用户名: 密码: 验证码:
机电液耦合的搬运机械手虚拟样机研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核环境对人体的伤害是致命的,然而人类对能源的巨大需求又不得不依靠核能发电来满足,遥操作机器人是解决这一矛盾的突破口。目前国际上正在大力发展核环境下的遥操作机器人与自动运装车。最为典型的实例就是由中国、美国、日本、欧盟、俄国、韩国、印度七方联合发起的ITER(International ThermonuclearExperimental Reactor)计划,七方将投资约50亿欧元研制大型核聚变实验反应堆,探索磁约束核聚变发电的技术途径。该项目将建造15种机器人自动运装车,这些运装车是3米宽、5米高、8米长的气垫车,其主要功能是实现重型密封塞在ITER装置的真空室和热室(维修室)之间的往返运输,车箱内装有遥操作搬运机械手,完成在真空室和热室端口处对重型密封塞的安装、拆卸、搬运等操作。
     本文研究对象就是上述机电液耦合的搬运机械手,其自身重约5吨,操作对象为45吨的密封塞。机械手的精确定位是其实现对重型密封塞准确、精确、安全可靠操作的前提,而精确定位又涉及到机械手的位姿调整、轨迹规划、摩擦补偿、跟踪控制等一系列的问题,这些问题都将是机械手顺利实现对45吨密封塞操纵的研究重点和难点所在,另外,由于该系统的造价昂贵,需要一次制造成功,因此对机电液耦合的搬运机械手的虚拟样机研究是实现其高效设计开发的必要手段。本文对搬运机械手的虚拟样机进行了研究,其中包括虚拟样机模型的建立、运动学和动力学建模、位姿调整、轨迹规划、液压关节的摩擦补偿、轨迹跟踪控制、联合仿真平台的搭建、联合仿真研究以及动态有限元分析等。本论文的重点研究工作、创新及其特色如下:
     1、搬运机械手的运动学与动力学分析与建模
     搬运机械手的倾斜提升机制是实现其精确抓取和搬运重型密封塞的最关键运动部件,为此研究分析它的运动特性非常有必要。本文建立了倾斜提升机制的平面7连杆复杂机构的模型,利用其中的两个耦合四连杆结构,并通过一系列周密的推导,得出倾斜提升架的倾斜角度θ与液压缸位移间、提升高度△h与液压缸位移间、以及提升高度△h与水平位移△s间的数学模型,最后通过对比运动学仿真的结果和模型计算结果,验证了模型的准确性。另外,对该机制动力学模型以及动态静力分析等也进行了相关的研究,所有这些研究工作为实现搬运机械手的智能控制奠定了坚实的理论基础,并提供了重要的数学依据。
     2、搬运机械手的轨迹规划研究与实现
     考虑到机器人传统轨迹规划方法中存在的运动学逆解不唯一,计算量大、实时性差等缺点,本文利用“逆向”仿真的思想,即主动关节与被动关节对调进行仿真的策略,并结合虚拟样机的建模仿真技术提出了一种基于逆向仿真的轨迹规划方法,而且明确阐明了此方法中选择被动关节或者虚拟关节作为主动关节的规则,该方法不仅能克服传统方法的多种弊端,而且还能保证末端轨迹和各个关节的位移、速度、加速度的连续性,求解过程形象、直观。最后通过搬运机械手的运动学仿真验证了该轨迹规划方法的可靠性及精确性,并有效实现了机械手的轨迹规划。另外,本文通过周密的分析和精确的几何作图,将搬运机械手复杂位姿调整问题转化为液压缸的复位,很好地解决了机械手的精确位姿调整给控制带来的难题,最后也通过仿真验证了该方法的正确性及有效性。
     3、搬运机械手的关节摩擦补偿与精确轨迹跟踪研究
     关节摩擦是机器人实现高精度操作的主要制约因素之一,因此为了消除搬运机械手液压关节的摩擦给精确控制带来的影响,本文在充分分析了摩擦现象、摩擦模型、传统摩擦补偿方法及其缺点后,提出了一种基于模糊滑模智能控制的摩擦补偿方法,这种将模糊和滑模集成的控制方法不仅能够保持滑模控制的快速响应、对参数变化及扰动不灵敏、物理实现简单等种种优点,而且通过模糊规则,根据滑模到达条件对切换增益进行有效的估计,并利用切换增益消除干扰项,从而克服了滑模控制中常见产生抖振的缺点。最后应用MATLAB/Simulink模块,以搬运机械手中的阀控缸为研究对象,并建立关节摩擦的LuGre模型,对提出的模糊滑模集成控制方法进行了仿真验证,仿真结果表明将模糊和滑模控制相集成、传统摩擦补偿与智能补偿方法相结合的研究策略,能够很好地实现机械手的液压摩擦补偿和精确轨迹跟踪。
     4、机械手的机电液耦合联合仿真研究策略与实现
     本文分析探索了CATIA、ADAMS、MATLAB之间的集成接口,然后根据软件间的数据接口并结合搬运机械手为机电液耦合系统的特点,搭建了机电液耦合系统的联合仿真虚拟实验平台,并在该平台下对机械手进行联合仿真研究。通过联合仿真不仅验证了提出的控制算法的有效性,实现了搬运机械手的精确轨迹跟踪及并联液压缸的同步控制,而且获得了机械手运动过程中液压缸的各种性能参数和指标。在机-液耦合中,提出了利用ADAMS的自动求解能力和精确虚拟样机模型,预先模拟出运动过程中液压缸活塞杆的载荷变化,然后在联合仿真时将此载荷变化曲线实时输入给液压缸,从而保证液压系统仿真与机器人位姿变化的一致性,克服了机器人位姿变化给液压仿真带来的误差。
Nuclear radiation does harm to the human deadly, but we have to depend on nuclear energy to meet our great demands for energy resource. Remote handling manipulator is a good solution to solve the contradiction between radiation and needs, so the research and development of remote handling manipulator and automatic transfer vehicle under nuclear environment are regarded as a key technology by many countries in the world. The most typical example is the ITER (International Thermonuclear Experimental Reactor) program launched by seven sides including China, America, Japan, Russia, Korea, India and Europe union. The seven sides will invest about fifty hundred million euros to construct a large-scale reactor of nuclear fusion, and further to explore the technique approach of generating electricity by nuclear fusion of magnetism restriction. Fifteen kinds of automatic transfer vehicles will be employed in the ITER. These vehicles are air cushion vehicles with 8-meter length, 5-meter height and 3-meter width. Their main function is to transport heavy parts between the vacuum vessel of ITER building and hot cell (maintaining room). There is a manipulator inside the vehicle to realize the operations of installation, uninstallation and transit of the seal plug at the port of vacuum vessel and hot cell.
     The study object of this dissertation is just the manipulator driven by hydraulic cylinders. The deadweight of the manipulator is about 5 tons, and weight of the manipulated object is about 45 tons. The accurate orientation of the manipulator is the precondition to operate the heavy-load seal plug precisely, safely and reliably. The accurate orientation is based on the adjustment of position and pose, trajectory planning, friction compensation and track control, so these points are the key research topics to manipulat the 45-ton seal plug successfully. Since the manipulator is heavy and expensive, virtual prototyping of the manipulator is developed to verify the design. The research content of this thesis includes the modeling of virtual prototyping, the analysis and modeling of kinematics and dynamics, the adjusting of position and post, trajectory planning, friction compensation of hydraulic joints, trajectory track control, the establishment of co-simulation experimental platform of mechanical-electrical-hydraulic coupling system, the co-simulation of the manipulator, the dynamic finite element analysis of the manipulator. The main research achievements of the dissertation are as follows:
     1. The analysis and modeling of kinematics and dynamics of manipulator
     Tilting and lifting mechanism of manipulator is the most important movement component, so it is very necessary to research and analyze the movement trait of this mechanism. At first a model of 7-linkage complicated plane mechanism is built, and then the mathematic relations between the tilting angle 9 of tilting and lifting frame and the displacement of hydraulic cylinders, between the lifting heightΔh of frame and the displacement of hydraulic cylinders, between the lifting heightΔh and horizontal displacementΔs of frame are all concluded by a series of close deducing and calculation, finally the above established mathematical models were proved to be accurate and valid by comparing the calculated results with kinematics simulation resuluts of mechanism. Besides the dynamics characteristic and dynamic statics analysis of the tilting and lifting mechanism were also studied. All these analysis and modeling will provide theoretic guidance and numerical basis for the intelligent control of hydraulic cylinders of manipulator.
     2. The implementation of the trajectory planning of manipulator
     In view of the disadvantage of traditional trajectory planning method such as no only kinematics converse solution, the great computation, and the bad characteristic of real time, a new method of trajectory planning was proposed by using converse simulation idea and combining the modeling and simulation technology of virtual prototyping, moreover the definition rule of the driving, passive, or virtual joints was also recited in the dissertation. Not only were some shortcomings of the traditional planning method conquered, but also the continuity of displacement, velocity and acceleration of the end trajectory and each joint was guaranteed. Finally the validity and accuracy of this method were confirmed by the converse kinematics simulation of manipulator. In addition the complicated adjustment of position and pose of manipulator was translated to the reposition of hydraulic cylinders by comprehensive analysis and accurate geometrical constructing. Not only was the control system simplified, but also the precise orientation of manipulator was guaranteed easily by this method. At last the accurate trajectory planning and precise orientation of manipulator were both obtained.
     3. Joint friction compensation and accurate trajectory track of thr manipulator
     Joint friction is one of the major limitations to make manipulator perform high precision tasks. Friction compensation of hydraulic joint is particularly important for manipulator driven by hydraulic cylinders to implement the accurate position and speed control. So in order to eliminate the friction made by the hydraulic joints, a friction compensation method based on fuzzy and sliding intelligent control was proposed after analyzing the complicated friction phenomena, friction modeling, traditional friction compensation method and its excellence and shortcoming. This method integrating the fuzzy control with sliding mode control not only keeps the merit of sliding mode control such as the speediness response, the characteristic of strong anti-jamming, but also can eliminate the high frequency input by the fuzzy rule. At last system simulation model of manipulator was established by the MATLAB/Simulink according to the actual parameter of hydraulic system, and the LuGre model of friction was also built. The results of simulation proved the efficacy of control algorithm based on fuzzy and sliding mode control, and that the friction of hydraulic joints of manipulator can be compensated perfectly, and the accurate trajectory track can be achieved.
     4. The strategy and implementing of co-simulation of manipulator
     The integration interfaces among CATIA, ADAMS and MATLAB were studied and explored in the dissertation, and the virtual experimental platform of co-simulation of mechanical-electrical-hydraulic complicated coupling system was established by the integration interfaces between different software, moreover the co-simulation of manipulator was carried out under this virtual platform. The validity of proposed control algorithm was proved, and the accurate trajectory track and the synchronization control of parallel hydraulic cylinders of manipulator were also implemented by the co-simulation of manipulator. A new method was presented in the mechanical-hydraulic coupling aspect. This method made use of the ability of automatic computation of ADAMS and the accurate virtual prototyping models to simulate the load change of piston rod of hydraulic cylinder during the movement process beforehand, and then the load change curve was input to the hydraulic cylinder while performing the hydraulic simulation to get the actual motion parameters of hydraulic cylinder. In this way the consistency between the change of the position and poise of manipulator and the hydraulic simulation of manipulator was guaranteed, and the mechanical-hydraulic coupling was achieved indeed.
引文
延平,戴革林,王保成等.2005.核聚变-消除人类能源危机的济世良方[J].物理与工程,15(2):33-35.
    陈超.2004.人造太阳就要升起来了-挑战终极能源的ITER.NSFC-科技快讯.http://www.nsfc.gov.cn/nsfc/desktop/kjkx.aspx@infoid=4859.htm.
    曹丽.2005.英最大核电站电厂发生泄漏.人民网>>环保>>世界环境之窗.http://env.people.com.cn/GB/46856/3379348.html.
    杨立明.2005.巴西两座核电站因变压器失火暂时关闭无核泄漏.人民网>>国际>>时事快报.http://world.people.com.cn/GB/1029/389 1692.html.
    昌意.2004.受控热核聚变[J].物理通报,6:1-4.
    李建刚,杨愚.2003.受控热核聚变研究及其在我国HT-7超导托卡马克上的最新进展[J].物理,32(12):787-790.
    董家齐.2005.磁约束受控热核聚变研究中的物理问题-写于世界物理年[J].科学中国人.9:53-55.
    R.Gottfried,R.Bauer,B.Lagerbauer.2003."ITER Port Handling System Design",Final Report from ITER International Team,Contract No:FU05-CT-2002-00071,EFDA Order No:93/851HW.
    R.Gottfried,R.Bauer.2000."ITER Port Handling System Design",Final Report from International ITER Team,December 2003,Contract No." FU05-CT-2002-00138,EFDA Order No:93/851-IL.
    P.D.Weng.The Engineering Design of the HT-7U Tokamak.21th Symposium on Fusion Technology.Sept.11-16,Spain Madrid.
    熊光楞,王克明.1999.计算机仿真技术在轿车工业中的应用与发展[J].系统仿真学报,11(5):337-340.
    熊光楞,陈晓波,郭斌.200.2.复杂产品设计的仿真现状与发展趋势[J].计算机集成制造系统,8(9):673-677.
    XIONG Guangleng,CHEN Xiaobo.2002.The co - simulation technology for complex product design[A].Proceedings of Asian Simulation Conference[C].Shanghai,China,75-80.
    KARANGEL EN N E,T.HOANG N.1994.Simulation based design for large complex computer based system[A].Proceedings of Systems Engineering of Computer - Based Systems[C].116-123.
    MAGHNOUJ I R,BERBRAECK A,et al.2001.Collaborative simulation modeling:experiences and lessons learned[C].Proceedings of the 34th Hawaii International Conference on System Sciences.Hawaii,U.S.A,88-97.
    VANBEEK D A.2000.Multi-domain modeling,simulation and control[C].Proceedings of 4~(th)International Conference on Automation of Mixed Processes.Dortmund,Germany,139-146.
    IEEE Std1516-2000.IEEE standard for modeling and simulation(M &S) high level architecture (HLA) framework and rules[S].
    SMID G E,CHEOK K C.2001.Standardizing collaborative simulation in engineering environments with HLA[A].SSGRR[C].L 'Aquila,Italy,100-109.
    BMS.1999.Co-simulation boosts vehicle design efficiency at ford[J].Computer-Aided Engineering,18(7):8-12.
    赵雯,等.2002.虚拟样机-体化建模方法研究[J].系统仿真学报,14(1):100-103.
    王小平,曹立明.2002.遗传算法-理论、应用及软件实现[M].西安:西安交通大学出版社.
    李伯虎,等.2002.复杂产品虚拟样机工程的研究与初步实践[J].系统仿真学报,14(3):336-341.
    P GREENSPUN.2001.Distributed computing with HTTP,XML,SOAP,and WSDL[DB].http://www.soapware.org/bdg.
    G Antonino,et al.1999.Virtual reality as a tool for verification of assembly and maintenance processes[J].Computers & Graphics,389-403.
    熊光楞,李伯虎,柴旭东.2001.虚拟样机技术[J].系统仿真学报,13(1):114-117.
    Chen Xi,Wu huizhong,Zhu yaoqing.2002.The architecture and key technology of an agentbased virtual prototyping[C].Proceedings of Asian Simulation Conference;System Simulation and Scientific Computing,Shanghai,2:661-666.
    Liu Hong,Tang MingXi,John Hamilton Frazer.2001.Supporting Learning in a Shared Design Environment[J].Advantages in Engineering Software,32(4):285-293.
    姜虹.2001.结构动力学与控制系统协同的并行设计技术研究[D].北京航天部二院.
    柴旭东.2001.基于协同仿真与并行工程的复杂产品虚拟样机技术研究[R].北京:清华大学.
    陈晓波.2003.面向复杂产品设计的协同仿真关键技术研究[D].北京:清华大学.
    曹惟庆.2002.连杆机构的分析与综合[M].北京:科学出版社.
    王洪瑞.2001.液压6-DOF并联机器人操作手运动和力控制的研究[M].保定:河北大学出版社.
    冯志友。张策。杨廷力.2006.基于单开链单元的并联气液动连杆机构运动分析[J].农业机械学报,37(03):105-108.
    唐家玮,马喜川.1995.平面连杆机构运动综合[M].哈尔滨:哈尔滨工业大学出版社.
    蒲俊,吉家锋.2001.Matlab工程数学解题指导[M].上海:浦东电子出版社。91-93.
    朱世强,王宣银.2001。机器人技术及其应用[M].浙江:浙江大学出版社,114-135.
    蔡自兴.2000.机器人学[M].北京:清华大学出版社,230-283.
    焦晓红,方一鸣.2001.液压伺服驱动的并联机器人离散滑模变结构控制[J].自动化与仪器仪表,01:25-27.
    葛建兵,郝矿荣,白代萍.2005.并联机器人的轨迹规划仿真[J].轻工机械,04:52-54.
    郭宗和,李连升,孙术华.2007.3-RPC并联机器人的运动轨迹规划与仿真[J].中国机械工程,18(09):1036-1038.
    高英杰,晋艳超,董建伟,池正丽.2006.液压挖掘机基于轨迹规划的控制优化[J].中国机械工程,04(03):289-294.
    杨秀清,梅涛,查世红,骆敏舟.2008.倾斜提升机制的运动学建模与仿真[J].中国机械工程,(19)19:2297-2302.
    Su H J,Dietmaier P,McCarthy J M.2003.Trajectory Planning for Constrained Parallel Manipulators[J].Journal of Mechanical Design,125(12):709-715.
    Sira-Ramirez,H.2000.On the Control of the "Ball and Beam" System:A Trajectory Planning Approach[C].Proceedings of the 39th IEEE Conference on Decision and Control,vol.4:4042-4047.
    Rosas-Flors,J.A.;Alvarez-Gallegos,J.;Castro-Linares,R.2001.Trajectory Planning and Control of an Underactuated Planar 2R Manipulator[C].Proceedings of the 2001 IEEE International Conference on Control Application,548-552.
    Armstrong B,Dupont P,Canudas de Wit C.1994.A Survey of Models,Analysis Tools and Compensation Methods for the Control of Machines with Friction[J].Automatica,30(7):1083-1138.
    Berger E J.2002.Friction modeling for dynamic system simulation.ASME Appl Mech Rev.55(6):535-577.
    Ibrahim R A.1994.Friction-induced vibration,chatter,squeal,and chaos.Part Ⅰ:Mechanics of contact and friction.ASME Appl Mech Rev,47(7):209-226.
    Ibrahim R A.1994.Friction-induced vibration,chatter,squeal,and chaos.Part Ⅱ:Dynamics and modeling.ASME Appl Mech Rev,47(7):227-253.
    Awrejcewicz J,Olejnik P.2005.Analysis of dynamic systems with various friction laws.ASME Appl Mech R.ev,58:389-410.
    Janiec M.2004.Friction compensation by the use of friction observer[D].Lund:Lund Institute of Technology,5-16.
    Morin A J.1833.New friction experiments carried out at Metz in 1831-1833.Proceedings of the French Royal Academy of Sciences,Paris,1-28.
    Bo L C,Pavelescu D.1982.The friction-speed relation and its influence on the critical velocity of the stick-slip motion. Wear, 82 (3):277-289.
    Tustin A. 1947. The effects of backlash and of speed dependent friction on the stability of closed-cycle control systems [J]. Institution of Electrical Engineers, 94(2):143-151.
    Armstrong B. 1995. Stick slip arising from stribeck friction. In: Proceedings of IEEE Conference on. Robotics and Automation, Cinxinnati, 1377-1382.
    Hess D P, Soom A. 1990. Friction at a lubricated line contact operating at oscillating sliding velocity [J]. Tribology, 112(1):147-152.
    Canudas de Wit C, Carillo J. 1990. A modified EW-RLS algorithm for system with bounded disturbance. Automatica, 26(3):599-606.
    Karnopp D.1985. Computer simulation of stick slip friction in mechanical dynamic systems.ASME Journal of Dynamic Systems, Measurement, and Control, 107:100-103.
    Ravanbod-Shirazi L, Besancon-Voda A. 2003. Friction identification using the karnopp model,applied to an electro pneumatic actuator. Journal of Systems and Control Engineering,217:123-138.
    Polycarpou A, Soom A. 1992. Transitions between sticking and slipping at lubricated line contacts,friction-induced vibration, chatter, squeal and chaos. In: Proceedings of the ASME Winter Annual Meeting, Anaheim, 139-148.
    
    Dahl P R. 1976. Solid friction damping of mechanical vibrations. AIAA, 1675-1682.
    Bliman P J. 1992. Mathematical study of the Dahl's friction model. EuroJ Mech A/Solids,11(6):835-848.
    Rabinowicz E. 1951. The nature of static and kinetic coefficients of friction. J Appl Phys,22(11):1373-1379.
    Bliman P A, Sorine M. 1995. Easy-to-use realistic dry friction models for automatic control. In:Proceedings of the 3~(rd) European Control Conference. Rome, Italy, 3788-3794.
    Haessig D A, Friedland B. 1991. On the modeling and simulation of friction. ASME Jouranl of Dynamic systems, Measurement and Control, 113:354-362.
    Conn S. 1998. Dynamic friction measurement, modeling and compensation for precise motion control: [dissertation]. New Jersey: New Jersey Institute of Technology, 23-31.
    Canudas de Wit C, Olsson H, Lischinsky P. 1995. A new model for control of systems with friction. IEEE Transactions on Automatic Control, 40(3):419-425.
    Barabanov N, Ortega R. 2000. Necessary and sufficient conditions for passivity of the LuGre friction model. IEEE Transactions on Automatic Control, 45(4):830-832.
    Olsson H, Astrom K J, et al. 1998. Friction models and friction compensation. European Journal of Control, 4(3): 176-195.
    Lampaert V, Swevers J, Al-Blender F. 2002. Modification of the leuven integrated friction model struction. IEEE Transactions on Automatic Control, 47(4):683-687.
    Lampacrt V, Al-Bender F, Swevers J. 2003. A generalized Maxwell-Slip friction model appropriate for control purposes. Proceedings of IEEE International Conference on Robotics and Automation, Washington, 1170-1177.
    Dupont P, Armstrong B, Hayward V. 2000. Elastoplastic friction model: contact compliance and stiction. In: Proceedings of ACC2000, Chicago, 1072-1077.
    Dupont P, Hayward V, Armstrong B. 2002. Single state elastoplastic friction models. IEEE Transaction on Automatic Control, 47(5):787-792.
    Lenz J, Gaul L. 1995.The influence of microslip on the dynamic behavior of bolted joints. In:Preceedings of 13~(th) International Modal Analysis Conference, Washington, 249-254.
    Gaul L, Lenz J. 1997. Nonlinear dynamics of structures assembled by bolted joints. Acta Mech,125:169-181.
    Al-Bender F, Lampaert V, Swevers J. 2004. Modeling of dry sliding friction dynamics: From heuristic models to physically motivated models and back. Chaos, 14(2):446-460.
    Al-Bender F, Lampaert V, Swevers J. 2004. A novel generic model at asperity level for dry friction force dynamics. Tribology Letters, 16(1):81-93.
    Armstrong B. 1993. Stick-slip and control in low-speed motion. IEEE Transactions on Automatic Control, 38(10):1483-1496.
    Ferretti G, Magnani G, Paolo R. 2004. Single multistate integral friction models. IEEE Transactions on Automatic Control, 49(12):2292-2297.
    Kelly R, Santibanez V, Gonzalez E. 2004. Adaptive friction compensation in mechanisms using the dahl model. Journal of Systems and Control Engineering, 218:53-57.
    Walrath C. 1984. Adaptive bearing friction compensation based on recent knowledge of dynamic friction. Automatica, 20(6):717-727.
    Ehrich L N, Krishnaprasad P. 1992. Adaptive friction compensation for bi-directional low-velocity position tracking. Proceedings of the 31~(th) Conference on Decision and Control, Washington,267-273.
    Hischorn R M, Miller G. 1999. Control of nonlinear systems with friction. IEEE Transactions on Control Systems Technology, 7(5):588-595.
    Vddagarbha P, Dawson D M. 1999. Tracking control of mechanical systems in the presence of nonlinear dynamic friction effects. IEEE Transactions on Control Systems Technology,7(4):446-456.
    Misovee K M, Annaswamy A M. 1999. Friction compensation using adaptive nonlinear control with persistent excitation.International Journal of Control,72(5):457-479.
    LIU Zheng-hua,WANG Qing-wei,ER Lian-jie.2007.Backstepping Control with Adaptive Friction Compensation for Flight Simulator[J].Journal of System Simulation,19(19):4504-4508.
    Southward S C,Radcliffe C J,MacCluer C R.1991.Robust Nonlinear Stick2Slip Friction Compensation[J].ASME Journal of Dynamic Systems,Measurement,and Control,113:639-645.
    Armstrong B,Amin B.1996.PID Control in the Presence of Static Friction:A Comparison of Algebraic and Describing Function Analysis[J].Automatica,32(5):679-692.
    Bonsignore A,Ferretti G,Magnani G.1999.Coulomb Friction Limit Cycles in Elastic Positioning Systems[J].ASMEJournal of Dynamic Systems,Measurement,and Control,121:298-301.
    Friedland B,Park Y J.1992.On Adaptive Friction Compensation[J].IEEE Trans on Automatic Control,37(10):1609-1612.
    Yazdizadeh A,Khorasani K.1996.Adaptive Friction Compensation Based on the Lyapunov Scheme[C].Proceedings of the 1996 IEEE International Conference on Control Applications,1060-1065.
    Amin J.Friedland B,Harnoy A.1997.1mplementation of a Friction Estimation and Compensation Technique[C].IEEE Control Systems,71-76.
    Huang P Y,Chen Y Y,Chert MS.1998.Position-Dependent Friction Compensation for Ballscrew Tables[C].Proceedings of the 1998 IEEE International Conference on Control Applications,863-867.
    Tafazoli S,De Silva C W,Lawrence P D.1998.Tracking Control of an Electrohydraulic Manipulator in the Presence of Friction[J].IEEE Trans.on Control Systems Technology,6:401-411.
    Phillips S M,Ballou K R.1993.Friction Modeling and Compensation for an Industrial Robot[J].Journal of Robotic Systems,10(7):947-971.
    扬元凯,郎需英.1983.精密转台中摩擦力矩的动态补偿[J].自动化学报,9(4):248-252.
    Yang Y P,Chu J S.1993.Adaptive Velocity Control of DC Motors with Coulomb Friction Identification[J].A SME Journal of Dynamic Systems,Measurement,and Control,115:95-102.
    Weiping L,Cheng X.1992.Adaptive High-Precision Control of Positioning Tables-Theory and Experiments[J].IEEE Trans.on Control Systems Technology,2:265-270.
    张伟英,张友安.1989.非线性观测器用于高精度甚低速系统的动态补偿[J].控制与决策,(1):35-37.
    Canudas de Wit C,Noel P,Brogliato B.1993.Adaptive Friction Compensation in Robot Manipulators: Low-Velocities [J]. International Jooural of Robotics Research, 10(3): 189-199.
    Feemster M, Vedagarbha P, Dawson D M, Haste D. 1999. Adaptive Control Techniques for Friction Compensation [J]. Mechatronics, 9: 125-145.
    Menon K, Krishnamurthy K. 1999. Control of Low Velocity Friction and Gear Backlash in a Machine Tool Feed Drive System [J]. Mechatronics, 9:33-51.
    Cheok K C, Hu H, Loh N K. 1988. Modeling and Identification of a Class of Servomechanism Systems with Stick2Slip Friction [J]. ASMEJournal of Dynamic Systems, Measurement, and Control, 110: 324-328.
    Craig T J, Lorenz R D. 1992. Experimental Identification of Friction and Its Compensation in Precise, Position Controlled Mechanisms [J]. IEEE Trans. on Industry Applicatons, 28(6).
    Lee S W, KimJ H. 1999. Friction Identification Using Evolution Strategies and Robust Control of Positioning Tables [J]. ASME Journal of Dynamic Systems, Measurement, and Control, 121:619-624.
    Yen J Y, Huang S J. Lu S S. 1999. A New Compensation for Servo Systems with Position Dependent Friction [J]. ASMEJournal of Dynamic Systems, Measurement, and Control, 121:612-618.
    Walrath C D. 1984. Adaptive Bearing Friction Compensation Based on Recent Knowledge of Dynamic Friction [J]. Automatica, 20(6): 717-727.
    Canudas De Wit C, Lischinsky P. 1997. Adaptive Friction Compensation with Partially Known Dynamic Friction Model [J]. International Journal of Adaptive Control and Signal Processing,11:65-80.
    Hirschorn R M, Miller G. 1999. Control of Nonlinear Systems with Friction [J]. IEEE Trans. on Control Systems Technology, 7(5): 588-595.
    Vedagarbha P, Dawson D M, Feemster M. 1999. Tracking Control of Mechanical Systems in the Presence of Nonlinear Dynamic Friction Effects [J]. IEEE Trans. on Control Systems Technology, 7(4): 446-456.
    Misovec KM, Annaswamy A M. 1999. Friction Compensation Using Adaptive Non21inear Control with Persistent Excitation [J]. International Journal of Control, 72 (5): 457-479.
    Canudas de Wit C, Ge S S. 1997. Adaptive Friction Compensation for Systems with Generalized Velocity/ Position Friction Dependency[C]. Proceedings of the 36~(th) Conference on Decision&Control, 2465-2470.
    Canudas de Wit C, Horowitz R. 1999. Observers for Tire/ road Contact Friction Using Only Wheel Angular Velocity Information[C]. Proceedings of the 38~(th) Conference on Decision&Control, 3932-3937.
    Canudas de Wit C. 1999. Control Design for Ultrasonic Motors With Dynamic Friction Interface[C]. In the 14th World Congress of IFAC, Beijing, 487-491.
    Armstrong B, Neevel D, Kusik T. 1999. New Result in NPID Control: Tracking, Integral Control,Friction Compensation and Experimental Result [C]. Proceedings of the 1999 IEEE International Conference on Robotics & Automation, 837-842.
    Lee S, Meerkov S M. 1991. Generalized Dither [J]. IEEE Trans. on Information Theory, 37 (1):50-56.
    Horowitz L, Oidak S, Shapiro A. 1991. Extensions of Dithered Feedback Systems [J] .International Journal of Control, 54 (1): 83-109.
    Yang S, Tomizuka M. 1988. Adaptive Pulse Width Control for Precise Positioning under Influence of Sticktion and Coulomb Friciton [J]. ASMEJournal of Dynamic Systems,Measurement, and Control, 110(3): 221-227.
    
    Armstrong B.1991.Control of Machines with Friction [M]. Norwell, Kluwer Academic Publishers. Morel G, Iagnemma K, Dubowsky S. 2000. The Precise Control of Manipulators with High Joint-Friction Using Base Force/ Torque Sensing [J]. Automatica, 36: 931-941.
    Tesfaye A, Lee H S, Tomizuka M. 2000. A Sensitivity Optimization Approach to Design of a Disturbance Observer in Digital Motion Control Systems [J]. IEEE/ASME Trans. on Mechatronics, 5 (1): 32-38.
    White M T, Tomizuka M, Smith C. 2000. Improved Track Following in Magnetic Disk Drives Using a Disturbance Observer [J]. IEEE/ASME Transactions on Mechatronics, 5 (1): 3-11.
    Ro P I, Shim W, Jeong S.2000. Robust Friction Compensation for Submicrometer Positioning and Tracking for a Ball2Screw2Driven Slide System [J]. Precision Engineering, 24: 160-173.
    Lee H S, Tomizuka M.1996.Robust Motion Controller Design for High-Accuracy Positioning Systems [J]. IEEE Trans. on Control Systems Technology, 43 (1): 48-55.
    Taghirad H D, Belanger P R. 1998. Robust Friction Compensation for Harmonic Drive Transmission[C]. Proceedings of the 1998 IEEE International Conference on Control Applications, 547-551.
    Kang M S. 1998. Robust Digital Friction Compensation [J]. Control Engineering Practice, 6 (3):359-367.
    Young K D. 1998. A Variable Structure Control Appraoch to Friction Force Compensation [C].Proceedings of the American Control Conference, 3138-3142.
    Sivakumar S, Farshad K. 1998. Model Independent Friction Compensation[C]. Proceedings of the American Control Conference, 463-466.
    Korondi P, Young D, Hashimoto H. 1998. Sliding Mode Based Disturbance Observer for Motion Control[C].Proceedings of the 37th IEEE Conference on Decision & Control,1926-1928.
    李书训,姚郁,王子才.1999.一种自适应摩擦补偿方法研究[J].电机与控制学报.3(3):129-133.
    克晶,苏宝库,曾鸣.2003.一种直流力矩电机系统的自适应摩擦补偿方法[J].哈尔滨工业大学学报,35(5):536-540.
    冯亮,马晓军,袁东等.2007.坦克炮控系统的反演滑模鲁棒摩擦补偿控制[J].装甲兵工程学院学报,21(1):58-61.
    李书训,姚郁,马杰.2000.基于观测器的伺服系统低速摩擦补偿分析[J].电机与控制学报,4(1):27-30.
    程俊兰.2006.电液位置伺服系统的摩擦补偿及仿真研究[J].液压与气动,(2):12-15.
    刘强,尔联洁,刘金琨.2003.参数不确定机械伺服系统的鲁棒非线性摩擦补偿控制[J].自动化学报,29(4):628-632.
    李海涛,房建成.2008.基于CMAC的CMG框架伺服系统摩擦补偿方法研究[J].系统仿真学报,20(7):1887-1891.
    王峰,张世杰,曹喜滨.2005.小卫星飞轮低速摩擦补偿观测器及半实物仿真[J].系统仿真学报,17(3):613-616.
    王忠山,王毅,苏宝库.2007.一种精密转台系统自适应摩擦补偿方法[J].华南理工大学学报,35(9):55-59.
    刘静.2005.挖掘机器人虚拟样机建模技术及其应用研究[D].浙江大学.
    李增刚.2005.ADAMS入门详解与实例.国防工业出版社,北京
    尹忠俊,赵益春,陈兵,韩天.2008.基于多体动力学的热轧卷取机踏步系统联合仿真研究[J].系统仿真学报,20(02):473-475.
    彭松林,左德参,张卫平,陈文元.2007.曲柄摇杆扑翼机构的联合仿真及优化设计[J].系统仿真学报,19(08):1758-1761.
    李韶华,杨绍普,李皓玉.2007.基于ADAMS-MATLAB联合仿真的汽车悬架半主动控制[J].系统仿真学报,19(10):2304-2307.
    Yi Yang,Mengyin Fu,Changsheng Sun,Meiling Wang,Cheng Zhao.2007.Control Law Design of Mobile Robot Trajectory Tracking and Development of Simulation Platform[C].Proceedings of the 26th Chinese Control Conference.pp:198-202.
    程军,宋华,郝丽娜,徐心和.2007.异构双腿行走机器人的联合仿真研究[J].系统仿真学报,19(21):4953-4956.
    刘静,潘双夏,冯培恩.2005.基于ADAMS的挖掘机液压系统仿真技术.农业机械学报,36(10):109-112.
    Chunxia Zhu,Lida Zhu,Yongxia Liu and Guangqi Cai.2007.Dynamics Modeling and Co-simulation of Rigid-flexible Coupling System of 3-TPT Parallel Robot[C].Proceedings of the 2007 IEEE International Conference on Automation and Logistics,2627-2632.
    Andres Iborra,Juan A.Pastor etc.2003.Robots in radioactive environments.IEEE Robotics &Automation Magazine.(12):12-23.
    Richard Sharp and Marc Decreton.1996.Radiation tolerance of components and materials in nuclear robot applications.Reliability Engineering and System Safety.(53):291-299.
    Barry Robertson.1997.A preview of the European Commission TELEMAN programe for telerobotics research.IEEE Robotics & Automation Magazine.12:10-11.
    N.Takeda,K.Akou etc.1997.Development of divertor cassette transporters for ITER.Fusion Engineering.17th IEEE/NPSS Symposium Volume 2,pp:925-928.
    T.Burgess,T.Brown etc.1999.Remote maintenance requirements and approach for the FIRE project.Fusion Engineering.18th Symposium on 25-29 Oct.pp:484-487.
    Youk O,Lee N,Kim B,Lee Y,Seungho Kim.1999.Technology development for the radiation hardening of robots[A].Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems[C].pp:1715-1720.
    Romiti A,Raparelli T.1991.Four track mobile robot for non structured environments[A].The 5th International Conference on Advanced Robotics[C].pp:926-930.
    Takeo K,Kosuge K,Shibanuma K,Oka K.2001.Force control of remote maintenance robot for the ITER[A].The 27th Annual Conference of the IEEE Industrial Electronics Society[C].pp:450-455.
    Abouaf J.1998.Trial by fire:teleoperated robot targets Chernobyl[J].Computer Graphics and Applications,18(4):10-14.
    Sugiyama S,Tanaka K,Numata N etc.1991.Quadrupedal locomotion subsystem of prototype advanced robot for nuclear power plant facilities[A].The 15th International Conference on Advanced Robotics[C].pp:326-333.
    Ze Cui,Xiangcan Wang,Donghai Qian,Zhenbang Gong.2007.Research on Simulation of Redundant Robot Force Control[C].Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics,pp:1669-1674.
    Wenhui Fan,Keming Wang,Guangleng Xiong.2006.Multi-Domain Collaborative Simulation Platform:An Integrative Framework for Complex Products Design[C].Proceedings of the 10~(th)International Conference on Computer Supported Cooperative Work in Design,
    沈俊,宋健.2007.基于ADAMS和Simulink联合仿真的ABS控制算法研究[J].系统仿真学报,19(5):1141-1160.
    陈黎卿,郑泉,陈无畏等.2007.基于ADAM s和Simulink联合仿真的主动悬架控制[J].农 业工程学报,38(4):12-15.
    金康进,李勇,施光林.2006.基于ADAMS的液压控制系统仿真[J].液压与气动,(07):3-6.
    Dupont P E.1994.Avoiding Stick-Slip through PD Control[J].IEEE Trans.on Automatic Control,39(5):1094-1097.
    刘强,尔联洁,刘金琨.2002.摩擦非线性环节的特性、建模与控制补偿综述[J].系统工程与电子技术,24(11):45-52.
    刘丽兰,刘宏昭,吴子英等.2008.机械系统中摩擦模型的研究进展[J].力学进展,38(2):201-213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700