用户名: 密码: 验证码:
GPS接收机空时抗干扰理论与实现关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
GPS接收机空时抗干扰方法相对于单纯时域、频域和空域抗干扰方法有明显优势。空时处理可以抑制多种干扰,在不增加天线阵元的情况下,抗干扰处理的自由度大大增加,抗干扰能力有质的提高。论文重点研究了GPS接收机空时抗干扰理论与实现关键技术。
     首先针对GPS接收机空时自适应滤波抗干扰技术的理论基础展开讨论。给出了相应的数学模型;分析了空时处理的最优准则;推导了LCMV准则各种不同约束形式下的最优权值表达式;通过对不同干扰(宽带干扰、部分频带干扰、窄带干扰)情况下,不同维数空时权矢量空频响应的数字仿真,得出空时自适应滤波抗干扰的一些有益结论,总结了各种干扰与空频自由度之间的对应关系;研究了空时抗干扰的信号失真问题,通过理论分析和仿真实验,指出在合适的最优准则和约束条件下,空时处理可以可靠地应用于GPS抗干扰,不会造成严重的信号失真。上述内容对GPS接收机空时抗干扰理论研究和实践有一定参考价值。
     空时处理在提高抗干扰能力的同时计算量显著增加,以降低计算量为主要目的的降维简化算法是GPS接收机空时抗干扰研究的重要问题。本文深入研究了多级维纳滤波(MWF)和辅助向量滤波(AVF)两种典型多步迭代降维方法,在一定加强条件下将这两种方法统一到同一降维框架内。在此基础上,推导分析了一种计算量小、性能优良的简化多步迭代降维(MIRR)方法,将其应用于GPS空时抗干扰中,取得良好效果。该方法采用并行结构,在数据域进行处理,适合硬件实现。针对空时抗欺骗干扰情况,提出部分解扩结合多步迭代降维的简化方法,克服了权矢量长度过长、计算量大、收敛速度慢,易受多普勒频偏影响等缺点。
     根据GPS空时抗强干扰接收信号中有用信号、噪声和干扰的不同分布特点,将子空间投影方法与空时处理相结合,推导出空时权值最优解的子空间投影表示。提出一种利用相关相减结构多级维纳滤波器(CSA-MWF)的分析滤波多级分解特性构建空时干扰子空间的方法;考虑到GPS空时抗干扰中干扰非常强的实际情况,针对原自适应PASTd子空间投影算法提出一种改进方法,增加了特征向量正交化和特征值对角加载步骤,用来估计干扰子空间,使得估计精度和收敛速度大大提高。针对非平稳的LFM干扰,提出用STFT-Hough变换方法提取干扰参数,精确重构干扰瞬时频率,结合干扰的空域特征构造空时干扰子空间。仿真结果表明,本文提出的几种方法能够简单、有效构建接收数据空时干扰子空间,将接收数据投影到空时干扰子空间的正交子空间中,从而达到抑制干扰的目的。
     深入分析了GPS空时抗干扰数字接收机设计中的AD量化问题。研究了无干扰情况下不同量化位数对接收机输出性能的影响;指出在一定量化条件下,强干扰下的接收机AD量化性能分析可转化为无干扰时的AD量化性能分析;建立一种简化的线性等效量化分析模型来研究接收机中频数字处理模块中有限字长运算对系统性能带来的影响。
     给出了一种GPS接收机空时抗干扰模块设计实现方案。详细讨论了其系统构成,给出天线阵列、射频、中频抗干扰、DSP控制等四个子模块的结构和设计指标;重点分析了中频抗干扰子模块的FPGA实现过程。
Space-time interference suppression technology shows great predominance compared with only time, frequency or space field techniques for GPS receiver. Many kinds of interferences can be counteracted by space-time adaptive processing (STAP) technology. It can increase the degrees of freedom so remarkably that the anti-jamming capability can be enhanced essentially without increasing the number of antennas. This dissertation researched the theory and key realization technologies of space-time interference suppression for GPS receiver.
     Firstly, the dissertation discussed the theoretical foundation of space-time anti-jamming adaptive filtering for GPS receiver. The corresponding mathematical model was proposed; The optimal criterion of STAP was analyzed; The optimal weight expression in different constraints of LCMV criterion was deduced; The space-frequency response of STAP weight was simulated in different jammers (wideband, partialband and narrowband jammers) circumstances, the relationship was summarized between the jammer and degrees of space-frequency freedom and some available conclusions of space-time anti-jamming processing were drawed; The distortion of GPS signals induced by STAP was discussed. Through theoretical analysis and simulation experiments, it was pointed out that STAP could apply to GPS anti-jamming reliably in appropriate optimal criterions and constraints, and would not result in serious signal distortion. The discussion above has some referential value for the anti-jamming theory research and design of GPS space-time receiver.
     Along with the anti-jamming capability improvement through STAP, the computational complexity increases greatly. The reduced-rank simplification method aim at computation reduction is one of the key techniques for STAP. Two typical multistage iterative reduced-rank (MIRR) methods, multistage nested wiener filtering (MWF) algorithm and auxiliary vector filtering (AVF) algorithm were deeply analyzed and unified to the same reduced-rank frame on a certain enhanced condition. A simplified MIRR algorithm was deduced and analyzed to be used in space-time interference suppression for GPS receiver, which has low computational complexity and good performance. The algorithm has a parallel structure, processes receive signal in a data domain and suits hardware realization. For space-time spoofing interference suppression, a new approach combing PD (partial despreading) with MIRR was proposed, which overcomes the disadvantages like very long weight vector, large computation, slow convergence and Doppler shift influence.
     A new kind of approach was proposed for interference suppression of GPS receiver. It combines subspace projection with STAP based on the characteristics of GPS signals, noise and jammers. The optimal filter weight was deduced using subspace projection form. It was proposed that space-time interference subspace is constructed simply and effectively using the multistage decomposition character of the MWF based on the correlation subtractive architecture. Considering the strong interference in GPS receiver, an improved adaptive PASTd subspace tracking technique is proposed. It adds the steps of eigenvector orthogonalization and eigenvalue diagonal loading. The interference subspace is estimated more precisely and quickly. For LFM nonstationary interferences, it was proposed to detecte interferences and estimate parameters using STFT-Hough transformation, reconstructed interference instantaneous frequencies precisely. Combining the space characteristic, Space-time interference subspace is constructed. The numerical simulation results demonstrated that these algorithms proposed can construct space-time interference subspace simply and effectively. Interference suppression is achieved through projecting the received signal to the orthogonal subspace of space-time interference subspace.
     The quantization problem was deeply analyzed for designing a GPS space-time receiver. The loss of the receiver output SNR is researched for different length of AD quantization without interference. It was pointed out that the performance analysis of AD quantization with strong interferences can change to the quantization analysis without interferences on a certain condition. It was established a simple linearly equivalent model for analyzing the influence of the finite word length operation in IF-digitalized processor.
     A design scheme of space-time anti-jamming module was proposed for GPS receiver. The system construction was discussed. The structure and design target about the four submodules was given including antenna array submodule, RF submodule, IF anti-jamming submodule and DSP control submodule. The FPGA realization of IF anti-jamming submodule is analyzed emphatically.
引文
[1]干国强,邱致和,导航与定位:现代战争的北斗星,北京:国防工业出版社,2000年2月
    [2]Farrell,J.and Barth,M.,The Global Positioning System and Inertial Navigation:Theory and Practice,New York:McGraw.Hill,1998
    [3]Kaplan,E.D.,Understanding GPS:Principles and Applications,Boston:Artech House,1996
    [4]Logsdon,T.,Understanding the Navstar,GPS,GIS and IVHS,New York:Van Nostrand Reinhold,1995
    [5]Lewandowski,W.,Petit,G.and Thomas,C.,Precision and accuracy of GPS time transfer,IEEE Transactions on Instrumentation and Measurement,April 1993,42(2):474-479
    [6]张守信,GPS卫星测量定位理论与应用,长沙:国防科技大学出版社,1996
    [7]熊志昂,李红瑞,赖顺香,GPS技术与工程应用,北京:国防工业出版社,2005
    [8]IDC-GPS-200,NAVSTAR GPS Space Segment/Navigation User Interfaces (Public Release Version),ARINC Research Corporation,July 3,1991,
    [9]Gilmore,S.W.and Delaney,W.,Jamming of GPS Receivers:A Stylized Analysis.Project Report,Lincoln Laboratory,April 1994,
    [10]DeCleene,B.,Survey of Potential Interference Sources to GPS,Draft Final Report,No.TR-92091,prepared by Stel Inc.,under FAA Contract No.DTRS-59-89-D00043.,Oct.1992,
    [11]Johannessen,R.,Gale,S.J.and Asbury,M.J.A.,Potential interference sources to GPS and solutions appropriate for applications to civil aviation,IEEE Aerospace and Electronic Systems Magazine,Jan.1990:3-9
    [12]Upadhyay,T.N.and Ferzali.,W.,GNSS/SATCOM Simultaneous Operation,Interference Concerns,Mayflower Communications Company,Inc.,Presentation to FAA GNSS SOIT meeting,Jan.1993,
    [13]George,D.,Cotterill,S.and Upadhyay,T.,Advanced GPS Receiver(AGR)Technology Demonstration Program,Final Report WL-TR-93-1051.Mayflower Communications Company,Inc.Reading MA,.Jan.1993,
    [14]Upadhyay,T.,Dimos,G.and Ferzali,W.,Test Results on Mitigation of Satcom-induced Interference to GPS Operation,ION GPS,1995
    [15]Upton,D.M.,Upadhyay,T.N.and Marchese,J.,Commercial-Off-The-Shelf(COTS) GPS Interference Canceller and Test Results,ION Navigation Conference,1998:319-325
    [16] Capozza, P. T., Holland, B. J. and Hopkinson, T. M., A Single-Chip Narrow-Band Frequency-Domain Excisor for a Global Positioning System(GPS) Receiver, IEEE Journal of Solid-State Circuits, March 2000, 35(3):401-411
    [17] Parkinson, B. W. and Spilker, J. J., Global Positioning System:Theory and Applications, Artech House, 1996
    [18] GPS Antenna System(GAS-1). Technical Performance Requirements Document,Nov.1995,
    [19] Brown, A., Jammer and interference location system-design and test results,Proceedings of ION National Technical Meeting, Anaheim CA, January 2000
    [20] Brown, A., Taylor, K., Kurtz, R. and Tseng, H., Kinematic test results of a miniaturized GPS antenna array with digital beamsteering electronics,Proceedings of ION National Technical Meeting, Anaheim CA, January 2000
    [21] Brown, A., Tseng, H. and Kurtz, R., Test results of a digital beamforming GPS receiver for mobile applications, Proceedings of ION National Technical Meeting,Anaheim CA, January 2000
    [22] Brown, A. and Wang, J., High accuracy kinematic GPS performance using a digital beam-steering array, Proceedings of ION GPS-99, Nashville TN, Sept.1999
    [23] Morton, Y. T., French, M. P. and Zhou, Q., A software approach to access ultra-wide band interference on GPS receivers, Position Location and Navigation Symposium, 2004:551-557
    [24] Reed, C. W., Van Wechel, R. and Johnston, I., FaSTAP/spl trade/: A scalable anti-jam architecture for GPS, Position Location and Navigation Symposium,2004:496-502
    [25] Simonsen, K., Suycott, M., Crumplar, R. and Wohlfiel, J., LOCO GPSI: Preserve the GPS advantage for defense and security, Position Location and Navigation Symposium, 2004:598-603
    [26] Kuester, C, Chaloupka, H. and Knauth, J., A high temperature superconducting anti-jam GPS antenna array, IEEE MILCOM, 1999:671-674
    [27] Myrick, W. L., Zoltowski, M. D. and Goldstein, J. S., Anti-jam space-time preprocessor for GPS based on multistage nested Wiener filter, IEEE MILCOM,1999:675-681
    [28] Zhang, Y., Amin, M. G. and Lindsey, A. R., Anti-jamming GPS receivers based on bilinear signal distributions, IEEE MILCOM, 2001:1070-1074
    [29] Zoltowski, M. D. and Gecan, A. S., Advanced adaptive null steering concepts for GPS, IEEE MILCOM, 1995:1214-1218
    [30] Badke, B. and Spanias, A. S., Partial band interference excision for GPS using frequency-domain exponents, ICASSP, 2002:3936-3939
    [31] Myrick, W. L., Goldstein, J. S. and Zoltowski, M. D., Low complexity anti-jam space-time processing for GPS, IEEE International Conference on Acoustics,Speech, and Signal Processing, 2001:2233-2236
    [32] Myrick, W. L., Zoltowski, M. D. and Goldstein, J. S., Exploiting conjugate symmetry in power minimization based pre-processing for GPS: reduced complexity and smoothness, IEEE International Conference on Acoustics,Speech, and Signal Processing, 2000:2833-2836
    [33] Sun, W. and Ainin, M. G., Interference suppression for GPS coarse/acquisition signals using antenna array, IEEE International Conference on ICASSP,2004:929-932
    [34] Amin, M. G., Zhao, L. and Lindsey, A. R., Subspace array processing for the suppression of FM jamming in GPS receivers, IEEE Transactions on Aerospace and Electronic Systems, January 2004, 40(1):80-92
    [35] Counselman, C. C, III, Array antennas for DGPS, IEEE Aerospace and Electronic Systems Magazine, Dec. 1998:15-19
    [36] Erickson, J. W., Maybeck, P. S. and Raquet, J. F., Multipath-adaptive GPS/INS receiver, IEEE Transactions on Aerospace and Electronic Systems, April 2005,41(2):645-657
    [37] Fante, R. L. and Vacarro, J. J., Cancellation of jammers and jammer multipath in a GPS receiver, IEEE AES Magazine, Nov. 1998, 13:25-28
    [38] Fante, R. L. and Vaccaro, J. J., Wideband cancellation of interference in a GPS receive array, IEEE Transactions on Aerospace and Electronic Systems, April 2000, 36(2):549-564
    [39] Gerten, G., Protecting the global positioning system, IEEE Aerospace and Electronic Systems Magazine, Nov. 2005:3-8
    [40] Hwang, S.-S. and Shynk. J. J., Blind GPS receiver with a modified despreader for interference suppression, IEEE Transactions on Aerospace and Electronic Systems, Apr. 2006:503-513
    [41] Hwang, S.-S. and Shynk, J. J., Multicomponent receiver architectures for GPS interference suppression, IEEE Transactions on Aerospace and Electronic Systems, Apr. 2006:489-502
    [42] Kim, S.-J. and Iltis, R. A., STAP for GPS receiver synchronization, IEEE Transactions on Aerospace and Electronic Systems, Jan. 2004, 40(1):132-144
    [43] Madhani, P. H., Axelrad, P., Krumvieda, K. and Thomas, J., Application of successive interference cancellation to the GPS pseudolite near-far problem,IEEE Transactions on Aerospace and Electronic Systems, April 2003:481-488
    [44] Ray, J. K., Cannon, M. E. and Fenton, P., GPS code and carrier multipath mitigation using a multiantenna system, IEEE Transactions on Aerospace and Electronic Systems,Jan 2001:183-195
    [45]Cobb,H.S.,GPS pseudolites:theory,design,and applications,Ph.D Dissertation,Standford University,Sept.1997,
    [46]Phelts,R.E.,Multicorrelator techniques for robust mitigation of threats to GPS signal quality,Ph.D Dissertation,Standford University,June 2001,
    [47]王永良,彭应宁,空时自适应信号处理,北京:清华大学出版社,2000年9月
    [48]Haimovich,P.M.and Shah,A.,Applications of space-time adaptive processing in wireless communications,MILCOM 97 Proceedings,1997:1098-1102
    [49]Barile,E.C.,Guella,T.P.and Lamensdorf,D.,Adaptive antenna space-time processing techniques to suppress platform scattered clutter for airborne radar,IEEE Transactions on Aerospace and Electronic Systems,Jan.1995:382-389
    [50]Brennan,L.E.,Mallett,J.D.and Reed,I.S.,Adaptive arrays in airborne MTI radar,IEEE Trans.AP,1976,24(5):607-615
    [51]Sahmoudi,M.,Belkacemi,H.,Marcos,S.and Benidir,M.,Robust approaches for joint angle/Doppler estimation for space-time adaptive processing(STAP)airborne radar in non-Gaussian clutter,Proceedings of the Eighth International Symposium on Signal Processing and Its Applications,2005:743-746
    [52]Stiles,J.,Sinha,V.and Nanda,A.P.,Space-Time Transmit Signal Construction for Multi-Mode Radar,IEEE Conference on Radar,2006:573-579
    [53]Dai,H.and Poor,H.V.,Iterative space-time processing for multiuser detection in multipath CDMA channels,IEEE Transactions on Signal Processing,Sept.2002:2116-2127
    [54]Pados,D.A.and Batalama,S.N.,Joint space-time auxiliary-vector filtering for DS/CDMA systems with antenna arrays,IEEE Transactions on Communications,Sept.1999,47(9):1406-1415
    [55]Reynolds,D.,Wang,X.and Poor,H.V.,Blind adaptive space-time multiuser detection with multiple transmitter and receiver antennas,IEEE Transactions on Signal Processing,June 2002:1261-1276
    [56]Sadler,D.J.and Manikas,A.,MMSE multiuser detection for array multicarrier DS-CDMA in fading channels,IEEE Transactions on Signal Processing,July 2005:2348-2358
    [57]Howells,P.W.,Explorations in fixed and adaptive resolution at GE and SURC,IEEE Trans.on AP,Sep.1976,24(5):575-584
    [58]Applebaum,S.P.and Chapman,D.J.,Adaptive arrays with main beam constraints,IEEE Trans on AP,1976,2(Special Issue on Adaptive Antennas):650-662
    [59]Widrow,B.and et.al,Adaptive antenna systems,Proc.IEEE,1967,63:719-720
    [60]Widrow,B.and Srearns,S.D.,Adaptive signal processing,Prentice-Hall,1985
    [61] Frost, O. L., An Algorithm for Linearly Constrained Adaptive Array Processing,Proc. IEEE, 1972, 60(8):926-935
    [62] Horowitz, L. L., Controlling Adaptive Arrays with the Sample Matrix Inversion Algorithm, IEEE Trans. AES, Nov. 1979,
    [63] Reed, I. S., Mallett, J. D. and Brennan, L. E., Rapid Covengence rate in adaptive arrays, IEEE Trans. on A.E.S., Nov. 1974,10(6)
    [64] Alexander, S. T. and Ghirnikar, A. L., A method for recursive least squares filtering based upon an inverse QR decomposition, IEEE Trans. SP, Jan. 1993,40(1):20-30
    [65] Fante, R. L. and Vacarro, J. J., Enhanced anti-jam capability for GPS receiver,ION 98 Conf., Nashville TN, Sept. 1998:251-254
    [66] Fante, R. L. and Vaccaro, J. J., Ensuring GPS availability in an interference environment, IEEE Position Location and Navigation Symposium, 2000:37-40
    [67] Fante, R. L. and Vaccaro, J. J., Evaluation of adaptive space-time-polarization cancellation of broadband interference, IEEE Position Location and Navigation Symposium, 2002:1-3
    [68] Fante, R. L. and Vaccaro, J. J., Reduction of multipath-induced bias of GPS time-of-arrival, IEEE Position Location and Navigation Symposium, 2002:74-76
    [69] Fante, R. L. and Vaccaro, J. J., Evaluation and reduction of multipath-induced bias on GPS time-of-arrival, IEEE Transactions on Aerospace and Electronic Systems, July 2003, 39(3):911-920
    [70] Myrick, W. L., Zoltowski, M. D. and Goldstein, J. S., GPS jammer suppression with low-sample support using reduced-rank power minimization, Proceedings of the Tenth IEEE Workshop on Statistical Signal and Array Processing,2000:514-518
    [71] Myrick, W. L., Zoltowski, M. D. and Goldstein, J. S., Low-sample performance of reduced-rank power minimization based jammer suppression for GPS, IEEE Sixth International Symposium on Spread Spectrum Techniques and Applications, 2000:2233-2236
    [72] Amin, M. G., Zhao, L. and Lindsey, A. R., Performance analysis of subspace projection techniques for anti-jamming GPS using spatio-temporal interference signatures, Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing, 2001:361-364
    [73] Liu, L. and Amin, M. G., Multipath and precorrelation filtering effect on GPS noncoherent early-minuslate power discriminators, Proceedings of the Fifth IEEE International Symposium on Signal Processing and Information Technology,2005:417-422
    [74] Sahmoudi, M. and Amin, M. G., Improved Maximum-Likelihood Time Delay Estimation for GPS Positioning in Multipath,Interference and Low SNR Environments,IEEE/ION Position,Location,And Navigation Symposium,2006:876-882
    [75]Sahmoudi,M.and Amin,M.G.,Unitary Cyclic MUSIC for Direction Finding in GPS Receivers,IEEE Workshop Sensor Array and Multichannel Signal Processing,2006:70-73
    [76]Sun,W.and Amin,M.G.,GPS interference suppression using self-coherent feature of GPS signals,ISSPIT,2003:798-801
    [77]Sun,W.and Amin,M.G.,Maximum Signal-to-Noise Ratio GPS Anti-Jam Receiver with Subspace Tracking,ICASSP,2005:1085-1088
    [78]Zhao,L.,Amin,M.G.and Lindsey,A.R.,Subspace projection techniques for anti-FM jamming GPS receivers,Proceedings of the Tenth IEEE Workshop on Statistical Signal and Array Processing,2000:529-533
    [79]Zhao,L.,Amin,M.G.and Lindsey,A.R.,Mitigation of periodic interferers in GPS receivers using subspace projection techniques,Sixth International Symposium on Signal Processing and its Applications,2001:497-500
    [80]Ramos,J.,Zoltowski,M.and Urgos,M.,Robust blind adaptive array.A prototype for GPS,IEEE International Symposium on Phased Array Systems and Technology,1996:406-410
    [81]廖群,郑建生,黄超,gps自适应抗干扰算法及其FPGA实现,现代雷达,2006年4月,28(4):79-81
    [82]卢昕,熊昌仑,郑建生,宗战华,基于DSP技术的gps接收机天线自适应抗干扰模块的设计与实现,武汉大学学报(信息科学版),2005年7月,30(7):654-657
    [83]Mohamed,E.A.and王永芳,谈展中,用于gps接收机的自适应算法抗干扰性能比较,北京航空航天大学学报,2006年5月,32(5):561-565
    [84]孙晓昶,GPS空时抗干扰技术研究,国防科学技术大学博士学位论文,2003
    [85]孙晓昶,皇甫堪,陈强,李纲,GPS接收机抗干扰空时自适应滤波方法,通信学报,2004年8月,25(8):168-173
    [86]孙晓昶,皇甫堪,程翥,陈强,GPS接收机联合空时抗干扰方法,通信学报,2003年9月,24(9):93-102
    [87]狄旻珉,GPS抗干扰接收技术研究,国防科学技术大学博士学位论文,2006
    [88]狄旻珉,张尔扬,,一种多级GPS抗干扰接收机设计,通信学报,2005年11月,26(11):82-86
    [89]Goldstein,J.S.,Reed,I.S.and Scharf,L.L.,A multistage representation of the Wiener filter based on orthogonal projections,IEEE Transactions on Information Theory,Nov.1998,44(7):2943-2959
    [90]Pados,D.A.and Batalama,S.N.,Low-complexity blind detection of DS/CDMA signals:auxiliary-vector receivers,IEEE Transactions on Communications,Dec.1997,45(12):1586-1594
    [91]Honig,M.L.and Xiao,W.,Performance of reduced-rank linear interference suppression,IEEE Transactions on Information Theory,July 2001,47(5):1928-1946
    [92]Joham,M.,Sun,Y.,Zoltowski,M.D.,Honig,M.and Goldstein,J.S.,A new backward recursion for the multi-stage nested Wiener filter employing Krylov subspace methods,IEEE Military Communications Conference,2001:1210-1213
    [93]Applebaum,S.P.,Adaptive arrays,IEEE Trans on AP,1976,24:585-598
    [94]Capon,J.,High-resolution frequency-wavenumber spectrum analysis,Proc.IEEE,Aug.1969,57(8):1408-1418
    [95]Capon,J.,Greenfield,R.J.and Kolker,R.J.,Multidimensional Maximum Likelihood processing of a large aperture seismic array[J],Proc.IEEE,Feb 1967,55(2):192-211
    [96]Tufts,D.W.,Kumaresan,R.and Kirsteins,I.,Data adaptive signal estimation by singual value decomposition of a data matrix,Proceedings of the IEEE,June.1982,70(6)
    [97]Goldstein,J.S.and Reed,I.S.,Reduced-rank adaptive filtering,IEEE Transactions on Signal Processing,Feb.1997,45(2):492-496
    [98]Abdulkader,H.,Roviras,D.,Chaggara,R.,Vigneau,W.and Castanie,F.,Mitigation of Multipath Influence on Tracking Errors in LEO Navigation Applications,International Joint Conference on Neural Networks,2006:2673-2678
    [99]Betaille,D.F.,Cross,P.A.and Euler,H.,Assessment and improvement of the capabilities of a window correlator to model GPS multipath phase errors,IEEE Transactions on Aerospace and Electronic Systems,2006:705-717
    [100]Zhang,Y.and Bartone,C.,Multipath mitigation in the frequency domain,Position Location and Navigation Symposium,2004.,26-29 April 2004
    [101]龚耀寰,自适应滤波(第二版),北京:电子工业出版社,2003年7月
    [102]Frost,O.L.,An Algorithm for Linearly Constrained Adaptive Array Processing,Proc.IEEE,1962,60(8):926-935
    [103]Chowhury,S.,Zoltowski,M.D.and Goldstein,J.S.,Application of reduced-rank chip-level MMSE equalization to forward link with frequency selective multipath,Proceedings 38th Annual Allerton Conference on Communications,system and computing,Oct.2000
    [104]David,M.U.,Triveni,N.U.and M.,J.,Commercial-Off-The-Shelf(COTS) GPS Interference Canceller and Test Results,ION Navigation Conference,2000
    [105]Braasch,M.S.,GPS receiver architecture and measurements,Proceedings of the IEEE,1999,87(1):48-64
    [106]王玮,降维空时自适应处理算法研究及其在机载雷达与移动通信中的应用,北京航空航天大学博士学位论文,2002
    [107]Chowdhury,S.,Zoltowski,M.D.and Goldstein,J.C.,Reduced-rank adaptive MMSE equalization for high-speed CDMA forward link with sparse multipath channels,Conference Record of the Thirty-Fourth Asilomar Conference on Signals,Systems and Computers,2000:965-969
    [108]Dietl,G.Z.,M.D.;Joham,M.,Reduced-rank equalization for EDGE via conjugate gradient implementation of multi-stage nested Wiener filter,IEEE VTS 54th Vehicular Technology Conference,2001:1912-1916
    [109]Kansal,A.,Batalama,S.N.and Pados,D.A.,Adaptive maximum SINR RAKE filtering for DS-CDMA multipath fading channels,IEEE Journal on Selected Areas in Communications,Dec.1998,16(9):1765-1773
    [110]Pados,D.A.,Lombardo,F.J.and Batalama,S.N.,Auxiliary-vector filters and adaptive steering for DS/CDMA single-user detection,IEEE Transactions on Vehicular Technology,Nov.1999,48(6):1831-1839
    [111]Psaromiligkos,I.N.and Batalama,S.N.,Recursive short-data-record estimation of AV and MMSE/MVDR linear filters for DS-CDMA antenna array systems,IEEE Transactions on Communications,Jan.2004,52(1):136-148
    [112]Griffiths,L.J.and Jim,C.W.,An alternative approach to linearly constrained adaptive beamforming,IEEE Trans.on Antennas and Propagation,1982,30(1):27-34.
    [113]Yi,L.,Guosui,L.,Guhong and Weimin,S.,Invariant subspace reduced-dimension AMF-CFAR test,AEU International Journal of Electronics and Communication,1999,53(5):247-254
    [114]Goldstein,J.S.and Reed,I.S.,Theory of partially adaptive radar,IEEE Trans.on Aerospace and Electronic system,Oct.1997,33(4):1399-1325
    [115]Guerci,J.R.,Goldstein,J.S.and Reed,I.S.,Optimal and adaptive reduced-rank STAP,IEEE Transactions on Aerospace and Electronic Systems,April,2000,36(2):647-663
    [116]Pados,D.A.and Karystinos,G.,An iterative algorithm for the computation of the MVDR filter,IEEE Transactions on Signal Processing,Feb.2001,49(2):290-300
    [117]Pados,D.A.,Lombardo,F.J.and Batalama,S.,Adaptive minimum bit-error-rate steering of auxiliary-vector DS/CDMA detectors,IEEE International Symposium on Information Theory,1997:448
    [118]Ricks,D.C.and Goldstein,J.S.,Efficient architectures for implementing adaptive algorithms,Proceedings of the 2000 Applications Symposium,2000:29-41
    [119]Zoltowski,M.D.,Joham,M.and Chowdhury,S.,Recent advances in reduced-rank adaptive filtering with application to high-speed wireless,Proceedings of SPIE,2001,
    [120]Chen,W.,Mitra,U.and Schniter,P.,On the equivalence of three reduced rank linear estimators with applications to DS-CDMA,IEEE Transactions on Information Theory,Sept.2002,48(9):2609-2614
    [121]张贤达,矩阵分析与应用,北京:清华大学出版社,2004年1月
    [122]IDC-GPS-200,NAVSTAR GPS Space Segment/Navigation User Interfaces (Public Release Version),ARINC Research Corporation,1991,
    [123]Thompson,D.R.,Linstrom,L.A.,Gasparovic,R.F.and Elfouhaily,T.M.,Doppler analysis of GPS reflections from the ocean surface,IEEE International Geoscience and Remote Sensing Symposium,2003:4489-4491
    [124]许晓勇,王飞雪,庄钊文.,卫星导航系统信号的多普勒特性分析,国防科技大学学报,2003年5月,25(5):48-51
    [125]张东和,萧佐,gps信号的多普勒效应分析,电波科学学报,2002年2月,17(1):42-45
    [126]Singh,R.and Milstein,L.B.,Interference suppression for DS/CDMA,IEEE Transactions on Communications,March 1999,47(3):446-453
    [127]黄磊,吴顺君,张林让,冯大政,快速子空间分解方法及其维数的快速估计,电子学报,2005年6月,33(6):977-981
    [128]Zatman,M.,Properties of Hung-Turner projections and their relationship to the eigencanceller,Conference Record of the Thirtieth Asilomar Conference on Signals,Systems and Computers,1996:1176-1180
    [129]Rabideau,D.J.,Fast,rank adaptive subspace tracking and applications,IEEE Transactions on Signal Processing,Sept.1996,44(9):2229-2244
    [130]Reynolds,D.and Wang,X.,Adaptive group-blind multiuser detection based on a new subspace tracking algorithm,IEEE Transactions on Communications,July 2001,49(7):1135-1141
    [131]Stewart,G.W.,An updating algorithm for subspace tracking,IEEE Transactions on Signal Processing,June 1992,40(6):1535-1541
    [132]Yang,B.,Asymptotic convergence analysis of the projection approximation subspace tracking algorithms,Signal Processing,1996,50:123-136
    [133]Yang,B.,Projection approximation subspace tracking,IEEE Transactions on Signal Processing,Jan.1995,44(1):95-107
    [134]Yang,B.,An extension of the PASTd algorithm to both rank and subspace tracking,Signal Processing Letters,IEEE,Sept.1995,2(9):179-182
    [135]Abed-Meraim,K.,Chkeif,A.and Hua,Y.,Fast orthonormal PAST algorithm,Signal Processing Letters,IEEE,March 2000,7(3):60-62
    [136]Wax,M.and T.Kailath,Detection of signals by information theoretic criteria,IEEE Trans.Acoust.,Speech,Signal Processing,Feb.1985,ASSP(33):387-392
    [137]保铮,廖桂生,吴仁彪,张玉洪,王永良,相控阵机载雷达杂波抑制的时-空二维自适应滤波,电子学报,1993年9月,21(9):1-7
    [138]Barbarossa,S.,Analysis of multicomponent LFM signals by a combined Wigner-Hough transform,IEEE Transactions on Signal Processing,June 1995,43(6):1511-1515
    [139]Barbarossa,S.and Lemoine,O.,Analysis of nonlinear FM signals by pattern recognition of their time-frequency representation,IEEE Signal Processing Letters,April 1996,3(4):112-115
    [140]Wood,J.C.and Barry,D.T.,Linear signal synthesis using the Radon-Wigner transform,IEEE Transactions on Signal Processing,August 1994,42(8):2105-2111
    [141]Wood,J.C.and Barry,D.T.,Radon transformation of time-frequency distributions for analysis of multicomponent signals 1994,IEEE Transactions on Signal Processing,Nov.1994,42(11):3166-3177
    [142]Ouyang,X.and Amin,M.G.,Short-time Fourier transform receiver for nonstationary interference excision in direct sequence spread spectrum communications,IEEE Transactions on Signal Processing,April 2001,49(2):851-863
    [143]Barbarossa,S.and Scaglione,A.,Adaptive time-varying cancellation of wideband interferences in spread-spectrum communications based on time-frequency distributions,IEEE Transactions on Signal Processing,April 1999,47(4):957-965
    [144]周映,杨斌,肖先赐,DSSS系统中基于WHT的自适应干扰抑制,信号处理,2004年8月,20(4):353-355
    [145]孟建等,量化位数对GPS转发干扰的影响研究,电子对抗技术,2002,17(2):17-22
    [146]Gaudenzi,R.D.,The effect of signal quantization on the performance of DS/SS-CDMA demodulators,IEEE Global Telecommunications Conference,1994:994-998
    [147]Hooli,K.,Effect of signal quantization on the performance of LMMSE receiver in WLL channels,Proceedings of IEEE 5th International Symposium on Spread Spectrum Techniques and Applications,1998:536-540
    [148]Iinatti,J.,Effects of signal quantization on WCDMA code acquisition,Electronics Letters,2000,36(2):187-189
    [149]Ouvry,L.,Quantization effects on a DS-CDMA signal,IEEE Proceeding of Spread Spectrum Techniques and Application,1998:234-238
    [150]Shen,B.and Zhang,Q.-1.,A new method for analyzing the quantization effect of ADC in broadband QAM receiver,IEEE 2002 International Conference on Communications,Circuits and Systems and West Sino Expositions,2002,2:1262-1266
    [151]Yagyu,M.,Kinjo,S.and Yamaguchi,H.,Analysis and minimization of loss of process gain with A/D conversion in DS-CDMA,IEEE VTS 50th Vehicular Technology Conference,1999:2476-2480
    [152]卢艳娥,谈展中,杨军,许嘉林,丁子明.,A/D量化对GPS接收机自适应天线性能的影响,宇航学报,2004年3月,25(2):235-240
    [153]Widrow,B.,A study of rough amplitude quantization by means of Nyquist sampling theory,IRE Trans.Circuit Theory,Dec.1956,3(4):266-276
    [154]Widrow,B.,Statistical analysis of amplitude-quantized sampled-data systems,Trans.AIEE,Part 2:Applicat.Ind.,Jan.1961,79(52):555-568
    [155]Widrow,B.,Kollar,I.and Liu,M.-C.,Statistical theory of quantization,IEEE Transactions on Instrumentation and Measurement,April 1996:353-361
    [156]Sripad,A.and Snyder,D.,A neccessary and sufficient condition for quantization errors to be uniform and white,IEEE Trans.Acoust.,Speech,Signal Processing,Oct 1977,25(5):442-448
    [157]孟建,王春丽,李其勤,量化位数对GPS转发干扰的影响研究,电子对抗技术,2002,17(2):17-22
    [158]Schuchman,L.,Dither signal and their effect on quantization noise,IEEE Transactions on Communications,Dec 1964,12(4):162-165
    [159]Oppenheim,A.V.and Schafer,R.W.,Digital signal processing,Englewood Cliffs,NJ:Prentice-Hall,1975
    [160]Oppenheim,A.V.and Weinstein,C.J.,Effects of finite register length in digital filtering and fast Fourier transforms,Proceedings of the IEEE,Aug.1972,60:956-976
    [161]李素芝,万建伟,时域离散信号处理,长沙:国防科技大学出版社,1994:362-424
    [162]王世练,宽带中频数字接收机的实现及其关键技术研究,国防科学技术大学博士学位论文,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700