高游离脂肪酸对胰岛α细胞分泌功能的影响及其机理探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨高脂饲养肥胖大鼠的胰高糖素分泌功能变化及大剂量STZ去B细胞处理的肥胖大鼠α细胞胰岛素信号转导通路分子的表达情况及其可能机理。
     方法:30只SD大鼠分为高脂饲料饲养的肥胖(HFD)组和普通饲料饲养的正常对照(ND)组饲养20周:(1)检测血糖、空腹胰岛素(FINS)、胰高糖素、游离脂肪酸(FFA)、甘油三酯(TG)水平;(2)正常血糖高胰岛素钳央试验评价外周胰岛素抵抗程度;(3)离体胰岛细胞表面灌注检测胰高糖素的动态分泌变化,(4)给予大剂量STZ去β细胞处理,使用胰岛素控制血糖,5天后处死动物,采用HE及免疫组化染色检测胰岛面积及α、β细胞面积变化,胰腺匀浆检测胰岛素及胰高糖素含量,建立去β细胞大鼠模型,即ND-B组,HFD-B组,分离胰岛细胞。(5)采用实时RT-PCR方法比较两组大鼠α细胞胰高糖素、胰岛素受体底物-1(IRS-1)、胰岛素受体底物-2(IRS-2)、磷酯酰肌醇3激酶(PI3-K)的mRNA表达的情况。
     结果:(1)HFD组葡萄糖输注率(GIR)明显低于ND组(5.25 mg·min~(-1)·kg~(-1)±1.2mg·min~(-1)·kg~(-1) vs 13.56 mg·min~(-1)·kg~(-1)±1.7mg·min~(-1)·kg~(-1),P<0.01),HFD组血FFA、FINS及胰高糖素水平显著高于ND组(FFA 508(394-622)μmol/L vs 325(240-410)μmol/L,FINS 23.7(14.0-33.4) mIU/L vs 11.5(3.6-19.4) mIU/L;胰高糖素345(298.6-391.4) pg/ml vs 256(226.4-285.6) pg/ml;P<0.05);(2)胰岛细胞表面灌注HFD组基础胰高糖素的分泌高于ND组(P<0.01),16.7mmol/L葡萄糖灌注后HFD组胰岛的胰高糖素分泌未受抑制,(3)去β细胞ND鼠胰岛面积约为正常大鼠1/7,β细胞面积占胰岛面积比例也由正常状念的74.3%下降到5.4%,胰腺匀浆液胰岛素的含量不到正常的3%,胰高糖素的含量未下降反而略有上升。α细胞由周边聚集到胰岛中央,α细胞面积占胰岛面积比例也由正常状态的16.4%上升到76.5%,高脂肥胖大鼠与ND鼠处理后结果类似,得到去β大鼠模型ND-B组,HFD-B组。(4)与ND-B组相比,HFD-B组α细胞胰高糖素mRNA的表达增高34.2%,IRS-2及PI3-K mRNA分别降低28.5%、21.3%(P<0.01),而IRS-1仅降低7%(P>0.05)。(5)相关分析显示:血FFA水平与GIR呈明显负相关(r=-0.675,P<0.01);且与α细胞IRS-2 mRNA表达也呈明显负相关(r=-0.458 P<0.05)。
     结论:高脂饲养肥胖大鼠存在胰高糖素分泌亢进,升高的胰岛素水平不能降低其分泌,胰岛α细胞胰岛素信号转导分子表达降低,存在胰岛素抵抗且与血FFA水平升高有关。
     目的:探讨高脂饲养大鼠胰岛α细胞的分泌功能、胰岛素信号转导通路分子、炎症通路分子基因的表达变化以及吡格列酮干预的影响,并探讨其可能的机理。
     方法:SD大鼠随机分为3组,正常饲养组(ND)、高脂饲养组(HFD)、高脂+吡格列酮组(HP)。饲养20周后(1)检测FINS、胰高糖素、FFA、高敏C反应蛋白(hsCRP),肿瘤坏死因子-α(TNF-α),白介素-6(IL-6)、血及胰腺组织丙二醛(MDA)、还原型谷胱苷肽(GSH)及硝基酪氨酸(NT)水平;(2)正常血糖高胰岛素钳夹试验评价外周胰岛素抵抗程度;(3)离体胰岛细胞表面灌注检测胰高糖素的动态分泌变化,(4)同时三组大鼠各随机入组8只给予大剂量STZ去β细胞处理,分为正常去β细胞组(ND-B),高脂去β细胞组(HFD-B),高脂+吡格列酮去β细胞组(HP-B),采用实时定量PCR方法比较三组去β细胞大鼠α细胞胰高糖素、IRS-1、IRS-2、PI3-K、核因子-κB(NF-κB)、核因子κB抑制蛋白(IκBα)mRNA表达的情况。
     结果:(1)HFD组GIR明显低于ND组,血FINS、胰高糖素、FFA及hsCRP、TNF-α、IL-6水平均显著高于ND组;HFD组大鼠血清及胰腺组织中MDA、NT明显升高,而GSH明显低于正常组;而HP组以上各项指标较HFD组均明显改善。(2)胰岛细胞表面灌注HFD组基础胰高糖素的分泌高于ND组(P<0.01),16.7mmol/L葡萄糖灌注后HFD组胰岛的胰高糖素分泌未受抑制(见第一部分),HP组逆转了这种变化。
     (3)与ND-B组相比,HFD-B组α细胞胰高糖素mRNA的表达增高,IRS-2及PI3-KmRNA降低,而IRS-1变化不大。NF-κB mRNA的表达增高20.5%,IκBαmRNA表达降低24.3%(均P<0.01)。HP-B组较HFD-B组胰高糖素、IRS-2及PI3-KmRNA分别改善40.6%、57.2%、60.6%,NF-κB、IκBαmRNA分别改善78.3%、58.8%。(4)相关分析显示:血FFA水平与GIR呈明显负相关(r=-0.675,P<0.01);与α细胞IRS-2mRNA表达也呈明显负相关(r=-0.458 P<0.05),与NF-κB mRNA表达呈正相关(r=0.775 P<0.05)。
     结论:高脂饮食诱导的肥胖大鼠胰高糖系分泌增加,去β细胞的肥胖大鼠胰岛α细胞存在胰岛素信号受阻及胰岛α细胞炎症通路活化,且均与血FFA水平升高有关,升高的血FFA可能通过诱导氧化应激反应增强使胰岛α细胞炎症通路活化导致α细胞胰岛素抵抗,吡格列酮能降低FFA水平,减轻氧化应激从而抑制炎症通路活化,改善α细胞胰岛素信号转导,逆转α细胞胰岛素抵抗。
     目的:探讨长时间不同浓度棕榈酸对体外培养仓鼠肿瘤α细胞株INR1-G9的分泌功能的影响及可能机理。
     方法:用不同梯度浓度棕榈酸(0.125mmol/L、0.25mmol/L、0.5mmol/L)培养仓鼠胰岛α细胞肿瘤株INR1-G9,24h、48h和72h后检测α细胞分泌功能的变化及细胞内胰高糖素含量。检测不同棕榈酸浓度培养72h的细胞TG含量,并采用实时定量RT-PCR方法检测INR1-G9细胞胰高糖素mRNA的表达变化,Westernblotting检测胰岛素及PI3-K抑制剂(wortmannin)对胰岛素信号转导下游分子PKB/Akt的磷酸化情况的影响。
     结果:(1)棕榈酸刺激INR1-G9细胞胰高糖素分泌为时问和剂量依赖性,作用24h时在棕榈酸0.5mM浓度培养时、作用48h及72h时各浓度棕榈酸组较对照组均达统计学差异(P<0.05)。(2)随棕榈酸作用时间延长及浓度增加细胞内胰高糖素含量逐渐减少,最终在48h棕榈酸0.5mM组,72h棕榈酸0.25mM、0.5mM组达统计学差异。(3)棕榈酸培养的72h各组INR1-G9细胞胰高糖素的mRNA表达较对照组仅有轻微增加趋势。(4)棕榈酸增加培养72h各组细胞内TG沉积并呈剂量依赖性,随棕榈酸浓度升高细胞内TG含量增加,与无脂肪酸的对照组比较各组均有统计学差异(P<0.05),在0.5mmol/L棕榈酸浓度下达显著差异(P<0.01)。(5)PI3-K抑制剂及FFA略降低INR1-G9细胞Akt磷酸化水平但未达统计学差异,胰岛素增加了各组细胞的Akt磷酸化水平,但高FFA组的升高程度明显低于无FFA组;在加入了胰岛素的基础上再给予PI3-K抑制剂后,各组Akt磷酸化水平均明显下降,但高FFA组Akt磷酸化水平抑制率明显低于无FFA组。
     结论:棕榈酸促进仓鼠α细胞肿瘤株INR1-G9细胞胰高糖素分泌,且为时间和剂量依赖性;α细胞内胰高糖素含量随作用时间延长及浓度增加逐渐减少,而胰高糖素的基因表达未见明显变化,提示棕榈酸主要刺激了胰高糖素的释放。棕榈酸对胰高糖素的分泌功能的影响可能与其增加α细胞TG含量、抑制α细胞上胰岛素介导的P13K/Akt信号通路有关。
Objective To investigate the secretory function of the islet a cells in rats fed high-fat-diet and the changes of insulin signal transduction molecules in islet a cells in beta-cell-deleting high-fat-diet rat models established by injecting high dose STZ and its underlying mechanism.
     Methods Thirty SD rats were randomly divided into 2 groups and fed with high-fat-diet (HFD group)or normal diet(ND group).At the end of twenty weeks feeding , we determined serum glucose, FINS, glucagon, FFA, TG. The GIR was measured by using euglycemic hyperinsulinemia clamp to evaluate the perpherial insulin resistance and the islet perfusion assays were performed. At the same time, the beta-cell-deleting rat models were established by injecting large dose STZ (lOOmg/kg) in HFD and ND group. Control the serum glucose by insulin. Five days later, the beta-cell-deleting rat models were acquired and sacrificed, named HFD-B and ND-B group. The levels of insulin and glucagon in the pancreatic homogenate were measured. The HE and immunohistochemistry dyeing was performed to evaluate the areas of islets、beta and alpha cells. Quantitative analysis was executed by image analyzer. And islets were isolated and collected. The expression of glucagon, IRS-1, IRS-2, PI3-K gene in islets was detected by real-time RT-PCR.
     Results (1) The serum FFA、FINS and glucagon concentration in HFD group were higher than in ND group(FFA 508(394-622) umol/L vs 325(240-410) umol/L, FINS 23.7(14.0-33.4) mIU/L vs 11.5(3.6-19.4)mIU/L;glucagon 345(298.6-391.4) pg/ml vs 256(226.4-285.6) pg/ml;P<0.05).(2)The GIR was decreased significantly in HFD group compared with ND group(5.25mg·min~(-1)·kg~(-1)±1.2mg·min~(-1)·kg~(-1) vs 13.56 mg·min~(-1)·kg~(-1)±1.7mg·min~(-1)·kg-1,P<0.01).(3)The basal glucagon secretion in rats fed high-fat-diet was 3 folds of that in ND group, and couldn't be inhibited during the perfusion of 16.7mmol/L glucose. (4)The total pancreas island areas of beta-cell-deleting rats were approximately 1/7 of normal control rats. Moreover, the percentages of beta-cell areas from total pancreas island areas were decreased from 74.3% down to 5.4%. The insulin content in pancreas tissue homogenate of beta-cell-deleting rats did't reach 3% of normal ones, while the glucagon content unexpectedly increased. The aggregation of alpha cells from periphery to centre of pancreas islands was found in beta-cell-deleting groups. Furthermore, the percentages of alpha cells area from total pancreas island areas are promoted from 16.4% to 76.5%. (5)The gene expression of glucagon was significantly increased by 34.2% in HFD-B group than in ND-B group. In contrast, the expression of IRS-2、PI3-K was significantly decreased by 28.5% and 21.3% respectively (P<0.01).(6) There was a significantly negative correlation between the serum FFA concentration and GIR(r=-0.675, P<0.05) as well as IRS-2 gene expression in islet a cells (r=-0.458, P<0.05).
     Conclusions High-fat-diet induced high level secretion of glucagon in islet alpha cells in rats, which couldn't be inhibited by the elevated insulin level, beta-cell-deleting rat models fed high-fat-died showed an impaired expression of insulin signal transduction molecules in islet a cells which may correlate with the increased serum FFA concentration.
     Objective To study the the changes of the secretory function and the insulin signaling and inflammatory path molecules in islet alpha cells in obese SD rats induced by a high-fat-diet and the effects of pioglitazone intervention
     Methods SD rats were randomly divided into 3 groups, i.e., a normal diet group(ND), a high-fat-diet group(HFD), and a pioglitazone treated group (HP, pioglitazone 15mg·kg~(-1)·d~(-1) by orally injection and high-fat-diet). At the end of twenty weeks feeding, serum FINS, glucagon, FFA, hsCRP, TNF-alpha, IL-6; the MDA,GSH, nitrotyrosine(NT) in serum and pancreatic homogenate were measured. The GIR was determined and islet perfusion assays was performed. At the same time, the beta cell-deleting rat models were established by injecting large dose STZ (100 mg/kg) in the three groups, i.e., HFD-B group、HP-B group and ND-B group. Five days later, The mRNA levels of glucagon, IRS-1, IRS-2, PI3-K, NF-κB,IκB-alpha in betacell-deleting rat islets was detected by quantitative real-time RT-PCR.
     Results Compared with rats fed the normal diet, FINS, glucagon, FFA, hsCRP TNF-alpha and IL-6 was significantly increased in rats fed the high-fat-diet for 20 weeks( P<0.01 or 0.05), the MDA、NT in plasma and pancreatic homogenate in HFD group were increased but the GSH level was decreased significantly. The GIR was significantly decreased by the high-fat-diet. The glucagon secretion couldn't be inhibited in rats fed the high-fat-diet during the perfusion of 16.7mmol/L glucose(see partⅠ), pioglitazone intervention can reverse all these effects. In beta cell-deleting rats fed the high-fat-diet ,the mRNA levels of glucagon was significantly increased, while IRS-2, PI3-K was significantly decreased(see partⅠ); The mRNA levels of NF-κB was significantly increased by 20.5%,IκB-alpha was significantly decreased by 24.3% (P<0.01). In pioglitazone intervention group, when compared with rats fed the high-fat-diet alone, the levels of mRNA were improved 40.6%, 57.2%, 60.6%, 78.3%, 58.8%, respectively. There was a significantly negative correlation between the serum FFA concentration and GIR as well as the mRNA level of IRS-2 (see partⅠ), but a significantly positive correlation between FFA level and the mRNA level of NF-κB in islet alpha cells (r=0.775 P<0.05).
     Conclusions There was a high level secretion of glucagon in rats fed the high-fat-diet, an impaired expression of insulin signal transduction molecules and an activation of inflammatory path in islet alpha cells at the same time, which may correlate with the elevated plasma FFA concentration. The elevated FFA may activate inflammatory path by inducing oxidative stress, results in insulin resistance in islet alpha cells. Pioglitazone intervention could lower FFA level and lessen oxidative stress, inhibit the activation of inflammatory path, improve insulin resistance in alpha cells.
     Objective This experiment aims at investigating the effects of palmitate in various time and concentrations on glucagon secretory function of hamster glucagonoma alpha cell line INR1-G9 and its underlying mechanism.
     Methods Clonal INR1-G9 alpha cells were cultured with palmitate in various gradient concentrations(0.125mmol/L, 0.25mmol/L, 0.5mmol/L)for 24,48 and 72 hours, then the glucagon release potentia of alpha cell was evaluated and the glucagon content was measured. The TG content of various concentrations group cultured 72h were detected, and the mRNA levels of glucagon in INR1-G9 cells was detected by quantitative real-time RT-PCR. The serine phosphorylation of PKB/Akt in alpha cells cultured 72h were determined by western blotting and the effects of insulin and PI3-K inhibitor wortmannin on it were investigated.
     Results (1)Palmitate enhanced glucagon secretion of alpha cells in a time and dose-dependent manner, There was significant difference in the 24h/0.5mM palmitate group, 48/72h/every concentrations palmitate group compared with normal control without palmitate(P<0.05). (2)The glucagon content in INR1-G9 was decreased gradually when the action time prolonged and the concentration of palmitate elevated and eventually reached a statisticly difference in the 48h/0.5mM palmitate group, 72h/0.25mM、72h/0.5mM palmitate group(P<0.05).(3) There was no difference of mRNA levels of glucagon in each 72h cultured group, only showed a trend of increasing by elevated palmitate. (4)The palmitate increased the accumulation of TG in INR1-G9 cells in a dose-dependent manner, all 72h cultured group reached a statisticly difference (P<0.05) and only 0.5mM palmitate increased TG content significantly(P<0.01). (5)PI3-K inhibitor and palmitate reduced the serine phosphorylation of Akt but didn't reach a statisticly difference; Insulin increased the phosphorylation level of Akt in every group, but the rising degree in palmitate group was lower than that in cells without palmitate. Furtherly, when wortmannin were added in these cells, the phosphorylation level of Akt were all decreased in every group, but the inhibition ratio in palmitate group was lower than in normal controlcells without palmitate.
     Conclusions Our results demonstrated that elevated palmitate enhanced glucagon secretion of INR1-G9 glucagonoma alpha cells in a time and dose-dependent manner, The glucagon content in INR1-G9 was decreased gradually when the action time prolonged and the concentration of palmitate elevated, but didin't impact the mRNA level of glucagon, which indicates fatty acids mainly enhanced the release of glucagon. The effects of palmitate on the secretory function of alpha cell may relate with the increased accumulation of TG and the suppression of the insulin signaling P13K/Akt pathway mediated by insulin.
引文
1. Kulkami RN,Winnay JN, Kahn CR. Tissue-specific knockout of insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell. 1999, 96: 329-339.
    2. Reaven G M, Chen Y, D Golay, et al.Documentation of hyperglucagonemia throughout the day in nonobese and obese patients with noninsμlin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1987,64:106-110.
    3. Mitrako A, Kelley D, Mokan M,et al. Role of reduced suppression of glucose production and diminished early insulin release in impaired glucose tolerance. N Engl J Med. 1992,326:22-29.
    4. Larsson H, Ahren B. Glucose intolerance is predicted by low insulin secretion and high glucagon secretion: outcome of a prospective study in postmenopausal Caucasian women. Diabetologia. 2000,43:194-202.
    5. Larsson H, Ahren B.Islet disfunction in insulin resistance involves impaired insulin secretion and increased glucagon secretion in postmenopausal women with impaired glucose tolerance. Diabetes Care. 2000,23:650-657.
    6. Fu M, Li X, Zhang M, et al. Increased expression of neuropeptide Y and its mRNA in STZ-diabetic rats. Chin Med J(Engl). 2002,115(5):690-695.
    7. Li J, Li X, Luo M, et al. Evidence for insulin resistance of pancreatic a cells.Diabetologia. 2004,47:(suppl 1) A169.
    8.王听,杨文英,萧建中,等.高脂饲养及罗格列酮干预对α细胞功能的影响.中华内科杂志.2005,44:601-605.
    9. 安雅莉,李光伟,刘雪丽等.胰岛细胞抗体亚型与胰岛素、胰高糖素分泌的关联.中华内分泌代谢杂志.2004,20(3):190-192.
    10. Unger RH, Orci IJ.Glucagon and the A cell: physiology and pathophysiology.Pt.1.N Engl J Med. 1981,304:1518-1524.
    11. Unger RH, Orci L. Glucagon and the A cell: physiology and pathophysiology.Pt. 2. N Engl J Med. 1981,304:1575-1580.
    12. Oakes ND, Cooney GJ, Camilleri S, et al. Mechanisms of liver and muscle insulin resistance induced by chronic high-fat feeding. Diabetes. 1997, 46(11):1768-1774.
    13. Yang L, An HX, Deng XL, et al.Rosiglitazone reverses insulin secretion altered by chronic exposure to free fatty acid via IRS-2-associated phosphatidylinositol 3-kinase pathway. Acta Pharmacol Sin. 2003, 24(5):429-434.
    14. Yu C, Chen Y, Cline GW, Zhang D, et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-l)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem.2002,277(52):50230-50236.
    15. Dresner A, Laurent D, Marcucci M et al. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest. 1999, 103(2):253-259.
    16. Van Schravendijk CF, Foriers A, Hooghe-Peters EL, et al. Pancreatic hormone receptors on islet cells. Endocrinology. 1985,117(3):841-848.
    17. Harbeck M, Louie D, Howland J, et al. Expression of insulin receptor mRNA and insulin receptor substrate 1 in pancreatic islet beta-cells. Diabetes. 1996,45(6): 711-717.
    18. Liu W, Chin-Chance C, Lee EJ, et al. Activation of phosphatidylinositol 3-kinase contributes to insulin-like growth factor I-mediated inhibition of pancreatic beta-cell death. Endocrinology. 2002,143(10):3802-3812.
    19. Leibiger JB, Leibiger B, Berggren PO. Insulin feedback action on pancreatic p-cell function. FEBS Lett. 2002,532: 1-6.
    20. Kulkami RN, Winnay JN, Kahn CR. Tissue-specific knockout of insulin receptor in pancreaticβcells creates an insulin secretory defect similar to that in type 2 diabetes. Cell. 1999, 96:329-339.
    21. Aiaujo E R, Amaral M E, Souza C T, et al. Blockade of IRS-1 in isolated rat pancreatic islets improves glucose-induced insulin secretion. FEBS Lett.2002,531:437-432.
    22. Kaneko K,Shirotani T, Araki E, et al. Insulin inhibits glucagon secretion by the activation of PI3-kinase in In-RI-G9 cells. Diabetes Res Clin Pract.1999,44:83-92.
    23.罗梅,李秀钧,李军,等.糖尿病大鼠胰岛α细胞胰岛素受体分布和含量的初
    24. KraegenEW, James DE, Bennett SP, et al.In vivo insulin sensitivity in the rat determined by euglycemic clamp. Am J Physiol. 1983, 245 (1):E1-E7
    25. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods.2001,25(4):402-408.
    26.杨开明,羊惠君,梅妍等.STZ与Alloxan诱导大鼠糖尿病模型胰腺的组织学观察.四川解剖学杂志.2004,12:254-256
    27. Rackietan N, Rackietan M, Nadkarni M. Studies on diabetogenic action of streptozocin. Cancer Chemotherapy Reports. 1993,29:91-95.
    28. Kido Y, Burks DJ, Withers DJ, et al. Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-l,and IRS-2. J Clin Invest. 2000,105(2): 199-205.
    29. Sesti G , Federici M, Hribal M L, et al. Defects of the insulin receptor substrate(IRS) system in human metabolic disorders. FASEB J. 2001, 15(12):2099-2111
    30. Aspinwall C A, Qian W J, Roper M G,et al. Roles of insulin receptor substrate-1, phosphatidylinositol 3-kinase, and release of intracellular Ca~(2+) stores in insulin-stimulated insulin secretion in beta-cells. J Biol Chem.2000,275(29): 22331-22338.
    31. Accili D. A kinase in the life of the beta cell. J Clin Invest. 2001,108 (11):1575-1576
    32. Rhodes CJ.Type 2 diabetes-a matter of beta-cell life and death? Science. 2005,307:380-384.
    33. Oakes ND,Cooney GJ, Camilleri S, et al. Mechanisms of liver and muscle insulin resistance induced by chronic high-fat feeding. Diabetes. 1997,46(11):1768-1774.
    34. Agus MS, Swain JF, Larson CL, et al. Dietary composition and physiologic adaptations to energy restriction. Am J Clin Nutr. 2000,71(4):901-907.
    1. Barzilay JL ,Abraham L , Heckbert SR, et al.The relation of markers ofinflammation to the development of glucose disorders in the elderly: the cardiovascular health study. Diabetes. 2001, 50:2384-2389.
    2. Russell AP,Gastaldi G,Bobbioni-Harsch E,et al. Lipid peroxidation in skeletal muscle of obese as compared to endurance-trained humans: a case of good vs bad lipids? FEBS Lett. 2003,551:104-106.
    3. Goglia F, Skulachev VP. A function for novel uncoupling proteins: antioxidiant defense of mitochondrial matrix by translocating fatty acid peroxides from the inner to the outer membrane leaflet. FASEB J. 2003,17:1585-1591.
    4.张微,韩萍,张咏言等.N-乙酰半胱氨酸对游离脂肪酸诱导的胰岛素抵抗的影响.中国实用内科杂志.2007,27(18):1459-1461.
    5. Hamilton JA, Kamp F. How are free fatty acids transported in membranes? Is it by proteins or by free diffusion through lipids? Diabetes.1999,48:2255-2269.
    6. Boden G. Fatty acid-induced inflammation and insulin resistance in skeletal muscle and liver. Curr Diab Rep. 2006, 6(3): 177-181.
    7. Sriwijikamol A, Christ-Roberts C, Berria R et al. Reduced skeletal muscle inhibitor of Kappa B beta content is associated with insulin resistance in subjects with type 2 diabetes. Diabetes. 2006, 55(3):760-767.
    8. Yamaguchi K, Higashiura K,Ura N, et al. The effect of tumor necrosis factor-alpha on tissue specificity and selectivity to insulin signaling. Hypertens Res. 2003, 26:389-396.
    9. Lagathu C, Bastard JP, Auclair M, et al. Chronic interleukin-6(IL-6) treatment increased IL-6 secretion and induced insulin resistance in adipocyte: prevention by rosiglitazone. Biochem Biophys Res Commun. 2003,311:372-379.
    10. Klover PJ, Zimmers TA, Koniaris LG, et al. Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice. Diabetes. 2003,52: 2784-2789.
    11. Senn JJ, Klover PJ, Nowak IA, Mooney RA. Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes. 2002, 51(12):3391-3399.
    12. Kim JK, Kim Y-J, Fillmore JJ, et al. Prevention of fat induced insulin resistance by salicylate. J Clin Invest. 2001,108: 437-446.
    13. Yuan M, Konstantopoulos N, Lee J, et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science. 2001, 293(5535):1673-1677.
    
    14. Hundal RS, Peter KF, Mayerson AB, et al. Mechanism by which high-dose asprin improves glucose metabolism in type 2 diabetes. J Clin Invest. 2002,109:1321-1326.
    
    15. Marette A. Mediators of cytokine-induced insulin resistance in obesity and other inflammatory settings. Curr Opin Clin Nutr Metab Care. 2002, 5: 377-383.
    
    16. Karin M. How NF-kappaB is activated: the role of the I kappa B kinase (IKK) complex. Oncogene. 1999,18(49):6867-6874.
    
    17. Shimabukuro M, Zhou YT, Lee Y, Unger RH. Troglitazone lowers islet fat and restores beta cell function of Zucker diabetic fatty rats. J Biol Chem. 1998,273(6):3547-3550.
    
    18. Kawasaki F, Matsuda M, Kanda Y, et al. Structural and functional analysis of pancreatic islets preserved by pioglitazone in db/db mice. J Physiol Endocrinol Metab. 2005, 288(3):E510-518.
    
    19. Matsui J, Terauchi Y, Kubota N, et al. Pioglitazone reduces islet triglyceride content and restores impaired glucose-stimulated insulin secretion in heterozygous peroxisome proliferator-activated receptor-gamma-deficient mice on a high-fat diet. Diabetes. 2004, 53(11):2844-2854.
    
    20. Aljada A, Garg R, Ghanim H, et al. Nuclear factor-kappa B suppressive and inhibitor-kappa B stimulatory effects of troglitazone in obese patients with type 2 diabetes: evidence of an antiinflammatory action? J Clin Endocrinol Metab. 2001,86: 3250-3256.
    
    21. Beales PE, Pozzilli P. Thiazolidinediones for the prevention of diabetes in the non-obese diabetic (NOD) mouse: implications for human type 1 diabetes.Diabetes Metab Res Rev. 2002,18(2):114-117.
    
    22. Zeender E, Maedler K, Bosco D, et al. Pioglitazone and sodium salicylate protect human beta-cells agaist apoptosis and impaired function reduced by glucose and inerleukin-1 beta. J clin Endocrinol Metab. 2004, 89(10):5059-5066
    
    23. Tsuji T, Mizushige K, Noma T, et al. Improvement of aortic wall distensibility and reduction of oxidative stress by pioglitazone in prediabetic stage of Otsuko Long-Evans Tokushima fatty rats. Cardiovasc Drugs Ther. 2002, 16:429-434.
    
    24. Reaven G M, Chen Y, D Golay, et al. Documentation of hyperglucagonemia throughout the day in nonobese and obese patients with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1987, 64:106-110.
    
    25. Mitrako A, Kelley D, Mokan M, et al. Role of reduced suppression of glucose production and diminished early insulin release in impaired glucose tolerance. N Engl J Med. 1992,326:22-29.
    
    26. Larsson H, Ahren B. Glucose intolerance is predicted by low insulin secretion and high glucagon secretion: outcome of a prospective study in postmenopausal Caucasian women. Diabetologia. 2000,43:194-202.
    
    27. Larsson H, Ahren B. Islet disfunction in insulin resistance involves impaired insulin secretion and increased glucagon secretion in postmenopausal women with impaired glucose tolerance. Diabetes Care. 2000,23:650-657.
    
    28. Fu M, Li X, Zhang M, Xian Y. Increased expression of neuropeptide Y and its mRNA in STZ-diabetic rats. Chin Med J(Engl). 2002,115(5): 690-695.
    
    29. Leinonen E, Hurt-Camejo E, Wiklund O, et al. Insulin resistance and adiposity correlate with acute-phase reaction and soluble cell adhesion molecules in type 2 diabetes. Atheroselerosis. 2003, 166:384-394.
    
    30. Menughlin T, Abbasi F, Lamendola C, eta l. Diferentiation between obesity and insulin resistance in the association with C-reactive protein. Circulation. 2002,106:2908-2912.
    
    31. Haffner SM, Greenberg AS, Weston WN. Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type 2 DM. Circulation. 2002,106:679-684.
    
    32. McGarry JD. Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes . Diabetes. 2002, 51:7-18.
    
    33. Tripathy D, Mohanty P, Dhindsa S, et al. Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes. 2003,52: 2882-2887.
    
    34. Maddux BA, See W, Lawrence JC, et al. Protection against oxidative stress-induced insulin resistance in rat L6 muscle cells by micromolar concentrations of a-lipoic acid. Diabetes. 2001,50: 404-410.
    
    35. Sdvastava AK. Redox regulation of insulin action and signaling. Antioxidants medox Signaling. 2005,7(7-8): 1011-1013.
    
    36. Rosen P, NawrothPP, King G, etal. The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCOMCBN,the American Diabetes Association, and the German Diabetes Society. Diabetes Metab Res Rev. 2001,17:189-212.
    37. Li N, Karin M. Is NF-kappa B the sensor of oxidative stress? FASEB J. 1999,13(10):1137-1143.
    38. Sulciner DJ, Irani K, Yu ZX, et al.Racl regulates a cytokine-stimulated,redox-dependent pathway necessary for NF-kappa B activation. Mol Cell Biol.1996, 16(12):7115-7121.
    39. Fariss MW, Chan CB, Pate L, et al. Role of mitochondria in toxic oxidative stress.Mollnterv. 2005,5(2):94-111.
    40. Heimberg H,Heremans Y,Jobin C,et al.Inhibition of cytokine-induced NF-kB activation by adenovirus-mediated expression of a NF-kB suppressor prevent β cell apoptosis. Diabetes. 2001, 50 (10):2219-2224.
    41. Bagi Z, Koller A, Kaley G. Peroxisome rpoliferator-activated receptor-gamma activation, by reducing oxidative stress, increases NO bioavailability in coronary arterioles of mice with type 2 diabetes. AM J Physiol. 2004, 286:H742-H748.
    42.王听,杨文英,萧建中,等.高脂饲养及罗格列酮干预对α细胞功能的影响.中华内科杂志.2005,44:601-605.
    1. Jing H, Reziwanggu A, Jianguo C, et al. The short-term effect of fatty acids on glucagon secretion is influenced by their chain length, spatial configuration, and degree of unsaturation: studies in vitro. Meta Clin Exp. 2005,54:1329-1336.
    2. J. Hong, L. Chen, P B Jeppesen, et al. Stevioside counteracts the alpha-cell hypersecretion caused by long-term palmitate exposure. Am J Physiol Endocrinol Metab. 2006, 290: E416-E422.
    3. Petersen KF,Shulman GI.Pathogenesis of skeletal muscle insulin resistance in type 2 diabetes mellitus.Am J Cardiol. 2002,90(5A):11G-18G.
    4. Nolan CJ, Madiraju MS, Delghingaro-Augusto V,et al. Fatty acid signaling in the beta-cell and insulin secretion. Diabetes. 2006,55 Suppl 2:S16-23.
    5. Draznin B. Molecular mechanisms of insulin resistance: serine phosphorylation of insulin receptor substrate-1 and increased expression of p85alpha: the two sides of a coin. Diabetes. 2006,55(8):2392-2397.
    6. Morino K, Petersen KF, Shulman GI. Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes. 2006,55 Suppl 2:S9-S15.
    7. Hamaguchi K, Leiter EH. Comparison of cytokine effects on mouse pancreatic alpha-cell and beta-cell lines. Viability, secretory function, and MHC antigen expression. Diabetes 1990,39:415-425.
    8. Ono J, Kumae S, Sato Y, Takaki R. Effect of phorbol esters on glucagon secretion from a glucagon-secreting clonal cell line. Synergistic effects of A23187 and theophylline. Diabetes Res Clin Pract. 1986,2(1):29-34.
    9. Ono J. In-R1-G9.Tanpakushitsu Kakusan Koso.1988,33(6):1146-7.
    10. Ono J, Yamaguchi K, Okeda T, et al. Characterization of secretory responses of a glucagon-producing In-Rl-G9 cell line. Diabetes Res Clin Pract.1988,4(3):203-207.
    11. Abumrad NA, Stearns SB, Tepperman HM, et al. Studies on serum lipids, insulin,and glucagon and on muscle triglyceride in rats adapted to high-fat and high-carbohydrate diets. J Lipid Res.1978,19(4):423-432. 华内科杂志. 2005 ,44:601-605.
    
    13. Girard J. Fatty acids and beta cells. Diabetes Metab. 2000, 26 Suppl 3:6-9.
    
    14. Unger RH, Zhou YT. Lipotoxicity of beta cells in obesity and other causes of fatty acid spillover. Diabetes. 2001,50(suppl 1):s118-s121.
    
    15. Girard J. Contribution of free fatty acids to impairment of insulin secretion and action: mechanism of beta-cell lipotoxicity. Med Sci (Paris). 2003, 19(8-9):827-833.
    
    16. Lupi R, Dotta F, Marselli L, et al. Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets: evidence that beta-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated. Diabetes. 2002,51(5):1437-1442.
    
    17. Koshkin V, Wang X, Scherer PE,et al.Mitochondrial functional state in clonal pancreatic beta-cells exposed to free fatty acids. J Biol Chem.2003,278(22): 19709-19715.
    
    18. Marshall JA, et al. High saturate fat and low starch and fibre aer associated with hyperinsulinaemia in a non-diabetic population: The San Luis Valley diabetes srudy.Diabetologia. 1997,40:430.
    
    19. Feskens JM, et al. Diet and physical activity and determinants of hyperinsulinaemia:the Zutphen elderly study. Am J Epidemiol.1994,140:350.
    
    20. Gravena C, Mathias PC, Ashcroft SJ. Acute effects of fatty acids on insulin secretion from rat and human islets of Langerhans. J Endocrinol. 2002,173:73 - 80.
    
    21. Stein DT, Stevenson BE, Chester MW, et al. The insulinotropic potency of fatty acids is influenced profoundly by their chain length and degree of saturation. J Clin Invest. 1997,100:398-403.
    
    22. McGarry JD, Dobbins RL. Fatty acids, lipotoxicity and insulin secretion.Diabetologia.1999,42:128-138.
    
    23. Alstrup KK, Gregersen S, Jensen HM, et al. Differential effects of cis and trans fatty acids on insulin release from isolated mouse islets. Metabolism. 1999,48:22- 29.
    
    24. Opara EC, Garfinkel M, Hubbard VS, et al. Effect of fatty acids on insulin release:role of chain length and degree of unsaturation. Am J Physiol. 1994, 266:E635 -639.
    25. Busch AK, Cordery D, Denyer GS, et al. Expression profiling of palmitate- and oleate-regulated genes provides novel insights into the effects of chronic lipid exposure on pancreatic beta-cell function. Diabetes. 2002,51: 977-987.
    
    26. Kelpe CL, Moore PC, Parazzoli SD, et al. Palmitate inhibition of insulin gene expression is mediated at the transcriptional level via ceramide synthesis. J Biol Chem. 2003, 278:30015-30021.
    
    27. Maedler K, Spinas GA, Dyntar D, et al. Distinct effects of saturated and monounsaturated fatty acids on beta-cell turnover and function. Diabetes.2001, 50:69-76.
    
    28. Xiao J, Gregersen S, Kruhoffer M, et al. The effect of chronic exposure to fatty acids on gene expression in clonal insulin-producing cells: studies using high density oligonucleotide microarray. Endocrinology. 2001,142:4777-4784.
    
    29. Xiao J, Gregersen S, Pedersen SB, et al. Differential impact of acute and chronic lipotoxicity on gene expression in INS-1 cells.Metabolism. 2002, 51:155-162.
    
    30. Olofsson CS, Salehi A, Gopel SO, et al. Palmitate stimulation of glucagon secretion in mouse pancreatic alpha-cells results from activation of L-type calcium channels and elevation of cytoplasmic calcium. Diabetes. 2004, 53(11):2836-2843.
    
    31. Gremlich S, Bonny C, Waeber G, et al. Fatty acids decrease IDX-1 expression in rat pancreatic islets and reduce LUT2, glucokinase, insulin, and somatostatin levels.J Biol Chem.l997,272(48):30261-30269.
    
    32. Gopel SO, Kanno T, Barg S, et al. Regulation of glucagon release in mouse alpha-cells by Katp channels and inactivation of TTX-sensitive Na+ channels. J Physiol. 2000,528:509-520
    
    33. Branstrom R, Leibiger IB, Leibiger B, et al. Long chain coenzyme A esters activate the pore-forming subunit(Kir6.2)of the ATP-regulated potassium channel. J Biol Chem. 1998,273: 31395-31400.
    
    34. Gribble FM, Proks P, Corkey BE, et al. Mechanism of cloned ATP-sensitive potassium channel acivation by oleoyl-CoA.J Bio Chem. 1998,273:26383-26387.
    
    35. Seyffert WA Jr, Madison LL.Physiologic effects of metabolic fuels on carbohydrate metabolism. I. Acute effect of elevation of plasma free fatty acids on hepatic glucose output, peripheral glucose utilization, serum insulin, and plasma glucagon levels. Diabetes. 1967,16(11):765-776.
    
    36. Crespin SR, Greenough WB 3rd, Steinberg D.Stimulation of insulin secretion by long-chain free fatty acids. A direct pancreatic effect. J Clin Invest. 1973,52(8): 1979.
    
    37. Balasse EO, Ooms HA.Role of plasma free fatty acids in the control of insulin secretion in man. Diabetologia. 1973, 9(2): 145-151.
    
    38. Kaneko K, Shirotani T, Araki E, et al. Insulin inhibits glucagon secretion by the activation of PI3-kinase in In-RI-G9 cells. Diabetes Res Clin Pract. 1999, 44:83-92.
    
    39. Eileen LW, Han C, Morris JB. Role of Akt/protein kinase B in metabolism. Trends Endocrinol Metab. 2002,13(10): 444-451.
    
    40. T. Rahn, M. Ridderstrale, H. Tornqvist, et al. Essential role of phosphatidylinositol 3-kinase in insulin-induced activation and phosphorylation of the cGMP-inhibited cAMP phosphodiesterase in rat adipocytes: Studies using the selective inhibitor wortmannin. FEBS Lett. 1994,350: 314-318.
    
    41. A. Arcaro, M.P. Wymann. Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-triphosphate in neutrophil responses.Biochem J. 1993, 296: 297-301.
    
    42. R. Yao, GM. Cooper. Requirement for phosphatidylinositol 3-kinase in the prevention of apoptosis by nerve growth factor. Science. 1995,267:2003-2006.
    
    43. Boden G, Lebed B, Schatz M, et al. Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects.Diabetes. 2001,50(7):1612-1617.
    
    44. Unger RH, Orci L. Lipotoxic diseases of nonadipose tissues in obesity. Int J Obes Relat Metab Disord. 2000, 24 Suppl 4:S28-32.
    
    45. J Hong, P B Jeppesen, I Nordentoft, et al. Fatty acid-induced effect on glucagon secretion is mediated via fatty acid oxidation. Diabetes Metab Res Rev. 2007, 23:202-210.
    1. Kulkami R N,WinnayJN, Kahn C R.Tissue-specific knockout of insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell. 1999, 96: 329-339.
    2. Reaven G M, Chen Y, D Golay, et al.Documentation of hyperglucagonemia throughout the day in nonobese and obese patients with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1987,64:106-110.
    3. Mitrako A, Kelley D, Mokan M, et al. Role of reduced suppression of glucose production and diminished early insulin release in impaired glucose tolerance. N Engl J Med.1992,326:22-29.
    4. Larsson H, Ahren B. Glucose intolerance is predicted by low insulin secretion and high glucagon secretion:outcome of a prospective study in postmenopausal Caucasian women. Diabetologia. 2000,43:194-202.
    5. Larsson H, Ahren B.Islet disfunction in insulin resistance involves impaired insulin secretion and increased glucagon secretion in postmenopausal women with impaired glucose tolerance. Diabetes Care. 2000,23:650-657
    6. Fu M, Li X, Zhang M, et al. Increased expression of neuropeptide Y and its mRNA in STZ-diabetic rats. Chin Med J(Engl). 2002,115(5):690-695
    7. Li J, Li X, Luo M,et al. Evidence for insulin resistance of pancreatic a cells.Diabetologia. 2004,47:(suppl 1) A169.
    8.王昕,杨文英,萧建中,等.高脂饲养及罗格列酮干预对α细胞功能的影响.中华内科杂志.2005,44:601-605.
    9.安雅莉,李光伟,刘雪丽等.胰岛细胞抗体亚型与胰岛素、胰高糖素分泌的关联.中华内分泌代谢杂志.2004,20(3):190-192.
    10. Greenbaum C, Havel P, et al. Intra-islet insulin permits glucose to directly suppress pancreatic A cell function. J Clin Invest. 1991, 88(3):767-773.
    11. Buchanan K D, MawhinneyW A. Insulin control of glucagon release from insulin-deficient rat islets. Diabetes. 1973,22(11):801 -803.
    12.杜瑞琴,李宏亮,杨文英,等.胰岛素信号转导分子的表达与胰岛α细胞的胰岛素抵 抗的实验研究.中华医学杂志.2006,36:2542-2546.
    13.杜瑞琴,李宏亮,杨文英,等.胰岛α细胞胰岛素抵抗与炎症通路激活的关系及机制.中华内科杂志.2007,46(8):661-665.
    14.杜瑞琴,李宏亮,杨文英,等.吡格列酮对胰岛α细胞胰岛素抵抗的影响.中华内分泌代谢杂志.2008,24(1):29-33
    15. Van Schravendijk CF, Foriers A, Hooghe-Peters EL, et al. Pancreatic hormone receptors on islet cells. Endocrinology. 1985,117(3):841-848.
    16. Harbeck M, Louie D, Howland J, et al. Expression of insulin receptor mRNA and insulin receptor substrate 1 in pancreatic islet beta-cells. Diabetes. 1996,45(6):711-717.
    17. Aiaujo E R,Amaral M E,Souza C T,et al. Blockade of IRS-1 in isolated rat pancreatic islets improves glucose-induced insulin secretion. FEBS Lett.2002,531:437-432.
    18.罗梅,李秀钧,李军,等.糖尿病大鼠胰岛α细胞胰岛素受体分布和含量的初步研究.中华糖尿病杂志.2005,3:196-198.
    19. Kaneko K, Shirotani T, Araki E, et al. Insulin inhibits glucagon secretion by the activation of PI3-kinase in In-RI-G9 cells. Diabetes Res Clin Pract.1999,44:83-92.
    20.邬云红,李秀钧,李宏亮,等.高脂饮食肥胖大鼠胰岛细胞胰岛素抵抗机理的探讨.中华医学杂志.2005,85(27):1907-1910.
    21. Griffin ME, Marcucci MJ, Cline GW, et al. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C and alterations in the insulin signaling cascade. Diabetes.1999, 48: 1270-1274.
    22. Jing H, Reziwanggu A, Jianguo C, et al. The short-term effect of fatty acids on glucagon secretion is influenced by their chain length, spatial configuration, and degree of unsaturation: studies in vitro. Meta Clin Exp. 2005,54:1329-1336.
    23. J. Hong, L. Chen, P B Jeppesen, et al. Stevioside counteracts the alpha-cell hypersecretion caused by long-term palmitate exposure. Am J Physiol Endocrinol Metab. 2006, 290: E416-E422.
    24. J Hong, P B Jeppesen, I Nordentoft,et al. Fatty acid-induced effect on glucagon secretion is mediated via fatty acid oxidation. Diabetes Metab Res Rev. 2007, 23:202-210.
    25. Maddux BA, See W, Lawrence JC, et al. Protection against oxidative stress-induced insulin resistance in rat L6 muscle cells by micromolar concentrations of a-lipoic acid. Diabetes. 2001, 50: 404-410.
    26. Sdvastava AK. Redox regulation of insulin action and signaling. Antioxidants medox Signaling. 2005,7(7-8):1011-1013.
    27. Rosen P,Nawroth PP,King G,et al. The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCOMCBN,the American Diabetes Association, and the German Diabetes Society. Diabetes Metab Res Rev. 2001, 17(3):189-212.
    28. Russell AP,Gastaldi G,Bobbioni-Harsch E, et al. Lipid peroxidation in skeletal muscle of obese as compared to endurance-trained humans: a case of good vs bad lipids? FEBS Lett. 2003, 551:104-106.
    29. Goglia F, Skulachev VP. A function for novel uncoupling proteins: antioxidiant defense of mitochondrial matrix by translocating fattyacid Peroxides from the inner to the outer membrane leaflet. FASEB J. 2003,17:1585-1591.
    30. Tripathy D, Mohanty P, Dhindsa S, et al. Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes. 2003, 52:2882-2887.
    31.张微,韩萍,张咏言等.N-乙酰半胱氨酸对游离脂肪酸诱导的胰岛素抵抗的影响.中国实用内科杂志.2007,27(18):1459-1461
    32. Hamilton JA, Kamp F.How are free fatty acids transported in membranes? Is it by proteins or by free diffusion through lipids? Diabetes.1999,48:2255-2269.
    33. Carlsson C, Borg LA, Welsh N. Sodium palmitate induces partial mitochondrial uncoupling and reactive oxygen species in rat pancreatic islets in vitro. Endocrinology.1999,140:3422-3428.
    34. Fariss MW, Chan CB,Pate L, et al. Role of mitochondria in toxic oxidative stress.Mol lnterv.2005,5(2):94-111.
    35. Paz K, Hemi R, Le Roith D, et al. A molecular basis for insulin resistance: elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation. J Bio Chem. 1997, 272: 29911-29918
    
    36. Barzilay JL, Abraham L, Heckbert SR, et al. The relation of markers of inflammation to the development of glucose disorders in the elderly: the cardiovascular health study. Diabetes. 2001, 50:2384-2389.
    
    37. Yamaguchi K, Higashiura K, Ura N, et al. The effect of tumornecrosis factor-alpha on tissue specificity and selectivity to insulin signaling. Hypertens Res.2003,26:389-396.
    
    38. Lagathu C, Bastard JP, Auclair M, et al. Chronic interleukin-6(IL-6) treatment increased IL-6 secretion and induced insulin resistance in adipocyte: prevention by rosiglitazone. Biochem Biophys Res Commun. 2003, 311:372-379.
    
    39. Klover PJ, Zimmers TA, Koniaris LG, et al. Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice. Diabetes. 2003,52: 2784-2789.
    
    40. Senn JJ, Klover PJ, Nowak IA, et al. Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes. 2002, 51(12):3391-3399.
    
    41. Kim JK, Kim Y-J, Fillmore JJ et al. Prevention of fat induced insulin resistance by salicylate. J Clin Invest. 2001,108: 437-446.
    
    42. Yuan M, Konstantopoulos N, Lee J, et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science. 2001,293(5535):1673-1677.
    
    43. Hundal RS, Peter KF, Mayerson AB. et al. Mechanism by which high-dose asprin improves glucose metabolism in type 2 diabetes. J Clin Invest. 2002,109:1321-1326.
    
    44. Marette A. Mediators of cytokine-induced insulin resistance in obesity and other inflammatory settings. Curr Opin Clin Nutr Metab Care. 2002, 5: 377-383.
    
    45. Karin M.How NF-kappaB is activated: the role of the IkappaB kinase (IKK) complex. Oncogene. 1999,18(49):6867-6874.
    
    46. Tripathy D, Mohanty P, Dhindsa S et al. Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes. 2003, 52:2882-2887.
    
    47. Itani SI, Ruderman NB, Schmieder F, Boden G. Lipidinduced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkB-alpha. Diabetes. 2002, 51: 2005-2011.
    
    48. Park E, Wong V, Guan X, et al. Salicylate prevents hepatic insulin resistance caused by short-term elevation of free fatty acids in vivo. J Endocrinol. 2007,195(2):323-331.
    
    49. Heimberg H, Heremans Y, Jobin C, et al. Inhibition of cytokine-induced NF-kB activation by adenovirus-mediated expression of a NF-kB suppressor prevent β cell apoptosis. Diabetes. 2001, 50(10):2219 -2224.
    
    50. Browdee M. The pathobiology of diabetic complications: a unifying mechanism.Diabetes, 2005, 54(6):1615-1625.
    
    51. Houstis N ,Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature. 2006,440:944-948.
    
    52. Li N, Karin M. Is NF-kappa B the sensor of oxidative stress? FASEB J. 1999,13(10):1137-1143.
    
    53. Sulciner DJ, Irani K, Yu ZX, et al. Rac1 regulates a cytokine-stimulated,redox-dependent pathway necessary for NF-kappa B activation. Mol Cell Biol. 1996,16(12):7115-7121.