alho K, Na"a"ta"nen R. Auditory frequency discrimination and event-related potentials. Electroencephalogr Clin Neurophysiol 1985;62:437- 48.
    
    Schroger E, Wolff C. Mismatch response of the human brain to changes in sound location. Neuroreport. 1996 Nov 25;7(18):3005-8.
    
    Naatanen R, Lehtokoski A, Lennes M, Cheour M, Huotilainen M, Iivonen A, Vainio M, Alku P, Ilmoniemi RJ, Luuk A, Allik J, Sinkkonen J, Alho K. Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature. 1997 Jan 30;385(6615):432-4.
    
    Jacobsen T, Schroger E. Measuring duration mismatch negativity. Clin Neurophysiol. 2003 Jun;114(6):1133-43.
    
    Brown-Schmidt S, Canseco-Gonzalez E. Who do you love, your mother or your horse? An event-related brain potential analysis of tone processing in Mandarin Chinese. J Psycholinguist Res. 2004 Mar;33(2): 103-35.
    Lin YY, Chen WT, Liao KK, Yeh TC, Wu ZA, Ho LT. Hemispheric balance in coding speech and non-speech sounds in Chinese participants. Neuroreport. 2005 Apr 4;16(5):469-73.
    
    Chandrasekaran B, Krishnan A, Gandour JT. Mismatch negativity to pitch contours is influenced by language experience. Brain Res. 2007 Jan 12;1128(1):148-56.
    
    Chandrasekaran B, Gandour JT, Krishnan A. Neuroplasticity in the processing of pitch dimensions: a multidimensional scaling analysis of the mismatch negativity. RestorNeurol Neurosci. 2007;25(3-4): 195-210.
    
    Luo H, Ni JT, Li ZH, Li XO, Zhang DR, Zeng FG, Chen L.Opposite patterns of hemisphere dominance for early auditory processing of lexical tones and consonants. Proc Natl Acad Sci USA. 2006 Dec 19; 103(51): 19558-63.
    Faulkner,A.,Rosen,S.,& Smith,C.(2000).Effects of the salience of pitch and periodicity information on the intelligibility of four-channel vocoded speech:Implications for cochlear implants.The Journal of the Acoustical Society of America,2000 Oct;108(4):1877-1887.
    Matthias Wittfoth,Angelika Wolf,Joachim M(u|¨)ller and Anja Hahne Music perception in cochlear implant users:an event-related potential study Stefan Koelsch,Clinical Neurophysiology Volume 115,Issue 4,April 2004,Pages 966-972
    Limb CJ.Cochlear implant-mediated perception of music.Curr Opin Otolaryngol Head Neck Surg.2006 Oct;14(5):337-40.
    Vongpaisal T,Trehub SE,Schellenberg EG.Song recognition by children and adolescents with cochlear implants.J Speech Lang Hear Res.2006Oct;49(5):1091-103.
    Huang TS,Wang NM,Liu SY Nucleus 22-channel cochlear mini-system implantations in Mandarin-speaking patients,Am J Otol.1996 Jan;17(1):46-52.
    Huang TS,Wang NM,Liu SY.Tone perception of Mandarin-speaking postlingually deaf implantees using the Nucleus 22-Channel Cochlear Mini System.Ann Otol Rhinol Laryngol Suppl.1995 Sep;166:294-8.
    Peng SC,Tomblin JB,Cheung H,Lin YS,Wang LS.Perception and production of mandarin tones in prelingually deaf children with cochlear implants.Ear Hear.2004Jun;25(3):251-64.
    Wei CG,Cao K,Zeng FG.Mandarin tone recognition in cochlear-implant subjects.Hear Res.2004 Nov;197(1-2):87-95.
    Xu L,Li Y,Hao J,Chen X,Xue SA,Han D.Tone production in Mandarin-speaking children with cochlear implants:a preliminary study.Acta Otolaryngol.2004May;124(4):363-7.
    赵伦主编,ERP实验教程。天津社会科学出版社,2004。
    Giard, M. H., Perrin, F., Pernier, J., & Bouchet, P. Brain generators implicated in the processing of auditory stimulus deviance: a topographic event-related potential study. Psychophysiology, 1990 Nov;27(6):627-40.
    
    Levanen, S., Ahonen, A., Hari, R., McEvoy, L., & Sams, M. Deviant auditory stimuli activate human left and right auditory cortex differently. Cerebral Cortex, 1996 Mar-Apr;6(2): 288-96.
    
    Naatanen R, Winkler I. The concept of auditory stimulus representation in cognitive neuroscience. Psychol Bull. 1999 Nov; 125(6): 826-59.
    
    Naatanen, R. Mismatch negativity outside strong attentional focus: A commentary on woldorff et al.(1991). Psychophysiology, 1991; 28: 478-84.
    
    woldorff M et al. The effects of channel-selective attention on the mismatch negativity wave elicited by deviant tones. Psychophysiology, 1991; 28; 30-42.
    
    Singh S, Liasis A, Rajput K, Towell A, Luxon L. Event-related potentials in pediatric cochlear implant patients. Ear Hear. 2004 Dec;25(6):598-610.
    
    KrausN, MiccoAG, Koch DB, McGeeT, Carrell T, Sharma A, Wiet RJ, Weingarten CZ. The mismatch negativity cortical evoked potential elicited by speech in cochlear-implant users. Hear Res. 1993 Feb;65(1-2): 118-24.
    
    Groenen P, Snik A, van den Broek P. On the clinical relevance of mismatch negativity: results from subjects with normal hearing and cochlear implant users. Audiol Neurootol. 1996 Mar-Apr;1(2):112-24.
    
    Koelsch S, Wittfoth M, Wolf A, Muller J, Hahne A. Music perception in cochlear implant users: an event-related potential study. Clin Neurophysiol. 2004 Apr;115(4):966-72.
    
    Kelly AS, Purdy SC, Thorne PR.Electrophysiological and speech perception measures of auditory processing in experienced adult cochlear implant users. Clin Neurophysiol. 2005 Jun;116(6): 1235-46. Epub 2005 Apr 26.
    Meng X, Sai X, Wang C, Wang J, Sha S, Zhou X. Auditory and speech processing and reading development in Chinese school children: behavioural and ERP evidence. Dyslexia. 2005 Nov; 11 (4):292-310.
    
    Chandrasekaran B, Gandour JT, Krishnan A.Neuroplasticity in the processing of pitch dimensions: A multidimensional scaling analysis of the mismatch negativity. Restor Neurol Neurosci. 2007;25(3-4): 195-210.
    
    Naatanen, R., Gaillard, A. and Mantysalo, S., Early selective attention reinterpreted. Acta Psychol 1978 Jul;42(4):313-29.
    
    Korpilahti P, Krause CM, Holopainen I, Lang AH. Early and late mismatch negativity elicited by words and speech-like stimuli in children. Brain Lang. 2001 Mar;76(3):332-9.
    
    Naatanen, R., Tervaniemi, M. Sussman, E. Paavilainen P. and Winkler I., 'Primitive intelligence' in the auditory cortex, Trends Neurosci. 24 (2001), pp. 283-288.
    
    Ponton, C. W., & Don, M. (1995). The mismatch negativity in cochlear implant users. Ear and Hearing, 1995 Feb;16(1):131-46.
    
    Ponton, C. W., Eggermont, J. J., Don, M., Waring, M. D., Kwong, B., Cunningham, J. et al. Maturation of the mismatch negativity: effects of profound deafness and cochlear implant use. Audiology & Neuro - otology, 2000 May-Aug;5(3-4): 167-85.
    
    F. Pulvermuller, B. Mohr and H. Schleichert, Semantic or lexico-syntactic factors: what determines word-class specific activity in the human brain?, Neurosci. Lett. 275 (1999), pp. 81-84.
    
    Ramsden R, Greenham P, O'Driscoll M, et al.Evaluation of bilaterally implanted adult subjects with the nucleus 24 cochlear implant system. Otol Neurotol. 2005 Sep;26(5):988-98.
    
    Schon F, Muller J, Helms J. Speech reception thresholds obtained in a symmetrical four-loudspeaker arrangement from bilateral users of MED-EL cochlear implants. Otol Neurotol. 2002 Sep;23(5):710-4. van Hoesel RJ, Tyler RS.Speech perception, localization, and lateralization with bilateral cochlear implants. J Acoust Soc Am. 2003 Mar;113(3): 1617-30.
    
    Ullauri A, Crofts H, Wilson K, Titley S. Bimodal benefits of cochlear implant and hearing aid (on the non-implanted ear): a pilot study to develop a protocol and a test battery. Cochlear Implants Int. 2007 Mar;8(1):29-37.
    
    Au DK, Hui Y, Wei WI. Superiority of bilateral cochlear implantation over unilateral cochlear implantation in tone discrimination in Chinese patients Am J Otolaryngol. 2003 Jan-Feb; 24(1): 19-23.
    Cohen NL,Hoffman RA,Stroschein M.Medical or surgical complcation related to the Nucleus multichannel cochlear implant.Ann Otol Rhinol Laryngol 1988;97:8-13.
    Rayner MG,King T,Djalilian HR,et al.Resolution of facial stimulation in otosclerotic cochlear implants.Otolaryngol Head Neck Surg 2003;129:475 - 480.
    Bigelow PC,Kay DJ,Rafter KO,et al.Facial nerve stimulation from cochlear implants.Am J Otol 1998;19:163-169.
    Spelman FA,Clopton BM,Pfingst BE,et al.Tissue impedence and current flow in the implanted ear:implications for the cochlear prosthesis.Ann Otol Rhinol Laryngol Suppl 1982;98:3-8.
    Cushing SL,Papsin BC,Gordon ZA.Incidence and characteristics of facial nerve stimulation in children with cochlear implants.Laryngoscope.20060ct;116(10):1787-91.
    Smullen JL,Polak M,Hodges AV,Payne SB,King JE 3rd,Telischi FF,Balkany TJ.Facial nerve stimulation after cochlear implantation.Laryngoscope.2005 Jun;115(6):977-82.
    Kelsall DC,Shallop JK,Brammeier TG,et al.Facial nerve stimulation after Nucleus 22-channel cochlear implantation.Am J Otol 1997;18:336-41.
    Rotteveel LJ,Proops DW,Ramsden RT,Saeed SR,van Olphen AF,Mylanus EA.Cochlear implantation in 53 patients with otosclerosis:demographics,computed tomographic scanning,surgery,and complications.Otol Neurotol.2004 Nov;25(6):943-52.
    Stoddart RL,Cooper HR.Electrode complications in 100 adults with multichannel cochlear implants.J haryngol Otol Suppl.1999;24:18-20.
    周康荣,徐从得,肖湘生。胸部颈面部CT。上海:上海医科大学出版社,1996,359-360。
    Kruschinski C, Weber BP, Pabst RClinical relevance of the distance between the cochlea and the facial nerve in cochlear implantation. Otol Neurotol. 2003 Sep;24(5):823-7.
    
    Battmer R, Pesch J, Stover T, Lesinski-Schiedat A, Lenarz M, Lenarz T. Elimination of facial nerve stimulation by reimplantation in cochlear implant subjects. Otol Neurotol. 2006 0ct;27(7) :918-22.
    Johns, R.C., Steven, S.S. Three mechanisms of hearing by electrical stimulation. J. Acoust. Soc. Am. 1940; 12:281-290
    
    Simmons, F. B. Glatike, T. J. Comparison of electrical and acoustic stimulation of the cat ear. Ann. Otol. 1972; 81:731-739
    
    Kiang, N. Y. S., Moxon, E. C. Physiological consideration in artificial stimulation of the inner ear. Ann. Otol. 1972; 81: 714-729
    
    Merzenich, M. M., Michelson, R. P., Pettit, C. R. et. al. Neural encoding of sound sensation evoked by electrical stimulation of the acoustic nerve. Ann. Otol. 1973; 82: 486-503
    
    Chouard, C. H., Macleod, P. Implantation of multiple intracochlear electrode for rehabilitation of total deafness. Prelinmimary report. The Laryngoscope 1976; 86(3):1743
    
    Brackmann, D. E. Sensorineural hearing impairment. Clinical differentiation. The Otol. Clin. of North Am. 1978,11/1: 195
    
    Chouard, C. H. Multiple intracochlea electrode for rehabilitation in total deafness. The Otol. Clin. of North Am.1978; 11/1:217
    
    House WF, Brackmann DE. Electrical promontory testing in differential diagnosis of sensorineural hearing impairment. Laryngoscope 1974;84:2162-2171
    
    Lambert PR, Ruth RA , Halpin CF. Promontory electrical stimulation in labyrinthectomized ears. Arch Otolargol Head Neck Surg._1990 Feb; 116(2): 197-201.
    
    Hoth S, Lenarz T. Experience with electrostimulation of the acoustic nerve before cochlea implantation laryngorhinootologie. 1991 Apr;70(4): 199-207.
    
    Friedman RA, Brackmann DE, Mills D. Auditory-nerve integrity after middle-fossa acoustic-tumor removal. Otolaryngol Head Neck Surg.1998 Dec;119(6):588-92.
    
    Lambert PR, Ruth RA, Thomas JF.Promontory electrical stimulation in postoperative acoustic tumor patients.Laryngoscope.1992 Jul;102(7):814-9.
    
    Mason JC, De Michele A, Stevens C, Ruth RA, Hashisaki GT. Cochlear implantation in patients with auditory neuropathy of varied etiologies . Laryngoscope. 2003 Jan;113(1):45-9.
    Ito J,Tsuji J,Sakakihara J.Reliability of the promontory stimulation test for the preoperative evaluation of cochlear implants:a comparison with the round window stimulation test.Auris Nasus Larynx.1994;21(1):13-6.
    Sauvaget E,Pereon Y,Nguyen The Tich S,Bordure P.Electrically evoked auditory potentials:comparison between transtympanic promontory and round-window stimulations.Neurophysiol Clin.2002 Sep;32(4):269-74.
    中华医学会耳鼻咽喉科学分会,中华医学会耳鼻喉科杂志编辑委员会.人工耳蜗植入工作指南(2003年,长沙)[J].中华耳鼻咽喉科杂志,2004,39(2):66.
    Schrnidt AM,Weber BP,Vahid M,Zacharias R,Neuburger J,Witt M,Lenarz T,Becker H.Functional MR imaging of the auditory cortex with electrical stimulation of the promontory in 35 deaf patients before cochlea implantation.AJNR Am J Neuroradiol.2003 Feb;24(2):201-7.
    Kileny PR,Zwolan TA.Pre-perioperative,transtympanic electrically evoked auditory brainstem response in children.Int J Audiol.2004 Dec;43 Suppl 1:S 16-21.
    Scao YL,Robier A,Baulieu JL,Beutter P,Pourcelot L._Perfusion response during electrical stimulation of the auditory nerve in profoundly deaf patients:study with single photon emission computed tomography.Am J Otol.1993 Jan;14(1):70-3.
    Mortensen MV,Madsen S,Gjedde A.Cortical responses to promontorial stimulation in postlingual deafness.Hear Res.2005 Nov;209(1-2):32-41.Epub 2005 Aug 11.
    Schmidt AM,Weber BP,Vahid M,Zacharias R,Neuburger J,Witt M,Lenarz T,Becker H.Functional MR imaging of the auditory cortex with electrical stimulation of the promontory in 35 deaf patients before cochlea implantation.AJNR Am J Neuroradiol.2003 Feb;24(2):201-7.
    1 赵伦主编,ERP实验教程。天津社会科学出版社,2004。
    2 罗跃嘉主编,认知神经科学教程。北京大学出版社,2006。
    3 Purdy SC,Kelly AS,Thome PR.Auditory evoked potentials as measures of plasticity in humans.Audiol Neurootol.2001 Jul-Aug;6(4):211-5.
    4 Gordon,Karen A.;Tanaka,Sho;Papsin,Blake C.Atypical cortical responses underlie poor speech perception in children using cochlear implantsNeuroreport December 2005,pp 2041-2045.
    5 Sharma,Anu.Dorman,Michael F.;Spahr,Anthony J.Rapid development of cortical auditory evoked potentials after early cochlear implantation.NeuroReport 2002 PP 1365-1368.
    6 Singh,Shomeshwar;Liasis,Alki;Rajput,Kaukab;Towell,Anthony;Luxon,Linda Event-Related Potentials in Pediatric Cochlear Implant Patients.Ear & Hearing.25(6):598-610,December 2004.
    7 Groenen P,Snik A,van den Broek P:On the clinical relevance of mismatch negativity:Results from subjects with normal hear- ing and cochlear implant users.Audiol Neurootol 1996;1:112-124.
    8 Eila Lonka,Teija Kujala,Anne Lehtokoski,Reijo Johansson,Satu Rimmanen,Kimmo Alho,Risto N(a|¨)(a|¨)t(a|¨)en Mismatch Negativity Brain Response as an Index of Speech Perception Recovery in Cochlear-Implant Recipients Audiology & Neuro -Otology 2004;9:160-162.
    9 Ponton CW,Don M.The mismatch negativity in cochlear implant users.Ear Hear.1995 Feb;16(1):131-46.
    10 Kraus N,Micco AG,Koch DB,McGee T,Carrell T,Sharma A,Wiet R J,Weingarten CZ.The mismatch negativity conical evoked potential elicited by speech in cochlear-implant users. Hear Res. 1993 Feb;65(l-2):118-24.
    
    11 Eggermont JJ, Ponton CW Auditory-evoked potential studies of cortical maturation in normal hearing and implanted children: correlations with changes in structure and speech perception. Acta Otolaryngol. 2003 Jan;123(2):249-52.
    
    12 C Pantev, B. Ross, A. Wollbrink, M. Riebandt, K. W. Delank, E. Seifert and A. Lamprecht-Dinnesen Acoustically and electrically evoked responses of the human cortex before and after cochlear implantation Hearing Research Volume 171, Issues 1-2 , September 2002, Pages 191-195.
    
    13 Hoppe U, Rosanowski F, Iro H, Eysholdt U. Loudness perception and late auditory evoked potentials in adult cochlear implant users. Scand Audiol. 2001 ;30(2): 119-25.
    
    14 A. Sharma, M. Dorman and T. Spahr, A sensitive period for the development of the central auditory system in children with cochlear implants, Ear Hear. 23 (2002) (6), pp. 532-539.
    
    15 Anu Sharma, Michael F. Dorman and Andrej Kral The influence of a sensitive period on central auditory development in children with unilateral and bilateral cochlear implants Hearing Research Volume 203, Issues 1-2 , May 2005, Pages 134-143.
    
    16 Sharma A, Tobey E, Dorman M, Bharadwaj S, Martin K, Gilley P, Kunkel F. Central auditory maturation and babbling develop ment in infants with cochlear implants. Arch Otolaryn- gol Head Neck Surg. 2004 May;130(5):511-6.
    
    17 Eggermont JJ, Ponton CW, Don M, Waring MD, Kwong B.Maturational delays in cortical evoked potentials in cochlear implant users. Acta Otolaryngol. 1997 Mar; 117(2): 161-3.
    
    18 Ponton CW, Don M, Eggermont JJ, Waring MD, Kwong B, Masuda AAuditory system plasticity in children after long periods of complete deafness.Neuroreport. 1996 Dec 20;8(1):61-5.
    
    19 D.S. Lee, J.S. Lee, S.H. Oh, S.K. Kim, J.W. Kim, J.K. Chung, M.C. Lee and C.S. Kim, Cross-modal plasticity and cochlear implants, Nature 409 (2001) (6817), pp. 149-150.
    
    20Beynon AJ, Snik AF, Stegeman DF, van den Broek P. Discrimination of speech sound contrasts determined with behavioral tests and event-related potentials in cochlear implant recipients. J Am Acad Audiol. 2005 Jan; 16(1): 42-53.
    
    21Kubo T, Yamamoto K, Iwaki T, Matsukawa M, Doi K, Tamura M. Significance of auditory evoked responses (EABR and P300) in eochlear implant subjects. Acta Otolaryngol. 2001 Jan;121(2):257-61.
    
    22Beynon AJ, Snik AF, van den Broek P. Evaluation of eochlear implant benefit with auditory cortical evoked poten- tials. Int J Audiol. 2002 Oct;41(7):429-35.
    
    23Jordan K, Schmidt A, Plotz K, von Specht H, Begall K, Roth N, Scheich H. Auditory event-related potentials in post- and prelingually deaf eochlear implant recipients.Am J Otol. 1997 Nov;18(6 Suppl):S116-7.
    
    24Kileny PR, Boerst A, Zwolan T. Cognitive evoked potentials to speech and tonal stimuli in children with implants. Otolaryngol Head Neck Surg. 1997 Sep; 117(3 Pt 1):161-9.
    
    25Groenen PA, Makhdoum M, van den Brink JL, Stollman MH, Snik AF, van den Broek P.The relation between electric auditory brain stem and cognitive responses and speech perception in eochlear implant users. Acta Otolaryngol. 1996 Nov;116(6):785-90.
    
    26Ponton CW, Don M, Waring MD, Eggermont JJ, Masuda A Spatio-temporal source modeling of evoked potentials to acoustic and eochlear implant stimulation. Electroencephalogr Clin Neurophysiol. 1993 Nov-Dec;88(6):478-93.
    
    27Ponton CW, Eggermont JJ. Audiol Neurootol. Of kittens and kids: altered cortical maturation following profound deafness and eochlear implant use.2001 Nov-Dec; 6(6):363-80.
    
    28 Stephane Roman, Georges Canevet, Patrick Marquis, Jean-Michel Triglia and Catherine Liegeois-Chauvel Hearing Research Volume 201, Issues 1-2 , March 2005, Pages 10-20.
    
    29Okusa M, Shiraishi T, Kubo T, Nageishi Y. Effects of discrimination difficulty on cognitive event-related brain potentials in patients with cochlear implants Otolaryngol Head Neck Surg. 1999 Nov;121(5):610-5.
    
    30 Maurer, Jan MD, PhD; Collet, L. MD; Pelster, H.; Truy, E. MD; Gallego,S. PhD Auditory Late Cortical Response and Speech Recognition in Digisonic Cochlear Implant Users ,Laryngoscope Volume 112(12), December 2002, pp 2220-2224.
    1 曹克利 儿童人工耳蜗手术的并发症与处理 中华耳科学杂志2007年3月5卷1期刊首专稿。
    2 Cohen NL,Hoffman RA,Stroschein M.Medical or surgical complcation related to the Nucleus multichannel cochlear implant.Ann Otol Rhinol Laryngol 1988;97:8-13.
    3 Rayner MG,King T,Djalilian HR,et al.Resolution of facial stimulation in otosclerotic cochlear implants.Otolaryngol Head Neck Surg 2003;129:475-480.
    4 Rotteveel LJ,Proops DW,Ramsden RT,Saeed SR,van Olphen AF,Mylanus EA.Cochlear implantation in 53 patients with otosclerosis:demographics,computed tomographic scanning,surgery,and complications.Otol Neurotol.2004Nov;25(6):943-52.
    5 Bigelow DC,Kay D J,Rafter KO,et al.Facial nerve stimulation from cochlear implants.Am J Otol 1998;19:163-169.
    6 周康荣,徐从得,肖湘生。胸部颈面部CT。上海:上海医科大学出版社,1996,359-360。
    7 Kelsall DC,Shallop JK,Brammeier TG,et al.Facial nerve stimulation after Nucleus 22-channel cochlear implantation.Am J Otol 1997;18:336-41.
    8 Stoddart RL,Cooper HR.Electrode complications in 100 adults with multichannel cochlear implants.J Laryngol Otol Suppl.1999;24:18-20.
    9 Smullen JL,Polak M,Hodges AV,Payne SB,King JE 3rd,Telischi FF,Balkany TJ.Facial nerve stimulation after cochlear implantation.Laryngoscope.2005Jun;115(6):977-82.
    10 Kruschinski C,Weber BP,Pabst RClinical relevance of the distance between the cochlea and the facial nerve in cochlear implantation.Otol Neurotol.2003Sep;24(5):823-7.
    11 Bigelow DC,Kay D J,Rafter KO,Montes M,Knox GW,Yousem DM.Facial nerve stimulation from cochlear implants.Am J Otol.1998 Mar;19(2):163-9.
    12 Saunders E,Cohen L,Aschendorff A,et al.Threshold,comfortable level and impedence changes as a function of electrodemodiolar distance.Ear Hearing 2002;23:28S-40S.
    
    13 Battmer R, Pesch J, Stover T, Lesinski-Schiedat A, Lenarz M, Lenarz T.Elimination of facial nerve stimulation by reimplantation in cochlear implant subjects. Otol Neurotol. 2006 Oct;27(7):918-22.
    
    14 Spelman FA, Clopton BM, Pfingst BE, et al. Tissue impedence and current flow in the implanted ear: implications for the cochlear prosthesis. Ann Otol Rhinol Laryngol Suppl 1982;98:3-8.
    
    15 Matterson AG, O'Leary S, Pinder D, Freidman L, Dowell R, Briggs R.Otosclerosis: selection of ear for cochlear implantation. Otol Neurotol. 2007 Jun;28(4):438-46.
    
    16 Jaekel K, Aschendorff A, Klenzner T, Laszig R.Results with the Contour cochlear implant in patients with cochlear otosclerosis]Laryngorhinootologie. 2004 Jul;83(7):457-60.
    
    17 Matterson AG, O'Leary S, Pinder D, Freidman L, Dowell R, Briggs R.Otosclerosis: selection of ear for cochlear implantation. Otol Neurotol. 2007 Jun;28(4):438-46.
    
    18 Hawkins JE Jr, Linthicum FH Jr, Johnsson LG.Cochlear and vestibular lesions in capsular otosclerosis as seen in microdissection. Ann Otol Rhinol Laryngol Suppl. 1978 Mar-Apr;87(2 Pt 3 Suppl 48): 1-40.
    
    19 Johnsson LG, Hawkins JE Jr, Lintichum FH Jr. Cochlear and vestibular lesions in capsular otosclerosis as seen in microdissection. Ann Otol Rhinol Laryngol Suppl 1978;87:1-40.;
    
    20 Green JD, Marion MS, Hinojosa R. Labyrinthitis ossificans: histopathologic consideration for cochlear implantation. Otolaryngol Head Neck Surg 1991; 104:320-6.;
    
    21 Seidman DA, Chute PM, Pansier S. Temporal bone imaging for cochlear implantation. Laryngoscope 1994;104:562-5.
    
    22 Keithley EM, Chen MC, Linthicum F. Clinical diagnoses associated with histologic findings of fibrotic tissue and new bone in the inner ear. Laryngoscope. 1998 Jan;108(1 Pt 1):87-91.
    
    23 Fayad J, Moloy P, Linthicum FH Jr. Cochlear otosclerosis: does bone formation affect cochlear implant surgery? Am J Otol. 1990 May; 11(3): 196-200.
    24 Quaranta N, Bartoli R, Lopriore A, Fernandez-Vega S, Giagnotti F, Quaranta A. Cochlear implantation in otosclerosis. Otol Neurotol. 2005 Sep;26(5):983-7.
    
    25 Iurato S, Ettorre GC, Onofri M, Davidson C. Very far-advanced otosclerosis. Am J Otol. 1992 Sep;13(5):482-7.
    
    26 Iurato S, Onofri M, Quaranta A. Far-advanced otosclerosis. ORL J Otorhinolaryngol Relat Spec. 1998 Nov-Dec;60(6):353-4.
    
    27 Battmer R, Pesch J, Stover T, Lesinski-Schiedat A, Lenarz M, Lenarz T.Elimination of facial nerve stimulation by reimplantation in cochlear implant subjects. Otol Neurotol. 2006 Oct;27(7):918-22.
    
    28 Ramsden R, Bance M, Giles E, Mawman D. Cochlear implantation in otosclerosis: a unique positioning and programming problem. J Laryngol Otol. 1997 Mar;111(3):262-5.
    
    29 Mens LHM, Oostendorp T, van den Broek P. Cochlear implant generated surface potentials: current spread and side effects. Ear Hear 1994; 15:339-45.
    
    30 Kempf HG, Johann K, Lenarz T.Complications in pediatric cochlear implant surgery. Eur Arch Otorhinolaryngol. 1999;256(3): 128-32.
    
    31 Cushing SL, Papsin BC, Gordon KA.Incidence and characteristics of facial nerve stimulation in children with cochlear implants. Laryngoscope. 2006 Oct;116(10):1787-91.
    
    32 Szilvassy J, Jori J, Czigner J, Toth F, Szilvassy Z, Kiss JG.Cochlear implantation in osteogenesis imperfecta. Acta Otorhinolaryngol Belg. 1998;52(3):253-6.
    
    33 Iwasaki S, Atsumi K, Ocho S, Mizuta K. Facial nerve stimulation by a cochlear implant in a hemodialysis patient with bone of low mineral density. Eur Arch Otorhinolaryngol. 1998;255(7): 352-4.
    
    34 Papsin BC Cochlear implantation in children with anomalous cochleovestibular anatomy. Laryngoscope. 2005 Jan;l 15(1 Pt 2 Suppl 106):1-26.
    
    35 Hoffman RA, Downey LL, Waltzman SB, Cohen NL.Cochlear implantation in children with cochlear malformations. Am J Otol. 1997 Mar;18(2):184-7.
    
    36 Graham JM, Phelps PD, Michaels L. Congenital malformations of the ear and cochlear implantation in children: review and temporal bone report of common cavity. J Laryngol Otol Suppl. 2000;25:l-14.
    
    37 Lin YS, Lee FP, Peng SC.Complications in children with long-term cochlear implants. ORL J Otorhinolaryngol Relat Spec. 2006;68(4):237-42.
    
    38 Maas S, Bance M, O'Driscoll M, Mawman D, Ramsden RT.Explantation of a nucleus multichannel cochlear implant and re-implantation into the contralateral ear. A case report of a new strategy.J Laryngol Otol. 1996 Sep;l 10(9):881-3.
    
    39 Niparko JK, Oviatt DL, Coker NJ, Sutton L, Waltzman SB, Cohen NL. Facial nerve stimulation with cochlear implantation. Otolaryngol Head Neck Surg. 1991 Jun;104(6):826-30.
    
    40 Kelsall DC, Shallop JK, Brammeier TG, Prenger EC.Facial nerve stimulation after Nucleus 22-channel cochlear implantation.Am J Otol. 1997 May;18(3):336-41.
    
    41 Camilleri AE, Toner JG, Howarth KL, Hampton S, Ramsden RT. Cochlear implantation following temporal bone fracture. J Laryngol Otol. 1999 May;113(5):454-7.
    
    42 Mu'ller-Deile J, Schmidt BJ, Rudert H. Facial stimulationVa problem in speech processor programming? In: Hochmair- Desoyer IJ, Hochmair ES, eds. Advances in Cochlear Implants. Mainz, Germany: Wien, 1994:243Y6.
    
    43 Niparko JK, Oviatt DL, Coker NJ, et al. Facial nerve stimulation with cochlear implant. Otolaryngol Head Neck Surg 1991; 104:826-830.
    
    44 Langman AW, Quigley SM, Heffernan JT, Brazil C.Use of botulinum toxin to prevent facial nerve stimulation following cochlear implantation. Ann Otol Rhinol Laryngol Suppl. 1995 Sep;166:426-8.
    
    45 Muckle RP, Levine SG. Facial nerve stimulation produced by cochlear implants in patients with cochlear otosclerosis. Am J Otol 1994; 15:394-398.
    
    46 Weber BP, Lenarz T, Battmer D, et al. Otosclerosis and facial nerve stimulation. Ann Otol Rhinol Laryngol Suppl 1995; 166:445-447.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700