混凝土探测中探地雷达方法技术应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
探地雷达是一种无损探测方法,具有探测速度快、资料连续、操作方便灵活、分辨率高、无损等特点,在混凝土质量探测中具有广泛的应用。由于混凝土结构体的复杂性以及各类干扰的影响,采集的探地雷达数据质量下降,给处理和解释带来了困难。本文研究内容着重于混凝土结构体的探地雷达无损探测,针对其难点问题展开研究。研究的主要内容分为:基于随机介质的混凝土体探地雷达探测信号研究与分析;粗糙面对混凝土体探测影响研究及粗糙面对目标体探测的影响研究;钢筋混凝土内的钢筋网分布及缺陷探测研究;在混凝土工程质量评价中,研究提取介质的属性参数的方法技术。研究中采用高阶时间域有限差分方法进行探地雷达数值模拟计算,并结合探测实例进行分析研究。通过研究表明:混凝土介质非均匀性和界面的粗糙性影响了探地雷达目标体的探测图像和数据解释精度;利用探地雷达数据对混凝土内钢筋成像,实现对钢筋下方缺陷体精确探测,并采用探地雷达的属性参数来提取混凝土的密实度、含水量以及强度具有较高的精度。通过实际探测,进一步验证了本文研究的方法技术。
As the rapid development of economy in our contrary, engineering construction has also been an unprecedented development. At construction, concrete is a common and important material. So the quality of the concrete structure is directly related to the quality of the projects and construction safety. Concrete structures usually exist common quality problems: concrete thickness does not satisfy the requirements; structural damage and cracks, interlaminar cavity and internal support frame(reinforced) uneven distribution and so on. In order to guarantee project quality and safety of concrete structure, the concrete structure required for testing and monitoring. traditional detection and monitor methods, such as cutting ring method, core drilling method, etc. are need to sample to obtain the internal defects or in the room to get relative parameters such as: the thickness of concrete layer, degree of compaction, water content, compressive strength, etc. The disadvantage of these conventional methods are distance sampling, representativeness bad , detection is destructive , high costs and long period, etc., so a better detection methods is needed. Ground-penetrating radar(GPR) technology is a nondestructive detection technique, its advantages are detection rapidly and continuous, easy to operate, high precision, etc., so GPR technology is widely applied, and play an important role in concrete quality inspection.
     The content of this paper focuses on nondestructive detection of concrete structure using GPR. Research can be divided into the following parts: using high-order finite difference time domain method to simulate numerical model of GPR; using GPR to detect random medium of concrete body; detecting rough interface of concrete body and analyze its influence to the targets; mesh reinforcement and defect’s detection in reinforced concrete; concrete parameter’s detection and quality evaluation using GPR. The main results of study are as follows:
     ⑴Using high-order finite difference time domain(FDTD) method to simulate concrete body’s ground-penetrating radar detection. Using Taylor series expansion formula to get high-order difference formula and put it to Maxwell’s equations of the two curl equations to replace the differential form in order to get high-order finite difference equation. This method solved the problem of large numerical dispersion caused by the second order accuracy of differential approximation. In order to solve the electromagnetic reflection in truncation surface, using UPML absorbing boundary. We use Taylor series expansion method to make UPML absorbing boundary condition can be used for high-order FDTD method. In this paper, we give in detail to the process.
     ⑵Media non-uniformity affects signal quality of GPR, and affects the radar data processing and interpretation. Through higher-order FDTD methods to simulate what happened to GPR wave when concrete body’s dielectric constant and conductivity changed with non-uniform random change, and analyze its affects to target detection. Through the study we found: when the dielectric permittivity of inhomogeneous medium changed larger, the radar wave propagating in concrete body will occur stronger scattering and diffraction, which affect the single noise ratio(SNR) of target’s reflection signal. Medium changed inhomogeneous also affect the propagation path and the propagation velocity of electromagnetic waves, result in the evaluation error of travel time to the reflection signal. When conductivity of inhomogeneous medium happened change, form snapshot of radar wave we can not find electromagnetic wave scattering and diffraction, but its absorptive capacity get stronger, and also result in reflected signals get weaker, which reduces the signal noise ratio too.
     ⑶When we use GPR to detect concrete body, targets between surfaces or near the surfaces are often our aim, but the surface in the concrete mostly fluctuant and rough, which causes radar wave diffraction and scattering. this phenomenon not only serious affects us to determine the surface’s location, but also affect their bottom targets detection. Using a number of uniformly distributed random numbers to structure a random number sequences which content the Gaussian distribution. And using filter method to make the random number sequences accord with realistic random rough surface, finally using this number sequences to structure numerical model of concrete body which surface is rough and its roughness can be changed in accordance with practical requirements. By numerical simulation we can find that with roughness of the rough surface increase, the electromagnetic wave in the rough surface happened diffraction and scattering stronger, which affect the bottom targets detection. Especially for circular targets near the rough surface, its influence is greater than layered targets. When the rough interface changed to a certain roughness, the interface’s roughness will become to a main influencing factor, the other objectives can not be detected and position.
     ⑷To reinforced concrete structure, the electromagnetic wave was shielded by mesh reinforcement and the strong multiple waves existed, which increase the detection difficulty of GPR to defect bodies under the mesh reinforcement. By GPR numerical simulation about concrete models of different density mesh reinforcement, and analyses and compare the reflect signals of mesh reinforcement and targets about different models, we can find that if the upper mesh reinforcement’s density get smaller, defect bodies can easy to detect. When the mesh reinforcement density is the same, defect bodies’reflective ability will determine detection ability of GPR. In order to achieve the detection of reinforces and defects in reinforced concrete, we use F-K migration technology to deal with radar data. The results showed that: this method can very well make diffraction wave’s energy located to the vertex, vertex energy is much higher than the energy of multiple wave and background signal, which can effective extrude the defects.
     ⑸To set up an asphalt dam model and numerical simulation, then analyze these radar data. Reference to the numerical simulation results, extract the effective signal of concrete body such as amplitude, main frequency, etc. from a radar data which was detected form a actual dam (the dam of Inner Mongolia Chifeng), and combined to the porosity and density data which got form samples, we can acquire the relationship between the magnetic parameters of radar wave such as amplitude、main frequency、transient spectroscopy and the asphalt concrete parameters of the porosity and the density. From the fitting results, we can find the correlation of radar signal about amplitude and main frequency with concrete density and porosity are good, which can effectively reflect asphalt concrete’s weak change about porosity and density. Through verification about the fitting results we can find that these fitting formulas can effective detect concrete structures’parameters by GPR.
     ⑹Under the concrete material composition and properties, we establish some different water saturation of porosity asphalt concrete numerical models, through numerical simulation study of GPR and analyze the correlation between water saturation and the response of radar waves, we can find that along with the increase about water content the porosity will cause more scattering and diffraction and the absorption capacity to high-frequency radar wave also get stronger. At the same time, the detected radar signal cause more disturbances in whole region. However, the amplitude (energy) of reflected wave significantly reduces too.
     ⑺By analyses the strength of concrete pavement, we can find that the strength of concrete have close connection between radar wave amplitude, frequency and energy. We can get linear fitting formula about radar wave’s amplitude, main frequency, energy between the strength of concrete pavement by linear regression calculation method. Using this relationship formula, we calculated the radar data about yibo highway, in order to verify the results of our calculation, combined with the data of samples. By analyzing, we got the following conclusion that using this relationship formula to calculate the concrete pavement’s strength by radar data, the largest relative error is only 8%, by this method we can get accuracy results about the strength of concrete pavement.
引文
[1]金桃,张美珍.公路工程检测技术[M].北京:人民交通出版社, 2002.
    [2]李家伟.无损检测手册[M].北京:机械工业出版社,2002:6-20.
    [3]朱洪潇.混凝土探伤中的探地雷达及超声CT的综合应用[D].长沙:中南大学,2007.
    [4]张春城.浅地层探地雷达中的信号处理技术研究[D].成都:成都电子科技大学,2005.
    [5]曾昭发,刘四新,王者江,薛建.探地雷达方法原理及应用[M].北京:科学出版社,2006.
    [6]方广有,张忠治,汪文秉.无载频脉冲探地雷达性能分析及其FDTD法数值模拟计算[J].电波科学学报,1997,12(1):44-50.
    [7]方广有,张忠治,汪文秉. FDTD法分析无载频脉冲探地雷达特性[J].电子学报,1999, 27(3):74-78.
    [8] MOREY R. Ground penetrating radar for evaluating subsurface conditions for transportation facilities[M]. Transportation Research Board, 1998.
    [9] MASER K R. Highway speed radar for pavement thickness evaluation: Proceedings of the Fifth International Conference on Ground penetrating radar, June 12-16, 1994 [C], Kitchener, Ontario, Canada, c1994.
    [10] SCULLION T, LAU C L, CHEN Y. Performance specifications of ground penetrating radar, Proceedings of the Fifth International Conference on Ground penetrating radar, June 12-16, 1994[C], Kitchener, Ontario, Canada, c1994.
    [11] ATTOH OKINE NO, RODDIS WMK. Pavement thickness variability and its effect on determination of Moduli and Remaining life[J].Transportation Research Record, 1994, 1449: 39-45.
    [12] TAFLOVE A. Advances in Computational Electrodynamics: The Fintite Difference Time- Domain Method[M]. Norwood, MA: Artech house, 1998.
    [13] YEE K S. Numerical solution of initial boundary value problems involving Mxawell’s equations in isotropic media[J]. IEEE, Trans on Antennas Propagat, 1966, 14(3): 302-307.
    [14] FANG J. Time domain finite difference computation for Maxwell’s equations [D]. Berkeley: Univ. of California, 1989.
    [15] BENEDETTO A, BENEDETTO F. GPR experimental evaluaton of subgrade soil characteristics for rehabilitation of roads, Washington, 708-714, 2002[C].Washington: Bellingham WA, c2002.
    [16] BENEDETTO A, DE BLASIIS M R. Road pavement diagnosis[J]. Quarry Construct., 2001, 6: 93-111.
    [17]石宁,陈佩茹编译.探地雷达的基本原理及其在沥青路面中的应用[J].中外公路,2004,24(1):75-78.
    [18]杨健,张毅,陈建勋.地质雷达在隧道工程质量检测中的应用[J].公路, 2001,3:62-64.
    [19]叶良应,谢慧才,徐茂辉.地铁隧道衬砌脱空的雷达探测法[J].施工技术,2006,34(6):12-14.
    [20]周黎明,王法刚.地质雷达检测隧道衬砌混凝土质量[J].岩土工程界,2003,6(3):73-76.
    [21]冯慧民.地质雷达在隧道检测中的应用[J].现代隧道技术,2004,41 (4):67-50.
    [22] KOWALSKY M B, DIETRICH P, TEUTSCH G, RUBIN Y. Forward modeling of ground-penetrating radar data using digitized outcrop images and multiple scenarios of water saturation[J]. Water Resources Research, 2001, 37 (6): 1615-1625.
    [23]郭高轩,吴吉春.应用GPR获取水文地质参数研究初探[J].水利地质工程地质,2006,1:89-93.
    [24]刘序禄,郑炳寅.探地雷达检测与水库安全鉴定大坝渗漏的分析[J].水利科技与经济,2006,12(2):92-95.
    [25] GOODMAN D. Ground-penetrating radar simulation in engineering and archaeology[J]. Geophysics, 1994, 59: 224-232.
    [26]李大心.探地雷达方法与应用[M].北京:地质出版社,1994.
    [27]张彦杰.探地雷达在道路检测中的应用研究[D].长春:吉林大学,2007.
    [28] KONG J A.电磁波理论[M].北京:人民教育出版社,1982.
    [29]刘恒.路用探地雷达在道路工程中的应用研究[D].大连:大连理工大学, 2002.
    [30]孟美丽.路用探地雷达回波模拟分析[D].郑州:郑州大学,2002.
    [31]刘亚丽.探地雷达波场数值模拟与成像[D].陕西:西安理工大学,2007.
    [32]徐宏武,邵雁,邓春为.探地雷达技术及其探测的应用[J].岩土工程技术,2005,19 (4):191-194.
    [33]魏剑涛.探地雷达的分析和研究[D].大连:大连理工大学,2000.
    [34]刘英利.地质雷达在工程物探中的应用研究[D].成都:成都理工大学,2007.
    [35] COOK J C. Radar transparencies of mine and tunnel rocks [J]. Geophysics, 1975, 40(5): 865-885.
    [36] COOL J C. Radar exploration through rock in advance of mining[J]. Trans. Society Mining Engineers AIME, 1973, 254: 140-146.
    [37]薛桂玉,余志雄.地质雷达技术在堤坝安全检测中的应用[J].大坝与安全, 2004,1:13-19.
    [38]粟毅,黄春琳,雷文太.探地雷达理论与应用[M].科技出版社,2006.
    [39]邓世坤.探地雷达技术野外工作参数选择的基本原理[J].工程地球物理学报,2005,2(5):323-329.
    [40] BENEDETTO A, ANGIO C. Road safety and pavement management. New perspectives and advanced technologies Proc. International Symposium on Safety Science and Technology, September, 2002[C]. Tai’an, Shandong, China, c2002.
    [41] HOLLIDAY D. Resolution of a controversy surrounding the Kirchhoff approach and the small perturbation method in rough surface scattering theory[J]. IEEE Trans. On Antennas and Propagation, 1987, 35(1): 120-122.
    [42] ANNAN A P. Ground-penetration radar principles, Procedures& applications [M]. Canada: Sensors and Software Inc, 2003.
    [43]徐茂辉.混凝土中钢筋检测的探地雷达方法[D].广东:汕头大学,2004.
    [44]刘胜峰.地质雷达应用于公路隧道衬砌无损检测的实验研究[D].长沙:长沙理工大学,2007.
    [45]张玉.电磁场并行计算[M].西安:西安电子科技大学出版社,2006:85-134.
    [46]陈晓梅,杨雪霞,徐得名. FDTD(2,4)算法的数值色散特性及其在微带天线中的应用研究[J].上海大学学报(自然科学版),2004,10(2): 111-114.
    [47]桂志先. 2n阶有限差分的计算与复杂介质波场数值模拟[J].石油天然气学报(江汉石油学院学报),2005,27(3):334-337.
    [48]刘洋,李承楚,牟永光.任意偶数阶精度有限差分法数值模拟[J].石油地球物理勘探,1998,33(1):1-10.
    [49]王健,吴先良,冉亮.改进的高阶FDTD方法在散射问题中的应用[J].合肥工业大学学报(自然科学版),2007,30(3):390-393.
    [50]葛德彪,闫玉波.电磁波时域有限差分法[M].西安:西安电子科技大学出版社,2005:1-147.
    [51]胡平.探地雷达数值模拟技术的应用研究[D].北京:中国地质大学,2005.
    [52] TURKEL E, YEFET A. Fourth order method for Maxwell’s equations on a staggered mesh[J]. In: Proc IEEE Antennas and Propagat Soc Int Symp, 1997,4: 2156-2159.
    [53] COLE J B. A high accuracy realization of the Yee algorithm using nonstandard finite differences[J]. IEEE Trans on Microwave Theory Tech, 1997, 45(6): 991-996.
    [54] FORGY E A, CHEW W C. A time domain method with isotropic dispersion and increased stability on an overlapped lattice[J]. IEEE Trans on Antennas Propagat, 2002, 50(7): 983-996.
    [55] KRUMPHOLZ M, KATEHI L P B. New time-domain schemes based on multiresolution analysis[J]. IEEE Trans on Microwave Theory Tech, 1996, 44(4): 555-571.
    [56] LIU Q H. The PSTD algorithm: A time-domain method requiring only two cells per wavelength[J]. Microw Opt Technol Lett, 1997, 15(3): 158- 165.
    [57] SHAO ZHENHAI, WEI G W, ZHAO SHAN. DSC time domain solution of Maxwell’s equations[J]. Journal of Computational Physics, 2003, 189: 427-453.
    [58]肖飞,唐小宏,张显静.基于Taylor级数展开定理的高阶FDTD的色散分析[J].微波学报,2005,21(6):8-13.
    [59] ZHANG Y, SONG J, LIANG C H. MPI based parallelized locally conformal FDTD for modeling slot antennas and new periodic structures in microstrip[J]. Journal Electromagnetic Waves and Application, 2004, 18(10): 1321-1335.
    [60] ZHANG Y, DING W, LIANG C H. Study on the optimum virtual topology for MPI based parallel conformal FDTD algorithm on PC clusters[J]. Journal of Electromagnetic Waves and Applications, 2005, 19(13): 1817-1831.
    [61]张玉.电磁场并行计算[M].西安电子科技大学出版社,2006:120-134.
    [62]吴丰收,曾昭发,黄玲,张玲玲.探地雷达的高阶时间域有限差分模拟[J].物探化探计算技术,2009,31(4):308-313.
    [63] BERENGER J P. A perfectly matched layer for the FDTD solution of wave-structure interaction problems[J]. IEEE Trans. Antennas Propagat., 1996, 44(1): 110-117.
    [64] BERENGER J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. Comput. Phys., 1994, 114(2): 185-200.
    [65] GEDNEY S D. An anisotropic perfectly matched layer absorbing medium for the truncation of FDTD lattices[J]. IEEE Trans. Antennas Propagat., 1996, 44(12): 1630-1639.
    [66] GEDNEY S D. An anisotropic PML absorbing media for the FDTD simulationof fields in lossy and dispersive media[J]. Electromagnetics, 1996, 16(4): 399-415.
    [67] SACKS Z S, KINGSLADN D M, LEE J F. A perfectly matched anisotropic absorber for use as an absorbing boundary condition[J]. IEEE Trans, Antennas Propagat., 1995, 43(12): 1460-1463.
    [68]刘四新,曾昭发,徐波.地质雷达数值模拟中有耗介质吸收边界条件的实现[J].吉林大学学报(地球科学版),2005,35(3):378-381.
    [69]颜力.频域吸收边界条件的构造理论[J].信息与电子工程,2003,1(1):31-36.
    [70] MUR G. Absorbing boundary conditions for the finite difference approximation of the time domain electromagnetic field equations[J]. IEEE Trans. Electromagn.Compat., 1981, 23(4): 377-382.
    [71] TAFLOVE A, HAGNESS S C. Computational electrodynamics: the finite difference time domain method[M]. Norwood MA: Artech House, 2000.
    [72]邵振海,洪伟.几种新的吸收边界条件在电磁散射中的应用[J].电波科学学报,1999,14(13):287-294.
    [73]俞寿朋.宽带Ricker子波[J].石油地球物理勘探,1996,31 (5):605-616.
    [74]石宁,陈佩茹.探地雷达的基本原理及其在沥青路面中的应用[J].中外公路,2004,24(1):75-78.
    [75] ALQADI I L, LAHOUAR S. Measuring layer thicknesses with GPR Theory to practice[J]. Construction and Building Materials, 2005, 19: 763-772.
    [76]曹雪山,郑长江,蔡亮.高等级公路沥青路面结构的探地雷达检测技术[J].洛阳大学学报,2002,17(4):73-75.
    [77]方慧,肖都.公路结构检测中探地雷达资料自动解释技术[J].物探与化探, 2005,29(2):146-152.
    [78] ANNAN A P. Radio interferometry depth soundings: PartⅠ-Theoretical discussion[J]. Geophysics, 1973, 38: 557-580.
    [79] YORAM RUBIN, SUSAN S Hubbard. Hydrogeophysics[M]. Published by Springer, 2005: 190-200.
    [80] LIU C RICHARD, LI JING, GAN XINHUA, XING HUICHUN, CHEN XUEMIN. Thickness measurement of concrete pavement by FMCW radar, 7, 2001[C]. Proceedings of SPIE conference, c2001.
    [81] LIU C RICHARD, LI JING, GAN XINHUA, XING HUICHUN, CHEN XUEMIN. A new model for estimating the thickness and permittivity of subsurface layer from GPR data[J]. IEEE Proceedings: Radar, Sonar andNavigation, 2002, 149(6): 315-318.
    [82]叶红霞.随机粗糙面与目标复合电磁散射的数值计算方法[D].上海:复旦大学,2007.
    [83] ISHIMARU A, CHEN J S. Scattering from very rough surfaces based on the modified second order Kirchhoff approximation with angular and propagation shadowing[J]. Journal of the Acoustical Society of Amer ica, 1990, 88(4): 1877-1888.
    [84] THORSOS E I. The validity of the perturbation approximation for rough surface scattering using a Gaussian roughness spectrum[J]. Journal of the Acoustical Society of America, 1989, 86(1): 261-277.
    [85] SOTO CRESPO J M, NICTO VESPERINAS M, FRIBERG A T. Scattering from slightly rough random surfaces: a detailed study on the validity of the small perturbation method[J]. Journal of the Optical Society of America A, 1990, 7(7): 1185-1201.
    [86] BAHAR E. Scattering cross sections for random surfaces: Full Wave Analysis[J]. Radio Science, 1981, 16(2) :331-341.
    [87] SHEN J, MARADUDIN A A. Multiple scattering of waves from random rough surfaces[J]. Physical Review B, 1980, 22(9): 4234-4240.
    [88] BROWN G S. Simplifications in the stochastic Fourier approach to random surface scattering[J]. IEEE Trans. on Antennas and Propagation, 1985, 33(1): 48-55.
    [89] HARRINGTON R F. Field Computation by Moment Method[M]. New York: IEEE Press, 1993.
    [90]金建铭.电磁场有限元方法[M].北京:国防工业出版社,1995.
    [91] PATIR N. A numerical procedure for random generation of rough surfaces[J]. Wear, 1978, 47: 263-277.
    [92] YOU S J, EHMANN K F. Computer systhesis of three-dimension surfaces[J]. Wear, 1991, 137: 275-285.
    [93] WU J J. Simulation of rough surfaces with FFT[J]. Tribology International, 2000, 33: 47-58.
    [94] WATSON W, SPEDDING TA. The time series modeling of non-gaussian engineering processes[J]. Wear, 1982, 83: 215-231.
    [95] GU X, HUANG Y. The modeling and simulation of a rough surface[J]. Wear, 1990, 137: 275-285.
    [96] HU Y Z, TONDER K. Simulation of 3-D random rough surface by 2-D digitalfilter and fourier analysis[J]. International Journal of Machine Tools Manufacturing, 1992, 32(1): 38-90.
    [97] WHITEHOUSE D J, ARCHARD J F. The properties of random surfaces of significance of their contact[J]. Proc. Roy. Soc. London, Series A, 1970, 316: 97-121.
    [98] ONIONS R A, ARCHARD J F. The contact of surfaces having a random structure[J]. Journal of Physics, Series D: Appl. Phys., 1973, 6: 289-304.
    [99]张起生,王晓春,谢鸣.符合Gauss分布规律的随机粗糙表面数值模拟[J].燕山大学学报,2008,32(6):503-506.
    [100] BACKMANN P, SPIZZICHINO A. The scattering of Electromagnetic Waves from Rough Surfaces[M]. New York: Pergamon Press, 1963.
    [101]匡磊.三维目标与随机粗糙下垫面复合电磁散射的FDTD方法研究[D].上海:复旦大学,2007.
    [102] FUNG A K, CHEN M F. Numerical simulation of scattering from simple and composite random surfaces[J]. Jopt Soc Am, 1985, 2(12): 2274-2284.
    [103] CASTEL A, FRANCOIS R, ARLIGUIE G. Mechanical behavior model of corroded reinforced concrete[J]. C. R. Acad. Sci. Mech, 2002, 330: 45-50.
    [104] MCCANN D M, FORDE M C. Review of NDT methods in the assessment of concrete and masonry structures[J]. NDT&E International, 2001, 34: 71-84.
    [105] RHAZI J, LAURENS S, BALLIVY G. Insights on the GPR non destructive testing method of bridege decks, 2000[C]. Toronto: Special Session on Non Destructive Detection of Corrosion in Reinforced Concrete, ACI Meeting, c2000.
    [106] FRANCOIS R, ARLIGUIE G. Effect of microcracking and cracking on the development of corrosion in reinforced concrete members[J]. Mag. Concr. Res., 1999, 52(2): 143-150.
    [107] VIDAL T, CASTEL A, FRANCOIS R. Analyzing crack width to predict corrosion in reinforced concrete[J]. Cement and Concrete Research, 2004, 34: 165- 174.
    [108] PARTHIBAN THIRUMALAI, RAVI R, PARTHIBAN G T. Potential monitoring system for corrosion of steel in concrete[J]. Advances in Engineering Software, 2006, 37: 375-381.
    [109] DEROBERT X, IAQUINTA J, KLYSZ G, BALAYSSAC J P. Use of capacitive and GPR techniques for the non-destructive evaluation of cover concrete[J]. NDT and E Int 2008, 41(1): 44-52.
    [110] SHAARI A, BUNGEY J H. Measurement of radar properties of concrete for insitu concrete elements[J]. Insight-Brit J NDT, 2002, 14(12): 756-758.
    [111] GIACOPOULOS A, MACINTYRE P, RODGERS S, FORDE M C. GPR detection of voids in posttensioned concrete bridge beams. Proceedings of GPR, 4758:376-381, 2002[C], Santa Barbara, SPIE. c2002.
    [112] GOODIER A, VENESS K. Practical use of finite difference time domain modeling to aid subsurface radar surveys. Proceedings of Structural Faults and Repair, 2001[C]. Edinburgh: Engineering Technics Press, c2001.
    [113] DAVIDSON N C, CHASE S B. Initial testing of advanced ground penetrating radar technology for the inspection of bridge decks: The HERMES and PERES Bridge Inspectors, vol. 3587, 180-185, 1999[C]. Washington: Society of Photo-Optical Instrumentation Engineers, c1999.
    [114] AL NUAIMY W, SHIBAB S, ERIKSEN A. Data fusion for accurate characterization of buried cylindrical objects using GPR. Proceedings of the 10th international conference on ground penetrating radar, June 359-362, 2004[C]. The Netherlands: Delft, c2004.
    [115] BUNGEY J H, MILLARD S H, SHAW M R. Influence of reinforcing steel on radar surveys of concrete structures[J]. Construction and Building Materials, 1994, 8(20): 119-126.
    [116] MICHAEL SCOTT, ALI REZAIZADEH, MARK MOORE. Phenomenology study of HERMES Ground Penetrating Radar technology for detection and identification of common bridge deck features[J]. Wiss, Janney, Elstner and Associates, Inc. 2001.
    [117]王国秉,孙志恒,赵廷式,张根才,张瑞堂.万家寨引黄水工隧洞工程检测和缺陷处理[J].山西水利科技, 2005, 4:1-4.
    [118]王复明,张蓓,刘俊.水泥混凝土路面板下脱空的路面雷达电磁波模拟[J].公路,2007,4:113-116.
    [119]徐茂辉,赖恒,谢慧才.探地雷达在混凝土板钢筋检测中的应用[J].无损检测,2004,26(1):29-33.
    [120]李德群,聂玲.混凝土结构蜂窝麻面成因及抑制方法[J].建筑工程,2005, 4:66-67.
    [121]陈键生,王海民,付洋.磁粉检测20年回顾[J].无损检测,1998,20 (4):91-95.
    [122]任吉林.涡流检测技术近20年的进展[J].无损检测,1998,20 (5):121-125.
    [123]李宏男.结构健康检测[M].大连:大连理工大学出版社,2005.
    [124]冯新.土木工程中结构识别方法的研究[D].大连:大连理工大学,2002.
    [125]冯新.结构健康诊断的系统模型和特征提取研究[R].同济大学博士后研究工作报告,2004.
    [126]马宏伟,杨桂通.结构损伤探测的基本方法和研究进展[J].力学进展,1999,29(4):513-527.
    [127]冯新,李国强,周晶.土木工程结构健康诊断中的统计识别方法综述[J].地震工程与工程震动,2005,25(2):105-113.
    [128]周克印,周在杞,姚恩涛等.建筑工程结构无损检测技术[M].北京:化学工业出版社,2006.
    [129]杨清丽,刘文吉.混凝土结构强度无损检测方法述评[J].国外建材科技, 2005,26(2):34-36.
    [130] SPYRAKOS C C. Assessment of SSI on the longitudinal seismic Response of Short Span Bridge[J]. Engineering Structures, 1990, 12(1): 60-66.
    [131]胡利平.动态法桥梁损伤检测与识别技术面临的挑战[J].公路交通科技, 2005,22(5):93-96.
    [132]李大军,霍达.环境激励下桥梁结构模态识别与损伤检测的新方法[J].公路交通科技,2005,22(5):93-96.
    [133]于阿涛,赵鸣.基于振动的土木工程结构健康检测研究进展[J].福州大学学报(自然科学版),2005,33(增刊):233-239.
    [134]袁颖.基于不完备检测信息和数据噪音条件下的桥梁结构损伤识别方法研究[D].大连:大连理工大学,2006.
    [135]薛景宏,广东,李涛.基于振动信号分析的结构损伤识别方法[J].大庆石油学院学报,2005,29(5):72-76.
    [136] ELKORDY M F, CHANGY K C, LEE G C. Application of neural networks in vibrational signature analysis[J]. Journal of Engineering Mechanics, 1994, 120(2): 251-264.
    [137]喻波.计算机辅助结构健康诊断方法[J].计算机工程与应用,2005,10:183-196.
    [138] JENO GAZDAG, PIERO SGUAZZERO. Migration of Seismic Data[J]. PIEEE, 1984, 72(10): 1320-1315.
    [139] CAFFPRIO C, PRATI C, ROCCA E. SAR data focusing using seismic migration techniques[J]. IEEE Trans. Aerospace and Electronic System, 1991, 27(2): 194-206.
    [140] YU HAIZHONG, YING XIAOJIAN. Derivative Seismic Processing Method fof GPRData[J]. IGARSS’97, 1997, 145-147.
    [141] ROBERT J GREAVES, DAVID P LESMES. Velocity variations and water content estimated from muti-offset, ground-penertrating radar[J]. Geophysics, 1996, 61(3): 683-695.
    [142]黄玲,曾昭发,王者江,吴丰收.钢筋混凝土缺陷的探地雷达检测模拟与成像效果[J].物探与化探,2007,31(2):181-185.
    [143] TILLARD S. DUBOIS J C. Analysis of GPR data wave propagation velocity determination[J]. Applide Geophysics, 1995, 33(1-3): 77-91.
    [144] JAYA M S, BOTELHO M A, HUBRAL P. Remigration of ground-penetration radar data[J]. Applied Geophysics, 1999, 4(1): 19-30.
    [145]黄南晖.地质雷达探测的波场分析[J].地球科学,1993,18(3):294-302.
    [146] STOFFREGEN H, YARAMANCI U, ZENKER T, WESSOLEK G. Accuracy of soil water content measurements using ground penetrating radar: comparison of ground penetrating radar and lysimeter data [J]. Journal of Hydrology, 2002, 267: 201-206.
    [147]王子彬,蔡迎春,郭成超.路面雷达在沥青路面密度和压实度检测中的试验研究[J].中南公路工程,2006,31(4):96-101.
    [148]李立寒,曹林涛,郭亚兵,罗方艳.初始孔隙率对沥青混合料性能影响的试验研究[J].同济大学学报(自然科学版),2006,34 (6):757- 160.
    [149]孙宇瑞.非饱和土壤介电特性测量理论与方法的研究[D].北京:中国农业大学,2000.
    [150]张英德,刘江平,刘良琼. Hilbert变换在地质雷达数据处理中的应用[J].工程地球物理学报,2004,1(4):349-352.
    [151]卓知学,李嘉.现代路面工程学[M].湖南:湖南科技出版社,1994.
    [152] REYNOLDS J A, HOUGH J M. Formulate for dielectric constant of mistures [J]. Proc.Phys. Soc.London, 1957, 708(452): 769-765.
    [153] DELEVSKY V I. Raschet obobschenoi provodimosti geterogennih system [J]. GTF, 1951, 21(6): 667-685.
    [154] SHUTKO ANATOLIJ, REUTOV E M. Mixture formulas applied in estimation of dielectric and radiative characteristics of soils and grounds at microwave frequencies[J]. IEEE transactions on geoscience and remote sensing, 1982, 20(1): 29-32.
    [155]吴丰收,曾昭发,王德库,王者江,黄玲,叶胜远,沥青心墙压实度的探地雷达探测研究[J].地球物理学进展,2009,24(2):742-749.
    [156] BOTTCHER C J F. Theory of Electric Polarizatin[M]. Amsterdam, Elsevier, 1952.
    [157] BROWN W F. Dielectrics in Encyclopedia of Physics[M]. Berlin: Springer, 1956.
    [158] BRICHAK J R, GARDNER C G, HIPP J E, VICTOR J M. High dielectric contan microwave probes for sensing soil moisture[J]. Proc. IEEE, 1974, 62: 93-98.
    [159] BRUGGEMAN D A G. Berechnung verchiedener physikalischer konstanten von heterogenen substanzen[J]. Ann. Phys.(Leipzig), Proc, IEEE, 1974, 62: 93-98.
    [160] WAGNER K W, Arch. Elektrochem[M]. Berlin, 1914.
    [161] WANG JAMES R, SCHMUGGE THOMSA J. An Empirical model for the complex dielectric permittivity of soils as a function of water content[J]. IEEE transactions on geosciience and remote sensing, 1980, 18(4): 288-295.
    [162]黎春林.探地雷达检测路面含水量和压实度的应用研究[D].郑州:郑州大学,2003.
    [163] TOPP G C. Electromagnetic determination of soil water content: Measurement in coaxial transmission lines[J]. Water Resource Research, 16: 574-582.
    [164] GREAVES R J, LESMES D P, LEE J M, TOKSOZ M N. Velocity variations and water content estimated from Multioffset, Ground-penetrating Radar[J]. Geophysics, 1996, 61(3): 683-695.
    [165] DAVIS J L, ANNAN A P. Ground penetrating radar for high resolution mapping of soil and rock stratigraphy[J]. Geophys Prospect, 1989, 37: 531-551.
    [166]杨成林,时福荣,李从信,蔡柏林.应用瑞雷波等方法对公路质量进行无损检测[J].物探与化探,1996,20(2):104-115.
    [167]陈宝东,庞志亮.浅谈钻芯法检测混凝土抗压强度[J].建材技术,2004,6:59-61.
    [168]施惠生,施韬.掺矿渣活性粉末混凝土的抗氯离子渗透性研究[J].同济大学学报,2006,34(1):93-96.
    [169]吴新璇.混凝土无损检测技术手册[M].北京:人民交通出版社,2003.
    [170]刘向阳,刘毅岱,李俊.用纵波波速推算混凝土抗压强度的对比实验及其分析[J].无损检测,2001,23(9):388-413.
    [171] OSHITA H, TANABE T. Water migration phenomenon in concrete in prepeak region[J]. Journal of Engineering Mechanics, 2000, 126(6): 565-572.
    [172] ULM F J, CONSTANTINIDES G, HEUKAMP FH. Is concrete a poromechanics material? A multiscale investigation of poroelastic properties[J].Materials and Structures, 2004, 37(265): 43-58.
    [173] DARR G M, LUDWING U. Determination of permeable porosity[J]. Materials and Structure, 1973, 6(3): 185-190.
    [174] ROSTASY FS, WEIB R, WIEDEMANN G.. Changes of pore structure of cement mortar due to temperature[J]. Cement and Research, 2005, 35: 1937-1942.
    [175]王静薇.混凝土细微观结构与强度的关系[D].杭州:浙江大学建筑工程学院,2007.
    [176] FERET R. About the denseness of cement mortars[J]. Annales des ponts et Chaussees, Memoires et Documents, 1892, 4(21): 1-184.
    [177] POWERS T C. AM J. Ceram[M]. Soc, 1958, 41(1).
    [178]阎培渝,姚燕.水泥基复合材料科学与技术:吴中伟院士工作60年学术讨论回论文集[C].北京:中国建筑工业出版社,1990.
    [179] LUPING T. A study of the quantitative relationship between strength and pore-size distribution of porous materials[J]. Int. J. of Rock Mechanics and Concrete Research, 16: 87-96
    [180]王海龙,李庆斌.孔隙水对湿态混凝土抗压强度的影响[J].工程力学,2006,23(10):141-179.
    [181] FRANDSEN J B. Simultaneous pressures and accelerations measured full-scale on the Great belt East suspension bridge[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89: 95-129.
    [182]李加武.桥梁断面雷诺数效应及其控制研究[D].上海:同济大学, 2003.
    [183] WYLLIE M R J , GREGORY A R, GARDNER L W. Elastic waves velocities in heterogeneous and porous media[J]. Geophysics, 1956, 21(1): 41-70.
    [184] RAYMER L, HUNT E R, GARDNER J S. An improved sonic transit time-to-porosity transform, Tulsa, July 8-11, 1980[C]. Tulsa, c1980.
    [185] PARKHOMENKO E I. Electrical properties of rocks[M]. New York: Plenum Press, 1967.